Генетика вирусов. Морфология вирусов Рнк нить вирусов

  • 13.09.2024
Оглавление темы "Типы микроорганизмов. Вирусы. Вирион.":
1. Микроорганизмы. Типы микроорганизмов. Классификация микроорганизмов. Прионы.
2. Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.
3. Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида.
4. Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки (М-белки) вирусов. Репродукция вирусов.
5. Взаимодействие вируса с клеткой. Характер взаимодействия вирус-клетка. Продуктивное взаимодействие. Вирогения. Интерференция вирусов.
6. Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.
7. Проникновение вируса в клетку. Виропексис. Раздевание вируса. Теневая фаза (фаза эклипса) репродукции вирусов. Образование вирусных частиц.
8. Транскрипция вируса в клетке. Трансляция вирусов.
9. Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.

Внеклеточная форма - вирион - включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма - вирус - может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.

Морфология вирусов. Размеры вирусов.

Нуклеиновые кислоты вирусов

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр - ДНК-содержащие, а тогавирусы, пикорнавирусы - РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный - более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине.

Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, - своеобразные маркёры вирусной ДНК.

Рис. 2-1. Размеры и морфология основных возбудителей вирусных инфекций человека .

Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными - от 2 сегментов у ареновирусов до 11 - у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) - +РНК.

Плюс-нити РНК представлены одиночными цепочками, имеющими характерные окончания («шапочки») для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой вирусом клетки, то есть выполнять функции мРНК. Плюс-нити выполняют следующие функции: служат мРНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомах, то есть они не могут функционировать как мРНК. Однако такие РНК служат матрицей для синтеза мРНК.

Инфекционность нуклеиновых кислот вирусов

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

А) обладает инфекционной активностью

Б) несет наследственную функцию

Г) не обладает функцией информационной РНК

У каких микроорганизмов материальной основой наследственности является РНК?

А) у бактерий

Б) у спирохет

В) у РНК – содержащих вирусов

Г) у ДНК – содержащих вирусов

Д) у микоплазм

Что такое трансформация?

А) восстановление поврежденной ДНК

Б) передача генетической информации при контакте бактериальных клеток разной «половой» направленности

В) передача генетической информации с помощью фрагмента ДНК

Г) передача генетической информации от клетки донора клетке реципиента с помощью бактериофага

Какие различают формы генетических рекомбинаций?

А) репарация;

Б) трасформация;

В) трансдукция;

Г) конъюгация;

Д) все ответы правильные;

Е) все ответы неправильные.

Что такое трансдукция?

А) передача генетического материала при помощи бактериофага

Б) необходим контакт клеток донора и реципиента

В) передача генетического материала с помощью РНК

Г) передача генетического материала с помощью полового фактора

Что изучает генетика микроорганизмов?

А) Ультраструктуру микроорганизмов;

Б) Вопросы наследственности и изменчивости микроорганизмов;

В) Процессы метаболизма микроорганизмов;

Г) Все ответы правильные;

Д) Все ответы неправильные.

Чем характеризуется «плюс» цепь РНК?

А) несет наследственную функцию

В) способна встраиваться в хромосому клетки

Г) обладает функцией информационной РНК

Д) не обладает функцией информационной РНК

Е) все ответы правильные.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 6.

Тема: Симбиоз и антибиоз. Резидентная и патогенная микрофлора. Факторы вирулентности микробов. Синергизм и антагонизм у микробов. Антибиотики, механизм действия и методы определения чувствительности к антибиотикам.

Тестовый контроль.

I. Вопросы для проверки исходного (базового) уровня знаний:

1. История открытия антибиотиков, принципы получения и применения антибиотиков (исследования А.Флеминга, Г.Флори, Э.Чейна, З.Ермольевой, С.Ваксмана и др).

2. Место антибиотиков в современной медицине. Основные принципы антибиотикотерапии.

3. Классификация по химическому строению, характеру и механизму противомикробного действия, происхождению и спектру действия на микробную клетку..

4.Демонстрация антибиотиков с различным механизмом и спектром действия. Принципы рациональной антибиотико- и химиотерапии.



5.Третий и четвертый этапы выделения чистой культуры аэробов.

6.Выделение чистой культуры анаэробов (продолжение).

7.Дисбактериоз, эубиотики.

8.Определение чувствительности к антибиотикам методом индикаторных дисков.

9.Генетический контроль резистентности к антибиотикам у бактерий.

II.Целевые задачи:

Студент должен знать: Литература:
· основные принципы антибиотикотерапии; · классификацию антибиотиков по механизму действия, спектру и конечному результату действия на микробную клетку; · сравнительную характеристику основных групп антибиотиков (пенициллины, цефалоспорины, макролиды, аминогликозиды, тетрациклины, левомицетины); · Выполнение 3 и 4-го этапов исследования выделения чистой культуры аэробов и анаэробов. · Чувствительность методом индикаторных дисков. 1. Медицинская микробиология, иммунология и вирусология. / Под ред. А.И. Коротяева, С.А. Бабичева. – Санкт –Петербург, 1989. 2. Медицинская микробиология, вирусология и иммунология. / Под. ред. А.А. Воробьева. - М., 1999, 2001, 2004. 3. Медицинская микробиология. / Под ред. акад. РАМН В.И. Покровского. – М., 2001. 4. Микробиология. / Под. Ред. А.А. Воробьева, А.С. Быкова, Е.П. Пашкова, А.М. Рыбаковой. – М., Медицина, 2003. 5. Микробиология, вирусология и иммунология. / Под ред. В.Н. Царева, 2009. 6. Навашин С.М., Фомина И.П. Рациональная антибиотикотерапия. - М., 1082. 7.Яковлев С.В., Яковлев В.П. Краткий справочник по антибиотикотерапии. - М., 1998. 8.Машковский М.Д. Лекарственные средства. – М, 2000.
Студент должен уметь: · Определить биохимическую и протеолитическую активность выделенной чистой культуры. · Описать характеристику чувствительности чистой культуры к антибиотикам. · Запротоколировать. Литература: 1.Руководство к лабораторным занятиям по микробиологии. / Под ред. Л.Б. Борисова. – М., 1984. 2.Руководство к практическим занятиям по медицинской микробиологии, вирусологии и иммунологии. / Под. Ред. В.В. Теца, 2002.

Восполнить недостающие знания поможет изучение специальной литературы, указанной выше.



III. Задания для самостоятельной работы по изучаемой теме:

1.Заполните таблицу:

2. Заполните протокол исследования:

САМОКОНТРОЛЬ

Укажите правильные ответы:

3. Укажите антибиотик, обладающий наибольшей антианаэробной активностью:

а) Ампициллин

б) Гентамицин

в) Цефоперазон

г) Метронидазол

д) Ципрофлоксацин

4. Принципами рациональной антибактериальной терапии являются:

а) Начало лечения с минимальных доз антибактериальных препаратов

б) Начало антибактериальной терапии после идентификации возбудителя

в) Учет предшествовавшей антибактериальной терапии

г) Учет возраста и сопутствующей патологии

д) Обязательный забор биоматериалов для бактериологического исследования до начала лечения

5. Выберите антибактериальные препараты, активные в отношении внутриклеточных возбудителей (микоплазмы, хламидии, легионеллы):

а) Левофлоксацин

б) Кларитромицин

в) Амоксициллин

г) Доксициклин

д) Клиндамицин

6.Укажите антибиотик, являющийся препаратом выбора при лечении инфекций, вызванных метициллинрезистентным стафилококком (MRSA):

а) Клиндамицин (далацин)

б) Метронидазол (трихопол, флагил)

в) Ванкомицин (эдицин)

г) Ампициллин/сульбактам (уназин)

д) Меропенем (меронем)

7. Укажите антибактериальный препарат, неактивный в отношении Streptococcus pneumoniaе :

а) Азитромицин (сумамед)

б) Бензилпенициллин

в) Цефтриаксон (лонгацеф)

г) Ципрофлоксацин

д) Клиндамицин (далацин)

8. Основным отличием цефалоспоринов II поколения от препаратов III поколения является более высокая активность в отношении:

а) Полирезистентной Гр (–) флоры

б) Полирезистентной Гр (+) флоры

в) Анаэробных возбудителей

г) Внутриклеточных возбудителей

д) Энтерококков

9. Установите соответствие:

Показание Препарат

1. Цефазолин Б а) Высокая Гр.(+), Гр.(–) и антианаэробная активность

2. Цефуроксим Д б) Гр.(+) флора

3. Цефтриаксон Г в) Гр.(–) флора, внутриклеточные возбудители

4. Цефепим А г) Высокая Гр.(–) и умеренная Гр.(+) активность

5. Ципрофлоксацин В д) Умеренная Гр.(+) и Гр.(–) активность

10. На какие 4 группы по происхождению делятся антибиотики:

1. животного

2. растительного

3. микробного

4. синтетические и полусинтетические

5. широкого спектра действия

6. противогрибковые

7. узкого спектра действия

8. противотуберкулезные

11.Приведите 2 примера антибиотиков животного происхождения:

1. лизоцим

2. экмолин

3. грамицидин

4. полимиксин

12. Представители каких трех групп микроорганизмов являются продуцентами антибиотиков:

1. актиномицеты

3. бактерии

4. микоплазмы

5. риккетсии

6. спирохетты

13. Приведите 2 примера антибиотиков вырабатываемых бактериями:

1. полимиксин

2. грамицидин

3. стрептомицин

4. эритромицин

14.На какие 5 групп по антимикробному спектру действия делятся антибиотики:

1. действующие на грамположительные и грамотрицательные кокки

2. активные на большинство грамположительных и грамотрицательных бактерий

3. противотуберкулезные

4. противомикозные

5. активные в отношении простейших

6. кишечные

7. бактериоцидные

8. бактериостатистическое

9. нарушение синтез клеточной стенки

10. нарушающие функции цитоплазматической мембраны

15.Назовите 2 метода определения чувствительности бактерий к антибиотикам:

1. метод бумажных дисков

2. метод серийных разведений

3. методом флокуляции в агаре

4. методом дифузии в агар

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7.

Тема: Серологический метод диагностики. Механизмы неспецифической резистентности человека. Фагоцитоз, система комплемента, лизоцим и т.д. Антигены и антитела. Серологические реакции: агглютинация, преципитация, лизис, гемолиз и связывания комплемента. Иммунофлюоресцентный, иммуноферментный и радиоиммунный анализ в диагностике инфекционных болезней.

Мотивационная характеристика темы: Изучение физиологических механизмов иммунитета. Строение, свойства антигена и антител.

Необходимый исходный уровень знаний: Неспецифическая резистентность организма человека.

I. Вопросы для проверки исходного (базового) уровня знаний:

1. Неспецифические факторы защиты организма;

2.Иммунная система человека;

1. Иммунокомпетентные клетки, иммуногенез;

2. Что такое антигены?

3. Что такое антитела?

II. Целевые задачи:

Студент должен знать:

1.Определение иммунитета, виды иммунитета.

2. Органы иммунной системы человека.

3. Иммунокомпетентные клетки. Иммуногенез.

4. Антигены. Гаптены. Антигены бактерий.

5. Физиологические механизмы иммунитета. Кооперация иммуноком-петентных клеток.

6. Гуморальный и клеточный иммунный ответ.

7. Антитела. Структура иммуноглобулинов, основные классы, функции антител.

8. Иммунологическая память.

9. Иммунологическая толерантность.

Студент должен уметь:

Определять концентрацию иммуноглобулинов разных классов в сыворотке методом радиальной иммунодиффузии по Манчини

Литература:

Основная литература:

1. Медицинская микробиология, иммунология и вирусология. / Под ред.

2. А.И. Коротяева, С.А. Бабичева. - Санкт-Петербург, 1989.

3. Медицинская микробиология, вирусология и иммунология. / Под. ред. А.А. Воробьева. - М., 1999, 2001, 2004.

4. Медицинская микробиология. / Под ред. акад. РАМН В.И. Покровского. - М., 2001.

5. Микробиология. / Под. Ред. А.А. Воробьева, А.С. Быкова, Е.П. Пашкова, A.M. Рыбаковой. - М., Медицина, 2003.

6. Микробиология, вирусология и иммунология. / Под ред. В.Н. Царева, 2009.

7. Руководство к лабораторным занятиям по микробиологии. / Под ред. Л.Б. Борисова. - М., 1984.

8. Руководство к практическим занятиям по медицинской микробиологии, вирусологии и иммунологии. / Под. Ред. В.В. Теца, 2002.

Дополнительная литература:

1. Краткий терминологический словарь микробиолога-биотехнолога. / Под ред. Ю.А. Овчинникова. - М.: Ан СССР, 1989.

2. Основы медицинской биотехнологии. /Под ред. А.А. Воробьева. - М., 1990.

3. Внутрибольничные инфекции. / Под ред. В.П. Венцела. - М., 1990.

4. Основы биотехнологии. - СПБ.: Изд-во фирма «Наука». - 1995.

5. Экологическая иммунология. /Под ред. P.M. Хаитова, Б.В. Пинегина, Х.И. Истамова.- М.:Изд-во ВНИИРО, 1995.

6. Иммунология для врача. / Под ред. С.А. Кетлинской, Н.М. Калининой. -СПБ., 1998.

7. Клиническая иммунология. / Под ред. А.В. Караулова. - М., 1999.

8. Медицинская микробиология (учебное пособие) / Под ред. А.М.Королюка и В.Б.Сбойчакова. - СПб., 1999.

9. Микробиология для врачей / Под ред.А.Н. Маянского.-Н.Новгород., 1999.

III. Задание для самостоятельной работы по изучаемой теме:

1. Дополнить схему:

ВИДЫ ИММУНИТЕТА

ИММУНИТЕТ

4. Заполнить таблицу

6. Заполнить таблицу


Общие представления о вирусах. Строение вирусов. Классификация вирусов


Используемая в нашем центре Программа лечения хронических вирусных инфекций дает возможность:
  • в короткие сроки подавить активность инфекционного процесса
  • эффективно восстановить иммунную защиту организма
  • снизить дозы противовирусных препаратов и уменьшить токсический эффект этих препаратов на организм пациента
  • повысить чувствительность к традиционным противовирусным препаратам
  • профилактировать рецидив инфекции
Это достигается за счет применения:
  • метода Криомодификации аутоплазмы позволяющего удалить из организма токсические метаболиты микроорганизмов, медиаторы воспаления, циркулирующие иммунные комплексы
  • технологий Инкубации клеточной массы с противовирусными препаратами , обеспечивающих доставку препаратов непосредственно в очаг инфекции
  • технологий Экстракорпоральной иммунофармакотерапии , работающих непосредственно с клетками иммунной системы и позволяющих эффективно и на длительное время повысить противовирусный иммунитет

Вирусные инфекции

Часть VI. Генитальный герпес


Часть VII. Офтальмогерпес


Часть VIII. Опоясывающий лишай


Часть IX. Вирус Эпштейна–Барр


Часть X. Цитомегаловирус


Часть XI. Герпесвирусы человека типов 6, 7 и 8


Часть XII. Вирус папилломы человека


Часть XIII. Лабораторные анализы при диагностике вирусных инфекций


Часть XIV. Лечение вирусных инфекций

Медицинская вирусология

Вирусология – наука о вирусах возникла примерно 100 лет назад, хотя болезни, вызываемые вирусами (поксвирусами и герпесвирусами), известны со времен античности.

В 1892 г. русский микробиолог Ивановский показал, что возбудитель табачной мозаики проходит через керамический фильтр и, следовательно, не относится к бактериям. Эта работа положила начало вирусологии. В течение последующих 20 лет были обнаружены фильтрующиеся возбудители некоторых инфекционных болезней животных, которые получи название – вирусы.

В 1920 – 1950 гг. прогресс вирусологии был связан с развитием методов культивирования вирусов. Для изучения вирусов используют заражение вирусами животных, растений или бактерий.

В 1948 – 1952 гг. был предложен метод культур клеток и тканей, создавший условия для исследования генетики и биохимии вирусов. Вирусы стали рассматривать как генетически простые инструменты для изучения фундаментальных биологических и биохимических процессов, протекающих в живых организмах.

Общие представления о вирусах

Вирусы отличаются от вироидов, вирусоидов и прионов.

  • Вироиды – это лишенные оболочки небольшие молекулы кольцевой, обычно одноцепочечной РНК, вызывающие заболевания у растений
  • Вирусоиды похожи на вироиды, но включены в структуру вируса-помощника и реплицируются только с его помощью
  • Прионы – Основной компонент прионов – аномальная изоформа прионного белка (один из белков ЦНС). Проникновение прионов в клетку приводит к нарушению конформации синтезируемого клеткой прионного белка, нарушению функции клетки и дальнейшему накоплению прионов. Прионы вызывают некоторые дегенеративные заболевания ЦНС – болезнь Крейтцфелъдта–Якоба, куру и болезнь Герстмана–Штросслера. Предполагают также участие прионов в передаче человеку губчатой энцефалопатии крупного рогатого скота

Строение вирусов

Вирусные геномы содержат от нескольких до 200 генов и могут быть представлены:

  1. одноцепочечной вирусной ДНК
  2. двухцепочечной вирусной ДНК
  3. плюс-цепью вирусной РНК
  4. минус-цепью вирусной РНК
  5. сегментированной минус-цепью вирусной РНК
  6. сегментированной двухцепочечной вирусной РНК

Плюс-цепь вирусной РНК – непосредственно служит матрицей для синтеза вирусных белков на рибосомах клетки-хозяина.

Минус-цепь вирусной РНК – служит матрицей для синтеза комплементарной ей цепи, на которой в последующем и синтезируются вирусные белки.

В состав сердцевины вирусов обычно входят белки одного или нескольких типов, связанные с нуклеиновой кислотой. Вирусная нуклеиновая кислота практически всегда окружена белковой оболочкой – капсидом . Поскольку объем информации, закодированной в вирусном геноме, ограничен, капсид вируса , как правило, строится из идентичных субъединиц – капсомеров , которые, в свою очередь, образованы белками одного или нескольких типов. Капсомеры укладываются в капсиды со спиральным или икосаэдрическим типом симметрии.

Вирусные капсиды со спиральным типом симметрии обычно имеют палочковидную или нитевидную форму. В основе капсидов с икосаэдрическим типом симметрии лежит фигура икосаэдра; форма таких вирусных капсидов приближается к сферической. Капсид вместе с находящейся в нем нуклеиновой кислотой называют нуклеокапсидом. Многие патогенные вирусы состоят только из нуклеокапсида; другие, более сложно организованные вирусы содержат еще и внешнюю оболочку.

Внешняя оболочка вирусов образуется из мембраны зараженной клетки; при этом в клеточную мембрану встраиваются вирусные гликопротеиды. Пространство между нуклеокапсидом и внешней оболочкой вируса обычно заполнено белками вирусного матрикса . Разрушение внешней оболочки вируса под действием растворителей и неионных детергентов инактивирует вирусы. Вирусы, состоящие только из нуклеокапсида, обычно более устойчивы. Строение имеющего внешнюю оболочку ДНК-содержащего вируса из семейства герпесвирусов представлено на рисунке 1. Сведения о вирусах, патогенных для человека, собраны в таблице 1, а рисунок 2 демонстрирует относительные размеры и строение этих вирусов.


Рисунок 1 . Строение ДНК-содержащего вируса из семейства герпесвирусов. Вирус имеет внешнюю оболочку. Капсид в форме икосаэдра состоит из 162 капсомеров. Диаметр внешней оболочки вируса – 180 нм, нуклеокапсида – 100 нм.

Классификация патогенных вирусов

В основу классификации вирусов положен тип нуклеиновой кислоты, размер и тип симметрии вирусного нуклеокапсида, наличие или отсутствие внешней оболочки (табл. 1 и рис. 2). Вирусы, принадлежащие к одному семейству, обладают сходным типом генома и сходными морфологическими характеристиками (по данным электронной микроскопии).

При делении вирусов на роды учитывают эпидемиологические и биологические особенности вирусов, а также степень гомологии нуклеотидных последовательностей.

Каждый вирус человека имеет общепринятое название, связанное с его патологическим действием или обстоятельствами открытия, и официальное видовое название, присвоенное Международной комиссией по таксономии вирусов, которое складывается из названия хозяина вируса, семейства или рода, к которому принадлежит вирус, и номера. Поэтому один и тот же вирус может называться по-разному, например вирус varicella-zoster и герпесвирус человека типа 3.

Таблица 1. Патогенные вирусы

Семейство Представители Нуклеиновая кислота Внешняя оболочка
РНК-содержащие вирусы
Пикорнавирусы Вирус полиомиелита Плюс-цепь РНК Нет
Вирусы Коксаки
ЕСНО-вирусы
Риновирусы
Вирус гепатита А
Вирус Норуолк Плюс-цепь РНК Нет
Вирус гепатита Е
Вирус краснухи Плюс-цепь РНК Есть
Вирус восточного энцефаломиелита лошадей
Вирус западного энцефаломиелита лошадей
Флавивирусы Вирус желтой лихорадки Плюс-цепь РНК Есть
Вирусы денге
Вирус энцефалита Сент-Луис
Вирус гепатита С
Вирус гепатита G
Плюс-цепь РНК Есть
Рабдовирусы Вирус бешенства Минус-цепь РНК Есть
Вирус везикулярного стоматита
Филовирусы Вирус Марбург Минус-цепь РНК Есть
Вирусы Эбола
Парамиксовирусы Вирусы парагриппа Минус-цепь РНК Есть
Респираторный синцитиальный вирус
Вирус ньюкаслской болезни
Вирус эпидемического паротита
Вирус кори
Ортомиксовирусы Вирусы гриппа А, В и С Минус-цепь РНК, 8 сегментов Есть
Буньявирусы Хантавирусы Минус-цепь РНК, 3 кольцевых сегмента Есть
Вирус калифорнийского энцефалита
Вирус сицилийской лихорадки
Вирус неаполитанской лихорадки
Аренавирусы Вирус лимфоцитарного хориоменингита Минус-цепь РНК, 2 кольцевых сегмента Есть
Вирус Ласса
Вирусы южноамериканских геморрагических лихорадок
Реовирусы Ротавирусы Двухцепочечная РНК, 10-12 сегментов Нет
Реовирусы
Вирус колорадской клещевой лихорадки
Ретровирусы ВИЧ-1 и ВИЧ-2 Две плюс-цепи РНК Есть
Т-лимфотропные вирусы человека типов 1 и 2
ДНК-содержащие вирусы
Гепаднавирус Вирус гепатита В Частично двухцепочечная ДНК Есть
Парвовирусы Парвовирус В19 Одноцепочечная ДНК Нет
Паповавирусы Вирус папилломы человека Двухцепочечная ДНК Нет
Вирус JC
Вирус BK
Аденовирусы Аденовирусы человека Двухцепочечная ДНК Нет
Герпесвирусы Вирусы простого герпеса типов 1 и 2 1 Двухцепочечная ДНК Есть
Вирус varicella-zoster 2
Вирус Эпштейна-Барр 3
Цитомегаловирус 4
Герпесвирус человека типа 6
Герпесвирус человека типа 7
Герпесвирус человека типа 8
Поксвирусы Вирус натуральной оспы Двухцепочечная ДНК Есть
Вирус контагиозного пустулезного дерматита
Вирус контагиозного моллюска

1 Другое название - герпесвирусы человека типов 1 и 2.

2 Другое название - герпесвирус человека типа 3.

3 Другое название - герпесвирус человека типа 4.

4 Другое название - герпесвирус человека типа 5.

Строение основных вирусов

Рисунок 2 . Строение основных вирусов. Вирусы разделены по типу генома, по семействам и изображены с соблюдением масштаба.
Т. н. – тысяча нуклеотидов.


Пикорнавирусы
Размер генома (т.н.) 7,2 - 8,4 8 12 10 16 - 21
Внешняя оболочка Нет Нет Есть Есть Есть
Тип симметрии капсида Икосаэдрический Икосаэдрический Икосаэдрический Икосаэдрический Икосаэдрический

Геном вирусов содержит один тип нуклеиновой кислоты – ДНК или РНК. Эти нуклеиновые кислоты, как носители генетической информации вирусов, могут быть однонитчатыми или двунитчатыми. Репликация генома вирусов зависит от строения нуклеиновой кислоты, процесс транскрипции осуществляется многочисленными путями.

РНК-овые вирусы могут быть плюс-нитевыми (РНК +) и имнус-нитевыми (РНК -).

Трансляция у плюс-нитевых вирусов (пикорновирусы, флавивирусы и др.) начинается непосредственно с исходной РНК. Процесс трансляции у минус-нитевых вирусов не может осуществляться на прямую. Этим вирусам необходим предварительный синтез комплементарной копии РНК, который осуществляется особым специфическим ферментом (РНК-зависимой РНК-полимеразой).

У РНК-овых двунитчатых вирусов плюс-нить не используется. Эти вирусы в своем жизненном цикле используют минус-цепь РНК, как все минус-нитевые вирусы.

Представители семейства Retroviridae обладают плюс-нитевым вирусным геномом, но не смотря на это генетическая информация у них снаяала переписывается на ДНК, т. е. по РНК вируса образуется комплементарная цепь ДНК. Течение этого процесса реализуется благодаря РНК-зависимой ДНК полимеразы (ревертазы). Образующаяся ДНК интегрирует с геномом клетки. У вирусов семейства Retroviridae транскрипцию встроенной ДНК обеспечивают РНК-полимеразы клеток эукариот.

Подобно бактериям, вирусы подвержены генотипической и фенотипической изменчивости.

При заражении эукариотических клеток ассоциацией вирусов наблюдаются различные типы взаимодействия между ними.

Пересортировка генов связана с перестройкой у вирусов, имеющих сегментированный геном. Так, рекомбинанты вируса гриппа получают при совместном культивировании вирусов с разными генами гемагглютинина и нейтролинидазы. В результате происходит быстрое изменение свойств вирусов и возникает новый тип вируса.

Множественная реактивация возникает при заражении клетки несколькими вирусами с дефективными геномами. Если повреждения генома различны у разных вирусов, то вирус может репродуцироваться, т. е. вирусы с поражением разных генов дополняют друг друга за счет рекомбинации геномов.

Перекрестная реактивация возникает в случае заражения клетки двумя вирусами, у одного из которых геном поврежден, а у другого – полноценный. При такой смешанной инфекции возникает рекомбинация, в результате которой появляются вирионы со свойствами обоих родителей.

Гетерозиготность – это формирование вирусов, содержащих в своем составе два разных генома или один полный геном одного вируса и часть генома другого вируса. Гетерозиготность имеет место при совместном культивировании двух штаммов вируса.

Комплементация – это такое взаимодействие вирусов, когда один их них, или оба, предоставляют друг другу недостающие белки для размножения и развития. Комплементация может активизировать изначально не жизнеспособные вирусы. Примером может служить покрытие дельта-вируса белком вируса генотипа В-Hbs- антигеном.

Фенотипическое смешивание – это процесс при котором геном одного из вирусов оказывается заключенным в капсид другого. Фенотипическое смешивание наблюдают при совместном культивировании вирусов.