Пропускная способность каналов связи. Пропускная способность непрерывного канала связи

  • 13.05.2019

5.2. Пропускная способность канала связи.

Характеристики системы связи в значительной мере зависят от параметров канала вязи, который используется для передачи сообщений. Исследуя пропускную способность канала мы предполагали, что их параметры сохраняются постоянными. Однако большинство реальных каналов обладают переменными параметрами. Параметры канала, как правило изменяются во времени случайным образом. Случайные изменения коэффициента передачи канала m вызывают замирания сигнала, что эквивалентно воздействию мультипликативной помехи

Однородный симметричный канал связи полностью определяется алфавитом передаваемого сообщения, скоростью передачи элементов сообщения u и вероятностью ошибочного приема элемента сообщения р (вероятностью ошибки).

Пропускная способность канала будет вычисляться по формуле:

в частном случае для двоичного канала (m=2) получим формулу:

, где р =0,003, t=15 10 -6

Сравнивая пропускную способность канала связи и производительность источника (после оптимального кодирования) можем сделать вывод, что условие К.Шеннона выполняется, т.е. производительность источника меньше пропускной способности канала, что позволит нам передавать информацию по данному каналу связи. Для некодированного источника это условие выполняется также, т.к. производительность некодированного источника меньше производительности оптимально закодированного источника.

6. Помехоустойчивое кодирование.

При передаче цифровых данных по каналу с шумом всегда существует вероятность того, что принятые данные будут содержать некоторый уровень частоты появления ошибок. Получатель как правило устанавливает некоторый уровень частоты появления ошибок, при превышении которого принятые данные использовать нельзя. Если частота ошибок в принимаемых данных превышает допустимый уровень, то можно использовать кодирование с исправлением ошибок., которое позволяет уменьшить частоту ошибок до приемлемой.

Кодирование с обнаружением и исправлением ошибок как правило связано с понятием избыточности кода, что приводит в конечном итоге к снижению скорости передачи информационного потока по тракту связи. Избыточность заключается в том, что цифровые сообщения содержат дополнительные символы, обеспечивающие индивидуальность каждого кодового слова. Вторым свойством связанным с помехоустойчивым кодированием является усреднение шума. Этот эффект заключается в том, что избыточные символы зависят от нескольких информационных символов.

При увеличении длинны кодового блока (т.е. количества избыточных символов) доля ошибочных символов в блоке стремиться к средней частоте ошибок в канале. Обрабатывая символы блоками, а не одного за другим можно добиться снижения общей частоты ошибок и при фиксированной вероятности ошибки блока долю ошибок, которые нужно исправлять.

Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.

Разновидностями как блочных, так и непрерывных кодов являются разделимые (с возможностью выделения информационных и контрольных символов) и неразделимые коды. Наиболее многочисленным классом разделимых кодов составляют линейные коды. Их особенность состоит в том, что контрольные символы образуются как линейные комбинации информационных символов.

6.1. Принцип обнаружения и исправления ошибок.

Корректирующие коды строятся так, чтобы количество комбинаций М превышало число сообщений М 0 источника. Однако в этом случае используется лишь М 0 комбинаций источника из общего числа для передачи информации. Такие комбинации называются разрешенными, а остальные – запрещенными М-М 0 . Приемнику известны все разрешенные и запрещенные комбинации, поэтому, если при приеме некоторого разрешенного сообщения в результате ошибки это сообщение попадает в разряд запрещенных, то такая ошибка будет обнаружена, а при определенных условиях исправлена. Следует заметить, что при ошибке, приводящей к появлению другого разрешенного сигнала, такая ошибка не обнаружима.

Расстоянием Хемминга d между двумя последовательностями называется число позиций, в которых две последовательности отличаются друг от друга. Наименьшее значение d для всех пар кодовых последовательностей называется кодовым расстоянием.

Ошибка обнаруживается всегда, если её кратность, т.е. число искаженных символов в кодовой комбинации: gd, то некоторые ошибки также обнаруживаются. Однако полной гарантии обнаружения ошибок нет, т.к. ошибочная комбинация может совпадать с какой-либо разрешенной комбинацией. Минимальное кодовое расстояние, при котором обнаруживаются любые одиночные ошибки, d=2.

Исправление ошибок в процессе декодирования сводится к определению переданной комбинации по известной принятой. Расстояние между переданной разрешенной комбинацией и принятой запрещенной комбинацией d 0 равно кратности ошибок g. Если ошибки в символах комбинации происходят независимо относительно друг друга, то вероятность искажения некоторых g символов в n-значной комбинации будет равна:

6.1. Коды с обнаружением ошибок.

Одним из кодов подобного типа является код с четным числом единиц. Каждая комбинация этого кода содержит помимо информационных символов – один контрольный, выбираемый равный 0 или 1 так, чтобы сумма количества единиц в комбинации всегда была четной.

Простейшим примером кода с проверкой на четность является код Бодо, в котором к пятизначным комбинациям информационных символов добавляется шестой контрольный символ: 11001,1; 10001,0. Правило вычисления контрольного символа находится как:

откуда вытекает, что для любой комбинации сумма всех символов по модулю два будет равна нулю. Это позволяет в декодирующем устройстве сравнительно просто производить обнаружение ошибок путем проверки на четность. Нарушение четности имеет место при появлении однократных, трехкратных и в общем случае нечетной кратности, что и дает возможность их обнаружить. Появление четных ошибок не изменяет четности суммы, поэтому такие ошибки не обнаруживаются.

Определим избыточность кода:

k=6 – число символов в помехоустойчивом коде

n=5 – число символов без избыточности

Заключение

В данной работе было рассмотрено:

1. Система когерентного приемника с ФМ. Рассчитав параметры и сравнив полученные в результате расчетов данные с другими системами приема сигналов выявлены некоторые преимущества и недостатки данной системы передачи и приема информационных сообщений. Также было проведено сравнение с идеальным приемником Котельникова, обеспечивающим потенциальную помехоустойчивость. Отмечено как можно улучшить характеристики приемника с помощью согласованных фильтров.

2. Передача непрерывных аналоговых сигналов цифровыми методами. Произведен анализ и сравнение дискретных методов (АИМ, ШИМ, ВИМ) с цифровым методом передачи непрерывных аналоговых сигналов ИКМ. Отмечены преимущества цифровых методов передачи информации по сравнению с аналоговыми.

3. Кодирование сообщений. Сравнивались и определялись характеристики статистического (эффективного кодирования) по сравнению с помехоустойчивым (избыточным) кодированием. Была определена пропускная способность канала связи и установлено, что данная система является работоспособной (т.е. выполняется условие К.Шеннона).

При рассмотрении передачи и приема сигналов методом ИКМ с кодированием сообщений, можно сделать вывод, что для повышения качества получаемых сообщений следует применять помехоустойчивое кодирование. Рассмотренный метод помехоустойчивого кодирования является самым простейшим. Для более эффективного использования канала связи нужно использовать более совершенные алгоритмы кодирования сообщений.

Литература


1. Зюко А.Г., Коробов Ю.Ф. Теория передачи сигналов – М.Связь 1972.

2. Б.Н.Бондарев, А.А.Макаров “Основы теории передачи сигналов” Новосибирск – 1969 г.

3. Э.Прагер, Б.Шимек, В.П.Дмитриев – “Цифровая техника в связи” – М. Радио и связь.

Лекция №2

Каналы передачи данных. Качество и эффективность ТВС.

Вопросы:

    Типы и сравнительные характеристики линий и каналов связи.

    Пропускная способность каналов связи.

    Качество и эффективность ТВС.

Цели и задачи изучения темы : получение представления о типах и сравнительных характеристиках линий и каналов связи, задачах физической передачи данных по линиям связи, основных качественных показателях систем передачи информации, пропускной способности, достоверности и надежности работы ТВС.

Изучив тему, студент должен:

    знать понятие классификации каналов связи, пропускной способности, достоверности и надежности работы ТВС

    иметь представление о каналах и линиях связи и их физической природе, их преимуществах и недостатках, пропускной способности и скорости передачи информации по каналу, надежности работы и достоверности передачи данных

Изучая тему, необходимо акцентировать внимание на следующих понятиях: линия связи, канал связи, канал передачи данных, симплексные, дуплексные, полудуплексные, коммутируемые, некоммутируемые каналы, коаксиальный кабель, волоконно-оптический кабель, витая пара, канал радиосвязи, пропускная способность канала связи, надежность ТКС, достоверность передачи данных

2.1. Типы и сравнительные характеристики линий и каналов связи.

Среда передачи данных совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в абонентские системы).предназначенных для передачи данных между абонентскими станциями. Среды передачи данных могут быть общего пользования или выделенные для конкретного пользователя.

Линия и канал связи это не одно и то же.

Линия связи (ЛС) – это физическая среда, по которой передаются информационные сигналы.

Канал связи (КС) – средства односторонней передачи данных по линии связи.

Канал передачи данных – состоит из линий связи, по которым передается сигнал и аппаратуры передачи данных, преобразующие данные в сигналы, соответствующие типу линии связи.

Классификация каналов связи показана на рис. 2.1

Каналы связи

Механические

Физическая природа Акустические

Оптические

Электрические

Форма передаваемой Аналоговые

информации Цифровые

Направление Симплексные

передаваемой Полудуплексные

информации Дуплексные

Пропускная Низкоскоростные

способность Среднескоростные

Высокоскоростные

Наличие Коммутируемые

коммутации Выделенные

Рис 2.1. Классификация каналов связи

По физической природе ЛС и КС на их основе делятся на:

    механические – используются для передачи материальных носителей информации;

    акустические – передают звуковой сигал;

    оптические – передают световой сигнал;

    электрические – передают электрический сигнал.

Электрические и оптические КС могут быть:

    проводными , использующими для передачи сигналов проводниковые линии связи (электрические провода, кабели, световоды и т. д.);

    беспроводными (радиоканалы, инфракрасные каналы и т.д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.

По форме представления передаваемой информации КС делятся на:

аналоговые - по аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой либо физической величины;

цифровые – по цифровым каналам передается информация, в виде цифровых сигналов.

В зависимости от возможных направлений передачи информации различают:

    симплексные КС - когда передатчик и приемник соединяются одной линией связи, по которой информация передается только в одном направлении (это характерно для телевизионных сетей связи);

    полудуплексные КС- когда два узла связи соединены так же одной линией, по которой информация передается попеременно то в одном направлении то в противоположном;

    дуплексные КС - когда два узла связи соединены двумя линиями, по которым информация одновременно передается в противоположных направлениях.

По пропускной способности каналы КС можно разделить на:

    низкоскоростные – скорость передачи информации в которых от 50 до 200 бит/сек; это телеграфные КС, как коммутируемые так и некоммутируемые;

    среднескоростные - – скорость передачи информации в которых от 300 до 9600 бит/сек; это аналоговые (телефонные) КС;

    высокоскоростные (широкополосные) КС, обеспечивают скорость передачи информации выше 56000 бит\сек.

Каналы связи могут быть:

    коммутируемые ;

    некоммутируемые .

Коммутируемые каналы создаются из отдельных участков только на время передачи по ним информации; по окончании передачи такой канал ликвидируется.

Некоммутируемые (выделенные) каналы создаются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.

Физической средой передачи информации в низкоскоростных и среднескоростных КС обычно являются проводные линии связи.

Для организации широкополосных КС используются различные кабели, в частности:

    неэкранированные витые пары;

    экранированные витые пары;

    коаксиальные;

    волоконно-оптические.

Неэкранированная витая пара – это изолированные проводники, попарно свитые между собой для уменьшения перекрестных наводок между проводниками.

Экранированная витая пара – это изолированные проводники, попарно свитые между собой и помещенные в экранированную проводящую оплетку, которую положено заземлять.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный защитной экранирующей оболочкой.

Основу волоконно-оптического кабеля составляют стеклянные или пластиковые волокна диаметром от 5 до 100 микрон окруженные твердым заполнителем и помещенные в защитную оболочку.

Непрерывный канал передачи информации содержит совокупность средств для передачи непрерывных сигналов, при этом вместо кодирующих и декодирующих устройств используются различного рода преобразователи (модуляция и т.д.). Входные и выходные сигналы в непрерывном канале связи представляют ансамбли непрерывных функций с соответствующими плотностями распределений вероятности.
Если на вход непрерывного канала связи поступает непрерывный сигнал X(t) длительностью T, то вследствие воздействия помех f(t) выходной сигнал Y(t) будет отличаться от входного. При этом количество информации в сигнале Y(t) о сигнале X(t) равно:
. (13)
Непрерывный сигнал, можно рассматривать как дискретный при . Он может быть представлен в виде решетчатой функции, при этом на приемной стороне по отдельным взятым отсчетам через интервал Dt может быть восстановлен исходный непрерывный сигнал.
Шаг квантования Dt = T/n , где n – число точек отсчета. В соответствии с теоремой Котельникова Dt = 1/2f c , где f c - частота среза а n = 2Tf c – база сигнала.
При этом в выражении (13) для взаимной информации вместо разности энтропии можно записать разности соответствующих дифференциальных энтропий отдельных отсчетов
.

Пропускная способность непрерывного канала связи
(14)
Для дискретного канала связи максимальное значение скорости передачи соответствует равновероятным символам алфавита. Для непрерывного канала связи, когда заданной является средняя мощность сигнала, максимальная скорость обеспечивается при использовании нормальных центрированных случайных сигнала.
Если сигнал центрированный (m x = 0 ) т.е. без постоянной составляющей при этом мощность покоя равна нулю (P 0 = 0 ). Условие центрированности обеспечивает максимум дисперсии при заданной средней мощности сигнала
Если сигнал имеет нормальное распределение, то априорная дифференциальная энтропия каждого отсчета максимальна.
Поэтому при расчете пропускной способности непрерывного канала считаем, что по каналу передается непрерывный сигнал с ограниченной средней мощностью – P c и аддитивная помеха (y = x+f ) также с ограниченной средней мощностью – P n типа белого (гауссова) шума. Так как помеха аддитивна, то дисперсия выходного сигнала равна
.
Для того, чтобы энтропия была максимальна для сигнала с ограниченной мощностью, он должен быть гауссовым, при этом
.
Для того чтобы помеха была максимальна, она тоже должна быть гауссова
.
При этом пропускная способность непрерывного канала должна быть равна пропускной способности сигнала
. (15)
Таким образом, скорость передачи информации с ограниченной средней мощностью максимальна, если и сигнал, и помеха являются гауссовыми, случайными процессами.
Пропускную способность канала можно изменять, меняя ширину спектра сигнала – f c его мощность – P c . Но увеличение ширины спектра увеличивает мощность помехи – P n , поэтому соотношение между полосой пропускания канала и уровнем помех выбирается компромиссным путем.
Если распределение f(x) источника непрерывных сообщений отличается от нормального, то скорость передачи информации – С будет меньше. Используя, функциональный преобразователь, можно получать сигнал с нормальным законом распределения.
Обычно p c /p п >>1 , при этом пропускная способность непрерывного канала равна С п = F к D к. Связь между емкостью и пропускной способностью канала связи имеет вид V к = T к F к D к = T к С п.
Теорема Шеннона для непрерывного канала с шумом. Если энтропия источника непрерывных сообщений сколь угодно близка к пропускной способности канала, то существует метод передачи, при котором все сообщения источника будут переданы со сколь угодно высокой верностью воспроизведения.


Пример. По непрерывному каналу связи, имеющим полосу пропускания F k = 1 кГц, передается полезный сигнал X(t) , представляющий собой нормальный случайный процесс с нулевым математическим ожиданием и дисперсией = 4 мВ. В канале действует независимый от сигнала гауссов шум F(t) с нулевым математическим ожиданием и дисперсией = 1 мВ.
Определить:
– дифференциальную энтропию входного сигнала;
– дифференциальную энтропию выходного сигнала;
– условную дифференциальную энтропию;
– количество информации в одном непрерывном отсчете процесса Y(t) относительно отсчета X(t) ;
– скорость передачи информации по непрерывному каналу с дискретным временем;
– пропускную способность непрерывного канала связи;
– определить емкость канала связи, если время его работы T = 10 м ;
– определить количество информации, которое может быть передано за 10 минут работы канала;
– показать, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность. Решение:
Дифференциальная энтропия входного сигнала

= 3,05 бит/отсчет.
Дифференциальная энтропия выходного сигнала
=3,21 бит/отсчет.
Условная дифференциальная энтропия
= 2,05 бит/отсчет.
Количество информации в одном непрерывном отсчете процесса Y(t) относительно отсчета X(t) определяется по формуле
I (X, Y) = h(x) – h (x/y) = h(y) – h (y/x) = 3,21–2,05 = 1,16 бит/отсчет.
Скорость передачи информации по непрерывному каналу с дискретным временем определяется по формуле
=
= 2×10 3 × = 2320 бит/с
Пропускная способность непрерывного канала с помехами определяется по формуле

=2322 бит/с.
Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .
Дифференциальная энтропия сигнала с равномерным распределением
.
Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии
= 0,3 бит/отсч.
Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.
Определим емкость (объем) канала связи
V k = T k C k = 10×60×2322 = 1,3932 Мбит.
Определим количество информации, которое может быть передано за 10 минут работы канала
10× 60× 2322=1,3932 Мбит.

Задачи

1. В канал связи передаются сообщения, составленные из алфавита x 1, x 2 и x 3 с вероятностями p(x 1)=0,2; p(x 2) =0,3 и p(x 3)=0,5 .
Канальная матрица имеет вид:
при этом .
Вычислить:
1. Энтропию источника информации H(X) и приемника H(Y) .
2. Общую и условную энтропию H (Y/X).
3. Потери информации в канале при передаче к символов (к = 100 ).
4. Количество принятой информации при передаче к символов.
5. Скорость передачи информации, если время передачи одного символа t = 0,01 мс .
2. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями . Определить количество информации принятой при передаче 300 символов, если влияние помех описывается канальной матрицей:
.
3. Определить потери информации в канале связи при передаче равновероятных символов алфавита, если канальная матрица имеет вид

.
t = 0,001 сек.
4.Определить потери информации при передаче 1000 символов алфавита источника x 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p()=0,7 , если влияние помех в канале описывается канальной матрицей:
.
5. Определить количество принятой информации при передаче 600 символов, если вероятности появления символов на выходе источника X равны: а влияние помех при передаче описывается канальной матрицей:
.
6. В канал связи передаются сообщения, состоящие из символов алфавита , при этом вероятности появления символов алфавита равны:
Канал связи описан следующей канальной матрицей:

.
Определить скорость передачи информации, если время передачи одного символа мс .
7.По каналу связи передаются сигналы x 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p()=0,7. Влияние помех в канале описывается канальной матрицей:
.
Определить общую условную энтропию и долю потерь информации, которая приходится на сигнал x 1 (частную условную энтропию).
8. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями .
Помехи в канале заданы канальной матрицей
.
Определить пропускную способность канала связи, если время передачи одного символа t = 0,01 сек.
Определить количество принятой информации при передаче 500 символов, если вероятности появления символов на входе приемника Y равны: , а влияние помех при передаче описывается канальной матрицей:

Список литературы
1 Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.
2 Куприянов М.С., Матюшкин Б.Д. – Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. – СПб: Политехника, 1999.
3 Хемминг Р.В. Цифровые фильтры: Пер. с англ. / Под ред. А.М. Трахтмана. – М.: Сов. радио, 1980.
4 Сиберт У.М. Цепи, сигналы, системы: В 2-х ч. / Пер. с англ. – М.: Мир, 1988.
5 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.
6 Kalinin, V.I. Microwave & Telecommunication Technology, 2007. CriMiCo 2007. 17th International Crimean ConferenceVolume, Issue, 10–14 Sept. 2007 Page(s):233 – 234
7 Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. – М.: Радио и связь, 2000.
8 Игнатов В.А. Теория информации и передачи сигналов: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Радио и связь, 1991;

С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

Что такое пропускная способность каналов связи?

Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

Обычно для обозначения пропускной способности используют следующие единицы:

Измерение пропускной способности

Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

  • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
  • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
  • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

Расчет пропускной способности

Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

I=Glog 2 (1+A s /A n).

В данной формуле каждый элемент имеет свое значение:

  • I - обозначает параметр максимальной пропускной способности.
  • G - параметр ширины полосы, предназначенной для пропускания сигнала.
  • A s / A n - соотношение шума и сигнала.

Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

Способы передачи сигнала

На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

  • Передача по радиосетям.
  • Передача данных по кабелю.
  • Передача данных через оптоволоконные соединения.

Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

Средняя пропускная способность линий связи

Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

Что такое бит? Как измеряется скорость в битах?

Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

Факторы, влияющие на скорость интернета

Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

  • Способы соединения.

Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

  • Загруженность серверов.

Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

  • Внешние помехи.

Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

  • Состояние сетевого оборудования.

Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

Как увеличить скорость интернета?

Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

В заключение

В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

В любой системе связи через канал передается информация. Ее скорость передачи была определена в § 4.2. Как видно из (4.25), эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Попытаемся найти способ оценки способности канала передавать информацию. Рассмотрим вначале дискретный канал, через который передаются в единицу времени v символов из алфавита объемом m. При передаче каждого символа в среднем по каналу проходит количество информации

I(A, В) = Н(А) - Н(А|В) = Н(В) - Н(В|А), (4.35)

где А и В - случайные символы на входе и выходе канала. Из четырех фигурирующих здесь энтропий H(A) - собственная информация передаваемого символа определяется источником дискретного сигнала * и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

* (Источником дискретного сигнала в системе связи (см. рис. 1.5) является совокупность источника сообщения и кодера. )

Представим себе, что на вход канала можно подавать символы от разных источников, характеризуемых различными распределениями вероятностей Р(А) (но, конечно, при тех же значениях m и v). Для каждого такого источника количество информации, переданной по каналу, принимает свое значение. Максимальное количество переданной информации, взятое по всевозможным источникам входного сигнала, характеризует сам канал и называется пропускной способностью канала в расчете на один символ

где максимизация * производится по всем многомерным распределениям вероятностей Р(A). Можно также определить пропускную способность С канала в расчете на единицу времени (например, секунду):

* (Если такого максимума не существует (что может быть при бесконечном числе возможных источников), то пропускная способность определяется как наименьшая верхняя грань sup I(А, В), т. е. такая величина, к которой I(А, B) может сколь угодно приблизиться, но не может ее превзойти. )

Равенство (4.37) следует из аддитивности энтропии. В дальнейшем везде, где это особо не оговорено, под пропускной способностью понимать будем пропускную способность в расчете на секунду.

В качестве примера вычислим пропускную способность симметричного канала без памяти, для которого переходные вероятности заданы (3.36). Согласно (4.36)

Величина


в данном случае легко вычисляется, поскольку условная (переходная) вероятность P(b j |a i) принимает только два значения: p/(m-1), если b j ≠a i и 1-р, если b j = a i . Первое из этих значений возникает с вероятностью р, а второе - с вероятностью 1-р. К тому же, поскольку рассматривается канал без памяти, результаты приема отдельных символов независимы друг от друга. Поэтому

Следовательно, Н(В|А) не зависит от распределения вероятности в ансамбле А, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Подставив (4.38) в (4.37), получим

Поскольку в правой части только член Н (В) зависит от распределения вероятностей Р(А), то максимизировать необходимо его. Максимальное значение Н (В) согласно (4.6) равно log m и реализуется оно тогда, когда все принятые символы b j равновероятны и независимы друг от друга. Легко убедиться, что это условие удовлетворяется, если входные символы равновероятны и независимы, поскольку в этом случае

При этом Н(В) = log m и

Отсюда пропускная способность в расчете на единицу времени

Для двоичного симметричного канала (m = 2) пропускная способность в двоичных единицах в единицу времени

С = v (4.42)

Зависимость C/v от р согласно (4.42) показана на рис. 4.3.

При р = 1/2 пропускная способность двоичного канала С = 0, поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т. е. при р=1/2 последовательности на выходе и входе канала независимы. Случай С = 0 называют обрывом канала. То, что пропускная способность при р = 1 в двоичном канале такая же, как при р=0 (канал без шумов), объясняется тем, что при р = 1 достаточно все выходные символы инвертировать (т. е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Пропускная способность непрерывного к а н а- л а вычисляется аналогично. Пусть, например, канал имеет ограниченную полосу пропускания шириной F. Тогда сигналы U(t) и Z{t) соответственно на входе и выходе канала по теореме Котельникова определяются своими отсчетами, взятыми через интервал 1/(2F), и поэтому информация, проходящая по каналу за некоторое время Т, равна сумме количества информации, переданной за каждый такой отсчет * . Пропускная способность канала на один такой отсчет

Здесь U и Z - случайные величины - сечения процессов U(t) и Z(t) на входе и выходе канала соответственно и максимум берется по всем допустимым входным сигналам, т. е. по всем распределениям U.

* (Можно вместо ряда Котельникова использовать разложение сигналов по- любому ортогональному базису и рассмотреть количество передаваемой информации на каждый член ряда. )

Пропускная способность С определяется как сумма значений Сотсч, взятая по всем отсчетам за секунду. При этом, разумеется, дифференциальные энтропии в (4.43) должны вычисляться с учетом вероятностных связей между отсчетами.

Вычислим, например, пропускную способность непрерывного канала без памяти с аддитивным белым гауссовским шумом, имеющим полосу пропускания шириной F, если средняя мощность сигнала (дисперсия U) не превышает заданной величины Р с. Мощность (дисперсию) шума в полосе F обозначим Р ш. Отсчеты входного и выходного сигналов, а также шума N связаны равенством

Z = U + N. (4.44)

Так как N имеет нормальное распределение с нулевым математическим ожиданием, то и условная плотность вероятности w(z|u) при фиксированном и будет также нормальной - с математическим ожиданием и и дисперсией Р ш.

Найдем пропускную способность на один отсчет (4.43):

Согласно (4.34) дифференциальная энтропия h(Z|U) нормального распределения w(Z|U) не зависит от математического ожидания и равна


Поэтому для нахождения С отсч следует найти такую плотность распределения w(U), при которой максимизируется h(Z). Из (4.44) учитывая, что U и N - независимые случайные величины, имеем для дисперсий:

D(Z) = D(U) + D(N) = P c + P ш. (4.45)

Таким образом, дисперсия Z фиксирована, так как Р с и Р ш заданы. Как было отмечено (см. стр. 114), при фиксированной дисперсии максимальная дифференциальная энтропия обеспечивается нормальным распределением. Из (4.44) видно, что при нормальном одномерном распределении U распределение Z будет также нормальным и, следовательно, обеспечивается максимум дифференциальной энтропии (4.34):

Переходя к пропускной способности С в расчете на секунду, заметим, что информация, переданная за несколько отсчетов, максимальна в том случае, когда отсчеты сигналов независимы. Этого можно достичь, если сигнал U(t) выбрать так, чтобы его спектральная плотность была равномерной в полосе F. Как было показано в § 2.2 [см. (2.48)], отсчеты, разделенные интервалами, кратными 1/(2F), взаимно некоррелированы, а для гауссовских величин некоррелированность означает независимость.

Поэтому пропускную способность С (за секунду) можно найти, сложив пропускные способности (4.46) для 2F независимых отсчетов:

С = 2FC отсч = F log (1 +Р с /Р ш). (4.47)

Она реализуется, если U(t) - гауссовский процесс с равномерной спектральной плотностью в полосе частот F (квазибелый шум).

Из (4.47) видно, что если бы мощность сигнала Р с не была ограничена, то пропускная способность была бы сколь угодно большой. Пропускная способность равна нулю, если отношение сигнал-шум Р с /Р ш в канале равно нулю. С ростом этого отношения пропускная способность увеличивается неограниченно, однако медленно, вследствие логарифмической зависимости.

Соотношение (4.47) часто называют формулой Шеннона. Эта формула имеет важное значение в теории информации, так как определяет зависимость пропускной способности рассматриваемого непрерывного канала от таких его технических характеристик, как ширина полосы пропускания и отношение сигнал-шум. Формула Шеннона указывает на возможность обмена полосы пропускания на мощность сигнала, и наоборот. Однако поскольку С зависит от F линейно, а от Р с /Р ш - по логарифмическому закону, компенсировать возможное сокращение полосы пропускания увеличением мощности сигнала, как правило, не выгодно. Более эффективным является обратный обмен мощности сигнала на полосу пропускания.

Заметим, что при Р c /P ш >>1 выражение (4.50) совпадает с характеристикой (1.2), названной в § 1.2 емкостью (объемом) канала.

Следует подчеркнуть, что формула Шеннона (4.47) справедлива только для канала с постоянными параметрами и аддитивным гауссовским белым (или квазибелым) шумом. Если распределение аддитивной помехи не является нормальным или же ее спектр неравномерен в полосе пропускания канала, то его пропускная способность больше, чем вычисленная по формуле (4.47). Мультипликативные помехи (замирания сигнала) обычно снижают пропускную способность канала.

На рис. 4.5 показаны зависимости С/F от среднего отношения Р с /Р ш для канала с постоянными параметрами (1) и канала с рэлеевскими замираниями (2). Из анализа кривых следует, что медленные рэлеевские замирания уменьшают пропускную способность канала не более чем на 17%.