Волоконно-оптическая многоканальная цифровая система связи. Цифровая техника и связь

  • 21.07.2019

В этой книге мы представляем основные принципы, которые лежат в основе анализа и синтеза систем цифровой связи. Предмет цифровой связи включает в себя передачу информации в цифровой форме от источника, который создаёт информацию для одного или многих мест назначения. Особенно важным для анализа и синтеза систем связи являются характеристики физических каналов, через которые передаётся информация. Характеристики канала обычно влияют на синтез базовых составных блоков системы связи. Ниже мы опишем элементы системы связи и их функции.

1.1. ЭЛЕМЕНТЫ СИСТЕМ ЦИФРОВОЙ СВЯЗИ

Функциональную схему и основные элементы цифровой системы связи поясняет рис. 1.1.1. Выход источника может быть либо аналоговым сигналом, как звуковой или видеосигнал, либо цифровым сигналом, как выход печатающей машины, - он дискретен во времени и имеет конечное число выходных значений. В системе цифровой связи сообщения, выданные источником, преобразуются в последовательность двоичных символов. В идеале мы можем представить выход источника сообщения небольшим числом двоичных символов (насколько это возможно). Другими словами, мы ищем эффективное представление выхода источника, которое приводит к источнику с наименьшей избыточностью или с полным её отсутствием. Процесс эффективного преобразования выхода источника - как аналогового, так и цифрового - в последовательность двоичных символов называют кодированием источника или сжатием данных .

Последовательность двоичных символов от кодера источника, который мы назовём источником информации , поступает на кодер канала . Цель кодера канала состоит в том, чтобы ввести управляемым способом некоторую избыточность в информационную двоичную последовательность, которая может использоваться в приёмнике, чтобы преодолеть влияние шума и интерференции, с которой сталкиваются при передачи сигнала через канал. Таким образом, добавленная избыточность служит для увеличения надёжности принятых данных и улучшает верность воспроизведения принятого сигнала. Фактически избыточность в информационной последовательности помогает приёмнику в декодировании переданной информационной последовательности. Например, тривиальной формой кодирования исходной двоичной последовательности является простое повторение каждого двоичного символа раз, где - некоторое целое положительное число. Более сложное (нетривиальное) кодирование сводится к преобразованию блока из информационных символ в уникальную последовательность из символов, называемую кодовым словом . Значение избыточности, вводимой при кодировании данных таким способом, измеряется отношением . Обратная величина этого отношения, а именно , названа скоростью кода .

Рис. 1.1.1 Основные элементы цифровой системы связи

Двоичная последовательность на выходе кодера канала поступает на цифровой модулятор, который служит интерфейсом к каналу связи. Так как почти все каналы связи, с которыми сталкиваются на практике, способны к передаче электрических сигналов (волновых процессов), основная цель цифрового модулятора сводится к отображению информационной двоичной последовательности в соответствующий сигнал. Чтобы разобраться с этим вопросом, предположим, что кодированная информационная последовательность должна передать один бит за определённое время с постоянной скоростью бит/с. Цифровой модулятор может просто отображать двоичный символ в сигнал , а двоичный символ - в сигнал . Таким способом каждый бит кодера передаётся отдельно. Мы называем это двоичной модуляцией. В качестве альтернативы модулятор может передавать кодированных информационных битов одновременно, используя различные сигналы , один сигнал для каждого из возможных -битовых последовательностей. Мы назовём это -позиционной модуляцией . Заметим, что информационная последовательность с битами поступает на вход модулятора каждые секунд. Следовательно, когда канальная скорость передачи данных фиксирована, для передачи одного из сигналов, соответствующих информационной последовательности из бит, отведён в раз больший интервал времени, чем при двоичной модуляции.

Канал связи – это физическая среда, которая используется для передачи сигнала от передатчика к приёмнику. При беспроволочной связи каналом может быть атмосфера (свободное пространство). С другой стороны, телефонные каналы обычно используют ряд физических сред, включая линии проводной связи, волоконно-оптические кабели и беспроволочные линии (например, микроволновую радиолинию). Для любой физической среды, используемой для передачи информации, существенно, что передаваемый сигнал подвержен случайным искажениям через такие механизмы, как воздействие аддитивного теплового шума, генерируемого электронными устройствами, воздействие промышленных помех (например, автомобильные помехи от системы зажигания), воздействие атмосферных помех (электрические разряды молнии во время грозы) и т.п.

На приёмной стороне системы цифровой связи цифровой демодуляторобрабатывает искажённый каналом передаваемый сигнал и преобразует его в последовательность чисел, которые представляют оценки переданных данных (двоичных или -позиционных). Эта последовательность чисел поступает на канальный декодер, который пытается восстановить первоначальную информационную последовательность, используя знание канального кода и избыточности, содержащейся в принятых данных.

Мера качества работы демодулятора и декодера – это частота, с которой возникают ошибки декодируемой последовательности. Более точно, средняя вероятность ошибки на бит для выходных символов декодера является удобной характеристикой качества демодулятора-декодера. Вообще говоря, вероятность ошибки является функцией от характеристик кода, форм сигналов, используемых для передачи информации по каналу, мощности передатчика, характеристик канала, а именно уровня шума, природы интерференции и т.д., и методов демодуляции и декодирования. Эти обстоятельства и их влияние на характеристики качества системы связи будут обсуждаться подробно в последующих главах.

На заключительной стадии, когда рассматривается аналоговый выход, декодер источника принимает выходную последовательность от декодера канала и, используя знание метода кодирования источника, применённого на передаче, пытается восстановить исходную форму сигнала источника. Ошибки декодирования и возможные искажения в кодере и декодере источника приводят к тому, что сигнал на выходе декодера источника является аппроксимацией исходного сигнала источника. Разность или некоторая функция разности между исходным и восстановленным сигналом является мерой искажения, внесённого цифровой системой связи.


Владельцы патента RU 2454793:

Изобретение относится к области передачи и приема цифровых сигналов. Техническим результатом является повышение качества восстановления речи за счет снижения уровня шумов квантования на 6 дБ путем увеличения на единицу числа разрядов для передачи модуля отсчета. В цифровой системе связи знак отсчетов не передается и вместо 7 используются все 8 разрядов кодового слова для передачи модуля отсчетов, что снижает шум квантования на 6 дБ и тем самым повышает качество речи на приемной стороне. Введены на передающей стороне однополупериодный выпрямитель, пропускающий на выход только положительные отсчеты, а на приемной стороне - восстановитель отрицательных отсчетов. 2 ил.

Изобретение относится к области передачи и приема цифровых сигналов, описанных в различных источниках, например в:

1. Шмытинский В.В., Котов В.К., Здоровцов И.А.

Цифровые системы передачи информации на железнодорожном транспорте. - М.: Транспорт, 1995.

2. Тюрин В.Л. Многоканальная связь на железнодорожном транспорте. - М.: Транспорт, 1992.

3. Нейман В.И. Системы и сети передачи данных на железнодорожном транспорте. - М.: Маршрут, 2005. - С.127-132.

По технической сущности наиболее близкой к изобретению является цифровая система ИКМ-30, описанная в первом источнике, которая по этой причине и принимается за его прототип. В остальных источниках описаны аналоги изобретения.

Прототип-кодер на передающей стороне состоит из устройства управления и последовательно соединенных компаратора, цифрового регистра, устройства преобразования сигналов управления, устройства коммутации ФЭСов, двух формирователей эталонных сигналов (ФЭСов), выход которых подключен к второму входу компаратора, на первый вход которого поступает отсчет аналогового речевого сигнала (PC). Устройство управления подключено своим выходом к управляющему входу компаратора и цифрового регистра, являющемуся выходным блоком кодера. Кодер работает по методу взвешивания, для чего используется 11 эталонов-сегментов. В нем кодирование объединено с квантованием и компандированием сигналов. Нелинейная квантующая характеристика является квази логарифмической, которая получается путем замены плавной логарифмической кривой ломаной линией, состоящей из 8-и прямолинейных отрезков-сегментов в положительной и отрицательной областях, каждый из которых соединен с двумя точками плавной кривой. Длительность каждого последующего сегмента, начиная с 3-го, удваивается по отношению к предыдущему. Внутри каждого сегмента компрессия отсутствует. Каждый уровень отсчета PC в цифровом виде представляется 8-ю разрядами (битами), называемыми кодовым словом. Первый бит несет информацию о знаке отсчета, биты с 2-го по 4-й определяют номер сегмента, в пределах которого находится амплитуда входного отсчета, а остальные с 5-го по 8-й бит определяют интервал линейного квантования в пределах данного сегмента. Структура декодера ИКМ-30 на приемной стороне совпадает со структурой кодера за исключением того, что:

Вместо компаратора с его связями используется дифференциальный усилитель, к одному входу которого подключен выход одного ФЭС, а к другому входу - выход другого ФЭС;

Отсутствует блок управления;

Цифровой сигнал поступает на вход цифрового регистра, а выходной сигнал снимается с выхода дифференциального усилителя.

Видно, что кодер и декодер ИКМ-30 сложны, а модуль отсчета PC определяется 7-ю разрядами, а не 8-ю, при которых качество восстановленной речи удовлетворяет требованиям коммерческой телефонной связи. При 7-и разрядах шумы квантования выше на 6 дБ, чем при 8-и разрядах.

Основным недостатком прототипа является повышенный на 6 дБ уровень шумов квантования по сравнению с требуемым.

Техническим результатом изобретения является повышение качества восстановленной речи за счет снижения уровня шумов квантования на 6 дБ, что достигнуто путем увеличения на единицу числа разрядов для передачи модуля отсчета.

Сущность изобретения состоит в том, что в цифровую систему связи, состоящую на передающей стороне из источника аналогового речевого сигнала (PC), дискретизатора по времени, компрессора уровня отсчетов, расширителя отсчетов, цифрового кодера, преобразователя параллельного кода в последовательный, усилителя импульсов, линии связи, а также из генератора импульсов, блока задержки импульсов по времени, генератора тактовых импульсов, причем, генератор импульсов своим выходом подключен к высокочастотному (в.ч.) входу дискретизатора непосредственно и ко второму входу расширителя отсчетов - через блок задержки по времени, а выход генератора тактовых импульсов подключен непосредственно к тактовому входу преобразователя кода, а на приемной стороне - из последовательно подключенных к линии связи усилителя импульсов приемника, регенератора импульсов, преобразователя последовательного кода в параллельный, цифрового декодера, экспандера отсчетов, фильтра нижних частот, дополнительно введены на передающей стороне однополупериодный выпрямитель с активной нагрузкой, через который подключен выход дискретизатора PC к входу компрессора, а на приемной стороне - последовательно подключенные к выходу экспандера фильтр огибающей отсчетов, преобразователь однополярных импульсов в двухполярные, дискретизатор по времени генератором импульсов, подключенным к его второму входу, интегратор по времени, к выходу которого подключен фильтр нижних частот.

Существенным отличием изобретения является передача только положительных отсчетов, а отрицательные отсчеты восстанавливаются на приемной стороне. Это позволило не передавать знак отсчета, а его бит использовать для передачи положительных отсчетов. В этом случае в кодовом слове не 7, как в прототипе, а 8 бит, отчего шум квантования уменьшен на 6 дБ. Введенные элементы реализуют сказанное.

Изобретение иллюстрируется чертежами.

На фиг.1 представлена структурная схема предложенной цифровой системы связи, а на фиг.2 - временные диаграммы, поясняющие ее работу. На фиг.1 обозначено: 1 - источник аналогового речевого сигнала (PC), 2 - дискретизатор PC по времени, 3 - генератор импульсов, 4 - однополупериодный выпрямитель с активной нагрузкой, 5 - компрессор уровня отсчетов, 6 - расширитель длительности отсчетов, 7 - блок задержки импульсов по времени, 8 - цифровой кодер отсчетов, 9 - преобразователь параллельного кода в последовательный, 10 - генератор тактовых импульсов, 11 - усилитель импульсов цифрового сигнала (ЦС), 12 - линия связи, 13 - усилитель импульсов, 14 - регенератор импульсов, 15 - преобразователь последовательного кода в параллельный, 16 - декодер ЦС, 17 - экспандер, 18 - фильтр огибающей, 19 - блок исключения постоянной составляющей сигнала, 20 - дискретизатор по времени, 21 - генератор импульсов дискретизации, 22 - усилитель-ограничитель амплитуды импульсов, 23 - интегратор по времени, 24 - фильтр нижних частот (ФНЧ). Введенные элементы обведены пунктирной линией.

Работа схемы предложенной цифровой системы происходит следующим образом.

На передающей стороне речевой сигнал с блока 1 поступает на н.ч. вход дискретизатора 2, на в.ч. вход которого подаются импульсы малой длительности с генератора 3. Частота следования этих импульсов определяется теоремой Котельникова и равна 8 кГц. С выхода блока 2 разнополярные отсчеты поступают на вход однополупериодного выпрямителя 4 с активной нагрузкой, который пропускает на свой выход только положительные отсчеты. Эти отсчеты компрессируются по уровню в блоке 5, после чего поступают на вход расширителя отсчетов, на другой вход которого подаются импульсы с генератора 3 через блок 7 задержки по времени на длительность τ. На выходе блока имеют место отсчеты прямоугольной формы разной амплитуды, но одинаковой длительности τ, которые поступают на вход кодера 8. Здесь амплитуда отсчета преобразуется в цифровой 8-и разрядный сигнал параллельного кода, который поступает на один вход преобразователя 9 параллельного кода в последовательный. На второй вход блока 9 подаются тактовые импульсы с генератора 10. С выхода блока 9 ЦС последовательного кода поступает через усилитель 11 в линию связи 12. На приемной стороне ЦС с линии связи поступает через усилитель импульсов 13, регенератор импульсов 14 на информационный вход преобразователя 15 последовательного кода в параллельный, на тактовый вход которого поступают импульсы с блока 14. С блока 15 ЦС поступает в декодер 16, на выходе которого имеют место отсчеты PC. Эти отсчеты расширяются по уровню в экспандере 17, компенсируя сжатие в компрессоре на передающей стороне, после чего поступают на восстановитель отрицательных импульсов, которые были исключены на передающей стороне выпрямителем 4. Первым блоком восстановителя, обведенного пунктирной линией, является фильтр 18 огибающей отсчетов, на выходе которого имеют место однополярные н.ч. импульсы, как показано на фиг.2. Блок 19, представляющий собой конденсатор большой емкости, устраняет постоянную составляющую этих импульсов, отчего они из однополярных преобразуются в двухполярные, как показано на фиг.2 с помощью пунктирной линии. Эти двухполярные импульсы поступают на н.ч. вход дискретизатора 20, на в.ч. вход которого поступают импульсы с генератора 21 той же частоты, что и с блока 3. В блоке 20 восстанавливаются отрицательные импульсы, которые после усиления и ограничения по амплитуде в блоке 22, как показано на фиг.2, поступают на вход интегратора 23 по времени. В нем восстанавливается PC со ступенчатой огибающей, которая преобразуется в плавную в ФНЧ 24, являющемся выходным блоком приемника.

Технико-экономическим эффектом изобретения является повышение качества восстановленной речи на выходе приемника за счет снижения шумов квантования на 6 дБ, что получено путем исключения передачи отрицательных отсчетов и увеличения разрядности кодового слова на единицу. Сказанное реализовано введенными элементами.

Цифровая система связи, состоящая на передающей стороне из последовательно соединенных источника аналогового речевого сигнала (PC), дискретизатора по времени, компрессора уровня сигнала, расширителя длительности отсчетов, цифрового кодера, преобразователя параллельного кода в последовательный, усилителя, линии связи, а также из генератора импульсов, блока задержки импульсов во времени, генератора тактовых импульсов, причем генератор импульсов своим выходом подключен к высокочастотному входу дискретизатора непосредственно и к второму входу расширителя длительности отсчетов - через блок задержки во времени, а выход генератора тактовых импульсов подключен непосредственно к тактовому входу преобразователя кода, а на приемной стороне - из последовательно подключенных к линии связи усилителя импульсов, регенератора импульсов, преобразователя последовательного кода в параллельный, цифрового декодера, экспандера уровня сигнала, фильтра нижних частот (ФНЧ), отличающаяся тем, что в нее дополнительно введены на передающей стороне однополупериодный выпрямитель с активной нагрузкой, через который подключен выход дискретизатора PC к входу компрессора, а на приемной стороне дополнительно введены последовательно подключенные к выходу экспандера фильтр огибающей отсчетов, преобразователь однополярных импульсов в двухполярные, дискретизатор по времени с генератором импульсов, подключенным к его второму входу, интегратор по времени, к выходу которого подключен ФНЧ, являющийся выходным блоком приемника.

Похожие патенты:

Изобретение относится к способу и устройству для передачи управляющей информации в системе беспроводной связи с использованием кода с малой плотностью проверок на четность (LDPC).

1.1. Общие положения

Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений.

Эталонная модель OSI делит проблему передачи информации между абонентами на семь менее крупных и, следовательно, более легко разрешимых задач. Каждой из семи областей проблемы передачи информации ставится в соответствие один из уровней эталонной модели. Два самых низших уровня эталонной модели OSI реализуются аппаратным и программным обеспечением, остальные пять высших уровней, как правило, реализуются программным обеспечением.

Рис. 1.1. Пример связи уровней OSI

В качестве примера связи типа OSI предположим, что Система А на Рис. 1.1 имеет информацию для отправки в Систему В. В этом случае информация из прикладного процесса через уровень 7 сообщается с уровнем 6, который модифицирует информацию, делая ее понятной для уровня 5 и т.д. вплоть до физического уровня системы А. На стороне системы В осуществляется обратное преобразование, начиная от низших уровней до самого верхнего. Следовательно, каждый уровень Системы А использует услуги, предоставляемые ему смежными уровнями, чтобы осуществить связь с соответствующим ему уровнем Системы В. Нижестоящий уровень называется источником услуг, а вышестоящий - пользователем услуг. Взаимодействие уровней происходит в так называемой точке предоставления услуг.

Обмен управляющей информацией между соответствующими уровнями системы OSI осуществляется в виде «заголовков», добавляемых к информационной части. В принимающей системе осуществляется анализ этой информации с последующим удалением соответствующего заголовка перед передачей на верхний уровень.


Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для проведения связи.

Прикладной уровень (уровень 7) – это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI. Он обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные процессы, а также устанавливает и согласовывает процедуры устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень (уровень 6) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Сеансовый уровень (уровень 5) устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. Кроме того, сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень (уровень 4). Функцией транспортного уровня является надежная транспортировка данных через сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Сетевой уровень (уровень 3) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами. Поскольку две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей.

Канальный уровень (уровень 2) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень (уровень 1) определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами.

2. Основные сведения о сетях электросвязи

2.1. Основные определения

Сеть связи - совокупность технических средств, обеспечивающих передачу и распределение сообщений. Принципы построения сетей связи зависят от вида передаваемых и распределяемых сообщений.

В настоящее время применяют следующие принципы построения (топологии) сетей:

· "каждый с каждым". Сеть надежна, отличается оперативностью и высоким качеством передачи сообщений. На практике применяется при небольшом числе абонентов. Если произойдет обрыв одной из соединительных линий, то это не повлияет на общую работоспособность сети, т.к. существует множество обводных маршрутов следования информации.


радиальный ("звезда"). Используется при ограниченном числе абонентских пунктов, расположенных на небольшой территории. Пример, организация сети связи между абонентами и АТС. Недостаток заключается в том, что если произойдет поломка центрального узла, то нарушается работа всего узла связи в целом.

· радиально-узловой. Такую структуру имеют городские телефонные сети, если емкость сети не превышает 80...90 тысяч абонентов;

· радиально-узловой с узловыми районами. Используется при построении телефонных сетей крупных городов.

Телеграфные сети строятся по радиально-узловому принципу с учетом административно-территориального деления страны. Оконечными пунктами телеграфной сети являются либо отделения связи, либо телеграфные абоненты, обладающие телеграфной аппаратурой. Сеть имеет три уровня узловых пунктов: районные, областные и главные. Сеть передачи данных имеет схожую структуру. Сеть факсимильной связи строится на базе телефонной сети.

2.2. Сети передачи индивидуальных сообщений

Для обеспечения передачи индивидуальных сообщений необходимо связать (соединить) оконечные аппараты абонентов. Электрическая цепь (канал), состоящая из нескольких участков и обеспечивающая передачу сигналов между абонентами, называется соединительным трактом.

Процесс поиска и соединения электрических цепей называется коммутацией каналов. Сеть, обеспечивающая коммутацию каналов, называется сетью с коммутацией каналов (СКК). Узловые станции сети СКК называются станциями коммутации.

При передаче документальных сообщений кроме организации связи с коммутацией каналов возможно осуществлять поэтапную передачу сообщения от узла к узлу. Такой способ передачи получил название коммутации сообщений. Соответственно сеть, обеспечивающая коммутацию сообщений, называется сетью с коммутацией сообщений (СКС).

Разновидностью сети СКС является сеть с коммутацией пакетов (СКП). В этом случае полученное от передающего абонента сообщение разбивается на блоки (пакеты) фиксированной длины. Пакеты передаются по сети (необязательно по одному и тому же маршруту) и объединяются в сообщение перед выдачей принимающему абоненту.

Узловые станции сетей СКС и СКП называются центрами коммутации сообщений (ЦКС) и пакетов (ЦКП) соответственно.

3. Цифровые системы передачи

3.1. Преимущества цифровых систем передачи

Рассмотрим основные преимущества цифровых методов передачи перед аналоговыми.

Высокая помехоустойчивость. Представление информации в цифровой форме позволяет осуществлять регенерацию (восстановление) этих символов при передаче их по линии связи, что резко снижает влияние помех и искажений на качество передачи информации.

Слабая зависимость качества передачи от длины линии связи. В пределах каждого регенерационного участка искажения передаваемых сигналов оказываются ничтожными. Длина регенерационного участка и оборудование регенератора при передаче сигналов на большие расстояния остаются практически такими же, как и в случае передачи на малые расстояния.

Стабильность параметров каналов ЦСП. Стабильность и идентичность параметров каналов (остаточного затухания, частотной и амплитудной характеристик и др.) определяются в основном устройствами обработки сигналов в аналоговой форме. Поскольку такие устройства составляют незначительную часть оборудования ЦСП, стабильность параметров каналов в таких системах значительно выше, чем в аналоговых.

Эффективность использования пропускной способности каналов для передачи дискретных сигналов. При вводе дискретных сигналов непосредственно в групповой тракт ЦСП скорость их передачи может приближаться к скорости передачи группового сигнала. При использовании временного метода уплотнения, скорость передачи резко возрастает.

Цифровая связь, и предпосылки ее использования.

Современное поколение уже не удивить словами модем, выделенная линия или “коннект”. Особенно это относиться к “фидошникам” или к людям так или иначе связанным с сетью Интернет. Но часто возникают недопонимания между операторами связи и абонентами, именно из-за проблем модемной связи по коммутируемой или выделенной линии. Кроме того, постоянно в конференциях и “фидошных эхах” идут обсуждения “какие номера с какими лучше вяжутся, какие модемы лучше держат коннект, а какие хуже”. Как это не прискорбно, но такие споры и обсуждения редко рождают истину. В такой ситуации всем сильно не хватает технической поддержки местного оператора связи.

Чаще всего все претензии абонента насчет плохих скоростей соединения модемов не принимаются, и ответ прост: изоляция в норме, постороннего нет. А причины плохой связи могут крыться в таких тонкостях, которые в голосовой связи ни когда не проявляются. Для разных типов Автоматических Телефонных Станций (АТС), такие причины могут быть разные.

Механические АТС (Координатные и Декадно-шаговые).

Это уже устаревшие типы АТС, но, тем не менее, еще используются на территории России ввиду дороговизны новых и тяжелым экономическим положением в стране. И конечно нельзя не упомянуть что кабельное хозяйство российских операторов связи на 40% 60-х годов. Именно на этих станциях обычно не используется никакого оборудования уплотнения, и качество связи зависит только от оборудования механической коммутации. Общая структура взаимодействия АТС и абонентов показана на рисунке:

В Томске на механических АТС работают номера, начинающиеся на цифры: 21, 22, 23, 25, 77, 78.

С одной стороны преимуществом является то, что, соединившиеся абоненты соединены физической двухпроводной линией. То есть рабочий диапазон такой линии от 300 Гц до 20 кГц, что теоретически позволяет при использовании широкополосных модемов получить скорости обмена до 2 Мбит, а в редких случаях и больше. Но такие оптимистические цифры в реальных соединениях невозможны из-за нескольких факторов:

Качество коммутационных контактов на АТС очень низкое.

Очень высокий “шум станции”.

Сильные перекрестные помехи в кабельных магистралях (50-100 парный кабель с малым количеством витков на метр).

Подверженность кабельных магистралей многим природным факторам и электромагнитным помехам (многие встречались с тем, что кабель, подходящий к вашему дому или офису, либо “замокает” при дожде, либо прослушивается сторонний разговор).

Несколько лет назад в Томске эта проблема была частично решена ЦСП (Цех Систем Передачи), введением развитой сети ИКМ – трактов (Импульсно-кодовая модуляция). На схеме №2 схематично показаны отличия многопарных кабельных магистралей и ИКМ – трактов:


Как видно из рисунка многопарный медный кабель из-за дороговизны обслуживания и низкого качества соединения теперь используется эффективнее. Но на смену пришла ВОЛС (Волоконно-оптический линия связи), которая передает цифровой поток со скоростью до 300Мбит/с и более(скорость передачи цифрового потока по 4-парному медному проводу 2Мбит/с). То есть теперь абонентское соединение после коммутации на механической АТС аналоговый сигнал выходит со станции и входит в оборудование ЦСП. Аналого-цифровой преобразователь (АЦП) превращает этот сигнал в цифровой поток 64кбит/с на передачу и 64кбит/с поток в аналоговый сигнал на прием. Потом 30+2 цифровых потока (2 управляющих) по 64кбит/с объединяются в один 2Мбит-ный поток E1 (ИКМ-тракт). В ВОЛС входит до 64 потоков E1. С другой стороны магистрали ситуация повторяется с точностью до наоборот. С ВОЛС снимаются 64 цифровых потока E1, далее каждый разбирается на 64кбит-ные потоки, и подаются на цифро-аналоговый преобразователь (ЦАП). Получившийся аналоговый сигнал поступает на станцию, и после коммутации к абоненту.

Проанализируем, какие преимущества и недостатки дает переход на цифровое уплотнение оператору связи, а какие абоненту:

Преимущества.

Оператор связи:

ВОЛС не подвержены проникновению влаге и электромагнитным помехам, следовательно, дешевле обходиться прокладка шахт и обслуживание.

Гибкость такого решения позволяет модернизировать объемы межстанционных соединений без дополнительных работ.

Экономия на стоимости кабеля 1м 100-парного медного кабеля стоит на сегодняшний день дороже, чем 1м двухжильного оптического волокна.

Абонент:

Качество связи повышается за счет уменьшения перекрестных помех межстанционных соединений.

Расстояние между абонентами перестает влиять на качество связи (ВОЛС может передавать сигнал на десятки километров без потерь, кроме того, за счет передачи сигнала в цифровом виде можно использовать алгоритмы коррекции).

Недостатки.

Оператор связи:

Сложность и дороговизна решений с цифровой передачей.

Необходимость формирования и обучения служб монтажа и обслуживания ВОЛС.

Абонент:

Проблемы, обусловленные прохождением через АЦП/ЦАП и оборудование уплотнения: диапазон рабочих частот 300-3300Гц, “джиттер” (дрожание фазы) и временные задержки (в голосовой связи незаметные).

Перекрестные помехи на магистралях распределительных шкафов, попадание влаги в шахты магистралей (проблема последней мили).

Так как механическая коммутация происходит с аналоговым сигналом, шумы станции попадают в линию, как и прежде без применения ИКМ-трактов.

Преимущества оператора связи очевидны, так же как и абонента. А вот недостатки вызывают сомнение, повышает ли введение ИКМ-трактов качество обслуживание. Уменьшение рабочего диапазона частот делает невозможным использование широкополосых модемов, а “джиттер” должен отрицательно повлиять на скорость соединения.(алгоритм АЦП!!) В то же время перекрестные помехи не исчезнут совсем, так как от станции до распределительного шкафа магистраль проведена медным кабелем. И в завершении “шум станции”, который не уменьшился и не увеличился, наводит на мысли что переход на цифровые ИКМ-тракты в межстанционных магистралях на механических станциях, не дают преимуществ для модемной связи абонента.

Выделенные линии (прямые линии).

Часто для объединения локальных сетей двух удаленных офисов применяют постоянное модемное соединение. Но для максимальной эффективности такого решения применяют не обычную коммутируемую линию, имеющую ряд вышеперечисленных недостатков, а прямую (выделенную) линию. По определению прямая линия – это выделенная только для нужд абонента некоммутируемая физическая линия (см. рис.).


Как видно из рисунка, предоставление абонентам прямой линии требует выделение свободной пары во всех магистралях по пути ее установки. На станцию пара не заходит, а соединяется с парой из следующей магистрали в кроссе . И важным свойством прямой линии является то, что она не заходит ни в ИКМ-тракт или другое оборудование уплотнения, а, следовательно, рабочий диапазон частот не ограничен 3,3кГц и нет потерь из-за временных задержек и дрожания фазы. И последним важным фактором является полная длина прямой (чем больше длина, тем хуже параметры линии), и уже имея этот параметр, можно взяться за выбор модели модемов. В таких случаях рекомендуют либо модемы short-range модемы (модемы “последней мили”), либо широкополосные xDSL модемы с пропускной способностью 2Мбит/с и более.

Short-range модемы или модемы "последней мили" - это устройства, используемые для связи между компьютерами, терминалами, контроллерами и другой аппаратурой передачи данных, на сравнительно коротких расстояниях. Например: внутри зданий, в пределах территории кампуса или в границах города. Эти устройства проектируются с целью преодоления ограничений в дальности действия интерфейсов канала передачи данных.

Но в последнее время в связи с вытеснением межстанционных медных магистралей ИКМ-трактами, возможность провести прямую линию абоненту в разных районах города (разные АТС) становиться проблемой. Иногда это решается проведением магистралей между распределительными шкафами, а иногда ни каких вариантов кроме ввода в ИКМ-тракт нет. Это наталкивает операторов связи на внедрение современных технологий цифровых сетей.

Электронные АТС.

В представлении абонента электронные или цифровые АТС - это что-то такое ультрасовременное и недоступное. Хотя в Томске уже более 100000 абонентов обслуживаются именно электронными АТС. Ключевое отличие электронных станций от механических в методе и среде коммутации абонентов.


Механические АТС коммутируют аналоговые линии контактными площадками, управляемыми электромагнитным приводом, в то время как электронные коммутируют пространственно-временными манипуляциями цифровых потоков.

Как видно из рисунка аналоговый сигнал от абонента приходит в абонентский комплект, где объединяется с входным потоком и после эхокомпенсации преобразуется с помощью АЦП в цифровой поток 64 кбит/с. Входной поток аналогично преобразовывается и поступает абоненту (см. рис.).


Важно заметить, что при коммутации теперь происходит не механическое соединение-разъединение, а манипуляция цифровым потоком во внутриканальном пространстве и распределение этого потока в выделенные интервалы передачи. За счет этого электронные АТС имеют идеальное качество “контакта” и благодаря использованию цифровых технологий “шум станции” на линию не проходит. Однако есть и обратная сторона медали: “шум квантования”.

Шум вызван квантованием аналоговых сигналов, необходимый для преобразования аналогового сигнала в цифру перед отправкой по телефонной сети. Входящий аналоговый сигнал изменяется 8000 раз в секунду, и каждый раз его амплитуда записывается как Пульсовый Код Модуляции (Pulse Code Modulation - PCM). Cэмплирующая система использует 256 дискретных 8-битных PCM кодов. Так как аналоговый сигнал непрерывен, а цифровой код - дискретен, цифровой поток, передаваемый по телефонной сети, воссоздаются на другом конце в приблизительно соответствующий им аналоговый исходный сигнал. Разница между оригинальным сигналом и воссозданным - есть шум квантования , который ограничивает скорость модемов. Шум квантования ограничивает скорость приблизительно до 35кбит/c (по теореме Шенона). Но шум проявляется только при аналого-цифровом преобразовании, а не при цифро-аналоговом.

Рис. 1.2. Структурная схема цифровой системы связи.

Рис.1.3. - Процесс преобразования дискретного сообщения в сигнал и обратного преобразования сигнала в сообщение

Дадим описание каждого блока структурной схемы цифровой системы передачи непрерывных сообщений.

1. Источник информации (сообщения) генерирует сигнал, предназначенный для дальнейшей передачи в канале связи. Этот сигнал должен содержать случайную составляющую, иначе он не будет нести никакой информации.

Источник информации может выдавать данные для передачи по каналу связи как в цифровом виде (современные носители цифровой информации, различные датчики с цифровым интерфейсом и т. д.), так и в аналоговом виде (аналоговые датчики, передача звука и изображения и др.). Независимо от типа источника информации данные должны быть представлены в как можно более сжатом цифровом виде. Процесс эффективного преобразования данных в последовательность двоичных символов называется кодированием источника или сжатием данных . Как правило, данные на цифровых носителях являются уже сжатыми (например, формат цифрового кодирования звуковой информации с потерями MP3, алгоритмы сжатия видеоинформации MPEG, алгоритм сжатия изображений JPEG), тогда как данные с аналоговых источников информации зачастую слишком избыточны и требуют сжатия.

2. Аналогово-цифровой преобразователь. В составе цифрового канала предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму – аналогово-цифровой преобразователь на передающей стороне и устройство преобразования цифрового сигнала в непрерывный – ЦАП на приемной стороне. АЦП посредством импульсно-кодовой модуляции переводит сигнал из аналоговой формы в цифровую, представленную в виде последовательности m-ичных кодовых комбинаций. На приемной стороне ЦАП восстанавливает исходное сообщение по принятым кодовым комбинациям.

Рис.1.4. Структурная схема АЦП

Суть преобразования аналоговых величин заключается в представлении некой непрерывной функции (например, напряжения) от времени в последовательность чисел, отнесенных к неким фиксированным моментам времени. Пусть, к примеру, есть какой-либо сигнал (непрерывный) и для преобразования его в цифровой необходимо этот сигнал представить в виде последовательности определенных чисел, каждое из которых относится к определенному моменту времени. Для преобразования аналогового (непрерывного) сигнала в цифровой необходимо выполнить 3 операции: дискретизация, квантование и кодирование.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.



3. Модулятор (лат. modulator - соблюдающий ритм) -устройство, изменяющее параметры несущего сигнала в соответствии с изменениями передаваемого (информационного) сигнала. Этот процесс называют модуляцией , а передаваемый сигнал модулирующим .

По виду управляемых параметров модуляторы делятся на: амплитудные , частотные , фазовые , квадратурные , однополосные и т.д. Если несущими являются импульсные сигналы, то их модулируют с помощью амплитудно-импульсных, частотно-импульсных, время-импульсных и широтно-импульсных модуляторов. Качество работы модуляторов определяется линейностью его модуляционных характеристик.

Модулятор является одной из составных частей передающих устройств радиосвязи, радио- и телевещания. Здесь несущими являются высокочастотные гармонические колебания, а модулирующими - колебания звуковой частоты и видеосигналы. Модуляторы также применяют в радиолокации, системах кодово-импульсной связи, телеуправлении и телеметрии. Модуляторы, преобразующие постоянные напряжения в переменные, применяются в усилителях постоянного тока, работающих по принципу модуляции -демодуляции, для устранения дрейфа нуля и повышения чувствительности аналоговых вычислительных устройств. Устройство, работающее по принципу модулятор-демодулятор, называется модем .

Рис.1.5. Модулирование аналогового сигнала

4. Канал связи (англ. channel, data line ) - система технических средств или среда распространения сигналов для передачи данных от источника к получателю. В случае использования проводной линии связи, средой распространения сигнала может являться оптическое волокно или витая пара.

Канал связи является составной частью канала передачи данных. Линией связи называется среда, используемая для передачи сигналов от передатчика к приемнику. В системах электрической связи - это кабель или волновод, в системах радиосвязи - область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В. Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Если сигналы, поступающие на вход канала и снимающиеся с его выхода, являются дискретными (по состояниям), то канал называется дискретным . Если входные и выходные сигналы канала являются непрерывными, то и канал называется непрерывным . Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

Непрерывный канал связи можно характеризовать так же, как и сигнал, тремя параметрами: временем T k , в течение которого по каналу ведется передача, динамическим диапазоном D k и полосой пропускания канала F k . Также в канале связи на сигнал накладываются помехи, обусловленные различными характеристиками среды распространения.

Важнейшими показателями работы системы связи являются:

Скорость передачи;

Пропускная способность;

Помехоустойчивость.

Кроме того, во всех системах связи должно соблюдаться условие: пропускная способность > скорость передачи.

Под помехоустойчивостью понимают способность системы противостоять вредному влиянию помех на передачу сообщений. Максимальное количество информации, которое может быть передано двоичным символом, получило название бит . Существуют и многие другие параметры, характеризующие с различных точек зрения качества системы связи. К ним относятся скрытность связи , надежность системы , габаритные размеры и масса аппаратуры , стоимость оборудования , эксплуатационные расходы и т. п.

5. Демодулятор , детектор (фр. demodulateur ) - электронный узел устройств, отделяющий полезный (модулирующий) сигнал от несущей составляющей.

Переданное сообщение в приемнике обычно восстанавливается в такой последовательности. Сначала принятый сигнал демодулируется. В системах передачи непрерывных сообщений в результате демодуляции восстанавливается первичный сигнал, отображающий переданное сообщение. Этот сигнал затем поступает на воспроизводящее или записывающее устройство.

В системах передачи дискретных сообщений в результате демодуляции последовательность элементов сигнала превращается в последовательность кодовых символов, после чего эта последовательность преобразуется в последовательность элементов сообщения, выдаваемую получателю. Это преобразование называется декодированием .

Операции демодуляции и декодирования – не просто операции обратные модуляции и кодированию. В результате различных искажений и воздействия помех пришедший сигнал может существенно отличаться от переданного. Поэтому всегда можно высказать несколько предположений о том, какое именно сообщение передавалось. Задачей приемного устройства и является принятие решения о том, какое из возможных сообщений действительно передавалось источником. Та часть приемного устройства, которая осуществляет анализ приходящего сигнала и принимает решение о переданном сообщении, называется решающей схемой .

6. Цифро-аналоговый преобразователь (ЦАП ) - устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами

Общие типы электронных ЦАП:

- широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;

- ЦАП передискретизации , такие как - ЦАП, основанные на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования. Часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

- ЦАП взвешивающего типа , в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;

- ЦАП лестничного типа (цепная R-2R-схема). В R-2R-ЦАП значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R , называемой матрицей постоянного импеданса. Данная матрица имеет два вида включения: прямое - матрица токов и инверсное - матрица напряжений. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе, поэтому он должен иметь максимальное быстродействие. Быстродействие ЦАП единицы микросекунд и ниже (то есть наносекунды)

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом.

7. Получатель информации (выход сигнала) – им может служить динамик, экран телевизора, любое воспроизводящее полученный сигнал устройство.

Поскольку человек как получатель информации является ключевым элементом любой телекоммуникационной системы, качество сигнала оценивается по его субъективному восприятию речи. К основным показателям качества принимаемой речи относят: разборчивость (понятность) , громкость и натуральность .

Понятность речи - определяющая характеристика тракта передачи речи, так как если тракт не обеспечивает полной понятности речи, то никакие другие его преимущества не имеют значения - он не пригоден к эксплуатации. Для непосредственного определения этой качественной характеристики есть только один метод – субъективно-статистические испытания (ССИ), требующий большого количества речевого материала, обработанного кодеками и трактом передачи, и привлечения группы экспертов (тренированных слушателей и дикторов). Разработан косвенный, объективный количественный метод определения понятности речи через ее разборчивость .