Общие сведения о цветовых режимах Photoshop. Знакомство с цветовыми каналами (RGB, CMYK, Плашечные, Lab, многоканальный и одноканальные режимы)

  • 26.06.2019

Недавно я прочитал перевод одной статьи по каналам в Фотошопе на «известном» сайте. В статье делался упор на то, что Фотошоп не различает цвета, а все изображения видит в черно-белой градации. Показывает же Фотошоп цветные изображения потому что мы «ожидаем» увидеть их цветными, а сам втихую добавляет какие то циферки, благодаря которым происходит волшебство. На чем выстроена логика подобных размышлений не понятно. То ли на том, что старые версии Фотошопа показывали каналы как черно-белые оттиски, то ли на чем то ещё. Не удивительны и вопросы в комментариях в стиле, «ух ты, так выходит из черно-белой фотки можно сделать цветную?»

Если уж на то пошло, то Фотошоп вообще ничего не видит. Фотошоп - это просто программа, написанная человеком на языке программирования. Фотошоп не видит ни серый, ни белый, ни красный ни зеленый. Фотошоп ориентируется в графике, как Нео в Матрице. Пиксели он видит в виде скопища ноликов и единиц, а решения принимает на основе цифровых параметров. Фотошоп занят не более чем изменением цифровых значений, значения преобразуются в цвета, которые распознает человеческий глаз. У других животных глаза устроены иначе, и им видимо нужен какой-то другой Фотошоп, но пока с этим не срослось.

Непонятно также где, наконец, наши отечественные доступные и понятные статьи о Фотошопе, цвете, полиграфии, где наши Дэны Маргулисы. Весь рунет переводит западных дизайнеров и учителей графики. Вроде и у нас давно есть и сам дизайн и неплохие дизайнеры, а единственный известный писатель на рунете пока что Артемий Лебедев, да и то, пишет о чем-то своем. В этой статье я постараюсь раскрыть вопрос каналов, по ходу дела пройдясь по основам возникновения света и цвета. Мы пройдем всю логику возникновения цветов на экране от начала и до конца и уверяю вас, по окончанию вы будете понимать суть каналов в Фотошопе не хуже Дена Маргулиса. Я начну с основ и расскажу вам, как вообще возникает цвет. В чем разница между светом и цветом. Это очень важно, для правильного понимания каналов. Более того, постараюсь осветить не только RGB каналы, но и каналы в CMYKи в LAB.

Цветовое пространство Фотошопа и каналы

Давайте сразу договоримся: каналы и цветовое пространство не одно и тоже. Если мы говорим о каналах, то мы говорим о каналах. А не о каналах RGB или каналах CMYK. Что есть цветовое пространство в фотошопе? Цветовое пространство - суть, формула, по которой Фотошоп собирает изображение. Каналы напрямую зависят от того, в каком цветовом пространстве работает Фотошоп. Если цветовое пространство RGB, то это 3 канала RGB, если цветовое пространство CMYK, то это другие каналы, каналы для цветового пространства CMYK. Но цветовых пространств много, а каналы у каждого свои! Получается тема бездонна? Маргулис только по пространству Labстрочит буквари один за другим, а у нас просто статья. Все не так страшно. Поняв, как устроены каналы одного цветового пространства, легко понимаются остальные. Поэтому начнем мы с каналов в RGB, но для начала зарядимся теорией.

Цветовое пространство в Фотошопе переключается в Image > Mode . Если вы зайдете в это меню, то увидите череду из цветовых пространств, в которых может работать Фотошоп. Это Bitmap, Grayscale, Duotone, Indexed Color, RGB, CMYK, Lab и Multichannel . Соответственно в каждом из этих режимов какие-то свои каналы, устроенные по-своему. Сами каналы для любого изображения можно посмотреть на панели каналов Windows > Channel . Открыв эту панель вы увидите сами каналы, и их конечный результат. В ряде цветовых пространств вы найдете лишь один канал. В других, таких как CMYK четыре канала. Если у вас не работают фильтры, не копируются области выделения, не включаются какие-то цвета, не импортируется графика из одного окна в другое - срочно проверяйте цветовой режим. Скорее всего, у изображения не типичный цветовой режим, вроде CMYK или Indexed Color.

Я скажу даже больше. Если вы открыли черное белое изображение, очень возможно, что его цветовой режим Grayscale, если открыли GIF баннер, сохраненный из интернета, его цветовой режим Indexed Color, так как формат GIF сохраняется только в этом режиме. Если у вас на руках большой TIFF фаил, проверьте режим, скорее всего это CMYK, так как TIFF-ы обычно сохраняют для печати в офсете, а цветовой режим печати в офсете CMYK. И только один цветовой режим всегда в выигрыше. В нем работают все фильтры, отображаются цвета, копируется графика. Этот цветовой режим поистине король режимов, так как сам Фотошоп заточен под работу именно с ним. И имя этого режима - RGB. И большинство изображений, фотографий и другой графики с которой вы будете работать, будут иметь именно этот цветовой режим. И вот почему.

Мониторы и RGB

RGB (Red - красный, Green - зеленый, Blue - синий) является самой распространенной цветовой моделью потому, что в основе любых современных экранных светящихся приборов содержится цветовая модель RGB. Да, Фотошоп может имитировать любые цветовые пространства, от CMYK до Lab, но в конечном счете то что мы видим на экране в любом случае конвертируется в RGB. Мы работаем в фотошопе, на повестке печатный TIFF фаил, цветовое пространство CMYK, в панеле каналов Chanel четыре канала с краской. Но отображая рабочую область монитор переводит их в RGB. Почему?

Так уж устроены мониторы, так устроены практически все светящиеся экранные устройства. И далее вы поймете почему. В конечном счете все упирается в способность монитора в принципе воспроизводить какие-то цвета. В его аппаратные возможности, в качество его матрицы и охват цветовой гаммы. Какое бы цветовое пространство мы не выбрали для работы в Фотошопе, монитор показывает его с помощью RGB. Показывает цвета монитор так как может, настолько хорошо и ярко, на сколько качественная в нем матрица. Так что все мы упираемся в свою железку на столе в конечном счете. Можно работать с отличными цветовыми профилями, в гибких цветовых пространствах с широким охватом цвета, но все без толку если монитор плохой.

Свет и цвет

Перевернув высказывания Локка, есть свет, а есть цвет. И у света есть цвет. Данная тема не является предметом нашей статьи, но необходима для правильного понимания каналов в Фотошопе. А особенно RGB и CMYK каналов. Что есть свет? Свет есть часть электромагнитного излучения. Это явление природы, которое стоит в одном ряду с другими электромагнитными излучениями вроде инфракрасных лучей, рентгена, микроволн и ультрафиолета. Все они (электромагнитные излучения) измеряются в нанометрах (нм). Свет измеряется в 400-700 нм, и я думаю вы уже догадались почему. Почему в радиусе от 400 до 700. Он что, разный? Именно. И разность его определяется его цветом.


Световые лучи разного цвета измеряются разным количеством нанометров, где фиолетовый тянет на 400 нм, зеленый на 550 нм, а красный на 700нм. При преломлении в призме свет раскладывается на составляющие цвета: красный, оранжевый, зеленый, голубой, синий и фиолетовый. Это знает каждый школьник из уроков физики. И исходя из всего сказанного, можно сделать нехитрые выводы, которые нам помогут постичь каналы RGB:

  • белый «свет» есть совокупность всех цветов спектра
  • черный «свет» есть отсутствие света вообще.
  • постепенное добавление всех цветов спектра друг к другу «осветляет» свет, пока он не станет белым
  • постепенное удаление частей спектра «затемняет» свет, пока его не останется совсем.

Цвет поверхности

Цвет поверхности устроен иначе, но завязан на свете. Мы видим цвет предметов, потому что предметы отражают падающий на них свет. Разные поверхности имеют разную способность отражать. Если некая поверхность не отражает свет совсем, а поглощает все лучи спектра, то мы видим черный цвет. А что ещё можно увидеть, если предмет не отражает свет? Если поверхность отражает все лучи спектра, мы видим белый цвет. Например, бумага отражает все лучи спектра и мы видим её как белую. Луна белая, потому что отражает свет солнца, а не потому что сама по себе светится чисто Samsung Led TV.


Дальше больше. Если, например, некая поверхность поглощает все лучи спектра кроме синего, то эта поверхность и выглядит синей, так как отражает только синюю часть спектра. Если предмет отражает только одну часть спектра, например красную, то и видим его мы красным. Если же он отражает черти что, и поглощает черти что, то и видим мы черти что. Например, поверхность может отражать, немного желтого, немного синего, немного зеленого, а поглощать все остальное. Из данного сумбура и состоят все остальные, “не чистые” цвета. Они образуются путем смешивания отражаемых лучей спектра. Пожалуй на этом теории цвета и света достаточно. Перейдем к самим каналам в Фотошопе.

Каналы в Фотошопе для RGB

От чистой теории, переходим к каналам в Фотошопе. При создании мониторов умные люди не изобретали велосипед. Монитор излучает свет. Разработчики воспользовались тем, что нам предложила мать природа, и создали RGB. Как он устроен? Он состоит из 3х каналов: красного (Red), зеленого (Green) и синего (Blue). При наложении друг на друга, 3 исходных цвета создают составные цвета: пурпурный, голубой и желтый. Вместе, получается привычная радуга или спектр.


Три канала RGB действуют друг на друга так же как действуют друг на друга лучи спектра. При наложении друг на друга достигается белый цвет. При отсутствии всех каналов, получается черный, что логично. Либо свет, либо тьма. При отсутствии одного из каналов, получается один из составных цветов (пурпурный, голубой или желтый). Каждый канал RGB имеет шкалу значения от 0 до 255, где 0 - отсутствие света, а 255 - максимально возможный свет. В нашем случае это не белый свет, а свет одного из каналов, синий, зеленый или красный. При перекрещивании всех трех каналов, с учетом того, что каждый канал может иметь градацию цвета, от черного, до максимально светлого, получается вся многомиллионная палитра цветов в RGB.


Я долго думал, как бы удачнее изобразить наложение цветовых каналов друг на друга, но так, чтобы учесть градацию каждого канала к черному, то есть к отсутствию света. После некоторых неудачных экспериментов я изобразил их в виде цветка. И хотя данный цветок не демонстрирует все возможные оттенки цветов RGB, он неплохо показывает как RGB смешивает каналы.

Каналы RGB как вариант маски в Фотошопе

Итак, что мы знаем о каналах? Уже достаточно много. Мы знаем что в цветовом пространстве RGB три канала, синий, красный и зеленый. Мы знаем, что при наложении друг на друга образуются составные цвета и что у каждого канала есть параметр светлоты и темноты от 0 до 255. Пора рассмотреть как в RGB генерируется изображение.

Я открываю Фотошоп, выбираю красивую фотографию и включаю каналы. Если вы не знаете где они, откройте Windows > Channels . Я так же буду пользоваться панелью Info и Color . Их тоже можно найти в меню Windows . Включив панель каналов вы, вероятно, увидите следующую картину: одно цветное изображение, и 3 отдельных канала с черно-белыми масками, которые обозначают степень освещения каждого конкретного участка фотографии конкретным каналом. Если на изображении участок черный, значит этот канал полностью поглощается поверхностью, если светлый, полностью отражается, если серый, частично поглощается и частично отражается.

Возможно вы так же увидите другую картину, цветные каналы вместо черно-белых. Это совершенно ничего не значит, и вовсе не свидетельствует о том, что Фотошоп видит все цветным, черно-белым, или буро-малиновым. Фотошоп просто программа, он ничего не видит. Он видит значения каналов для каждого пикселя, и составляет изображение. Соответственно, чем цветастее фотография, тем она больше весит, так как информации по цвету каждого пикселя много, и чем она однороднее, чем больше одноцветных пикселей, тем фотография весит меньше. Потому что информация по части пикселей повторяется. Черно-белые фотографии весят значительно меньше цветных, а белый лист, против фотографии такого же размера, вообще ничего не весит.



Цветные ваши каналы в Фотошопе либо черно-белые, зависит исключительно от версии Фотошопа и установленных настроек. Если вы видите черно-белые каналы, зайдите в Edit > Preferens > Interface и поставьте галочку Show Chanels in Color . Разницы это не меняет никакой. При цветных каналах Черная область на конкретном канале - это нулевое значение интенсивности цвета, а максимально яркое (например красное, на красном канале) - максимальное значение 255 интенсивности канала. Вот и все. И так же в черно-белой версии. Черный - 0 значение, белый - 255.

В этом смысле каждый канал и есть своеобразной маской, где черная область закрывает изображение, белая показывает, а серая полупоказывает.

Рассмотрим работу каналов с черно белым изображением в RGB . Для наших опытов нам понадобятся палитры Color, Channels, Info и Color Picker . Откройте Color Picker и выберите чистый серый цвет. Невозможно не заметить, что в сером безоттеночном цвете значения каналов равны друг другу. Что естественно, ведь если R0 G0 B0 создает черный цвет (см, отсутствие отражения света от поверхности), а R255 G255 B255 создает белый цвет (см, соединение всего спектра, школьная призма), то логично, что при постепенном повышении значений каждого канала с равным значением получим чистый серый цвет без доли оттенка.

Проведем небольшой эксперимент. Я открыл фотографию и с помощью Image > Ajustiments > Desaturate перевел её в черно-белое.

Теперь я выбрал инструмент Color Sampler из панели инструментов Tools и сделал 4 цветопробы в разных местах фотографии. Для отображения цифро-значения каналов я открою панель Info. Мы видим, что во всех 4х случаях значения каналов равны друг другу. Усложним задачу.

Я опять зайду в меню цветокоррекции и применю оттеночный фильтр Image > Adjustiments > Photo Filter В панели фильтра я выберу чистый синий цвет R0 G0 B255 и слегка оттеню фотографию.

Как видите оттенок фотографии изменился, хотя она по прежнему воспринимается как ЧБ. Посмотрим на наши образцы цвета в панели Info. Значения красного и зеленого канала остались неизменны. А значение синего канала превысило значения красного и зеленого. За счет этого черно-белая фотография получила свой синеватый оттенок, ведь интенсивность синего канала превышает два оставшихся. Я добился чистых результатов благодаря тому, что при цветокоррекции применил чистый синий цвет R0 G0 B255 c нулевыми значениями красного и зеленого каналов. Если бы я использовал не совсем чистый оттенок, например, R10 G15 B250, то и значения мои были бы не ровными. В этом случае бы фильтр повлиял и на Красный с зеленым каналами, но фотография все равно получила свой синий оттенок, так как значение синего канала в стократ превышало бы остальные.


Каналы в Фотошопе и сепия

Как создается эффект Сепии? Фотография по прежнему черно-белая. Просто она имеет желтоватый оттенок. Как RGB создает желтый цвет? Известно как, при наложении Красного на зеленый. То есть R255 G255 B0

Откроем черно-белую фотографию Применим эффект Image > Adjustiments > Photo Filter , но на этот раз применим чистый желтый цвет R255 G255 B0. Не трудно догадаться, что мы получим на панели Инфо.

Значения Красного и Зеленого канала равномерно повысилось, а значение Синего канала осталось неизменным. За счет этого фотография получила желтоватый оттенок. Теперь, когда вы понимаете природу каналов RGB рассмотрим цветное изображение.

Каналы в Фотошопе и цветное изображение

С черно-белым изображением все просто. На каждом участке изображения все каналы равняются друг другу. Значения конечно разные за счет степени светлоты и темноты, но все три канала всегда синхронны друг другу. С цветными изображениями все иначе. Каждый пиксель цветного изображения содержит различную информацию на всех трех каналах. За счет этого она и цветная. За счет этого цветное изображение весит больше черно-белого. Рассмотрим нашу фотографию.

Условия те же. Уже цветная фотография, прежние 4 образца цвета. 1) На небе, 2) на облаках, 3) на темной части облаков и 4) на дереве. Посмотрим что происходит на участке неба. На участке неба значения каналов 0 в красном 56 в зеленом и 134 в синем каналах. Красный канал отсутствует и мы его не видим. 134 синего дают чистый темно синий цвет. А 56 зеленого канала добавляют яркости в сторону голубого. Как вы помните R0 G255 B255 дают ярко голубой цвет. В итоге получаем синее небо, где синий канал создает темно синий тон, а зеленый осветляет в сторону голубого.

На втором значении светлая часть облака. На панели Инфо значения 240 для красного, 243 для зеленого и 247 для синего. Первое что бросается в глаза - значения предельно равны. Значит цвет получится близкий к градации серого. В нашем случае значения не только равны, но и высоки. От 240 до 247. Практически максимум 255, что свидетельствует о том, что цвет получится практически белый. И так оно и есть. Облака предельно белы. Теперь разберем оттенок. Значения практически равны, но не полностью. Синий канал 247 выше красного, на 7 пунктов. Зеленый канал тоже выше на 3 пункта. Как вы помните 255 Зеленого и 255 синего дают голубой. Значит и цвет будет иметь слегка синеватый оттенок. И так оно и есть.

На третьем участке я выделил затененную часть облака. Перво наперво мы видим что значения тоже высоки. 166 на красном, 182 на зеленом, 208 на синем. Значения говорят о том, что данный цвет тоже достаточно светлый. Но не на столько светлый как во втором образце. Светло-серый, а более высокие значения синего и зеленого канала дают светло-серому явный синий оттенок.

На участке дерева значения 3 для красного, 23 для зеленого, 16 для синего каналов. Значения стремятся к нулю, что говорит о том, что цвет практически черный. И так и есть, дерево действительно темное. Как обычно красный канал минимален, во всей фотографии выигрывают зеленый и синий каналы. Кроме, конечно, травы, но о ней позже. На этом участке зеленый канал значительно выше синего, и соответственно дерево получает темно зеленоватый тон.

И ещё несколько примеров. Я сделал ещё две последние отметки на светлой и темной частях травы. В этом случае проигрывает синий канал. Его значение низко. Красный и зеленый же выигрывают. Как помните красный и зеленый канал дают чистый желтый. В нашем случае красного канала не достаточно чтобы перебить зеленый канал на желтый, поэтому цвет уходит в сторону желто-зеленого болотного. Но и зеленый канал не на полном максимуме возможностей, если бы его значение проигрывало красному, трава имела бы красноватый оттенок, но зеленый канал сильнее, и трава зеленоватая. Небольшой тон добавляет и синий канал, правда практически незаметный.

В нашем последнем сражении зеленый канал явный победитель. Его значение 137, половина мощности, поэтому цвет не яркий а достаточно темный. Красный канал старается увести оттенок в сторону оранжевого, но безуспешно. Синий же канал практически отключен.

И так складывается каждый участок цвета при помощи каналов RGB. Суть канала - маска интенсивности света для каждого участка изображения. В области неба красный канал черный, значит цвет состоит из зеленого и синего каналов. В области травы отсутствует синий канал. Зеленый же выглядит ярче красного, значит трава будет преимущественно зеленая. Надеюсь вы уловили идею.

Чтение каналов по маске

Вот чего я хочу от вас добиться. Я хочу чтобы вы поняли, что изображение канала, суть - маска, где темные места означают отсутствие действия канала, а светлые - действие тона канала. Взять для примера наше изображение. Цвет фотографии можно понять не видя цветов. Его можно прочитать исходя из масок каналов. Сейчас мы научимся это делать расшифровав логику микширования цвета в RGB.

На фотографии небо, дерево, и поле. Посмотрим что показывают каналы. На красном канале небо полностью черное. Значит действие красного на этом участке отсутствует. Остаются синий и зеленые каналы. На синем канале цвет неба, явно светлее, значит действие синего канала здесь выше. Но и зеленый канал вносит свою лепту. Как помните синий и зеленый каналы дают голубой. Получаем светло синее небо, более темное к верхнему правому углу, так как действие зеленого там заметно ослабевает.

Рассмотрим поле. Синий канал в этой области практически черный. Наиболее светлая область у красного канала с которым соперничает лишь зеленый. А значит поле желтого цвета. Градации на зеленом значении уводят цвет к сторону оранжевого и темно красного.

Взглянем на дерево. На всех масках его цвет практически одинаковый. Значит дерево достаточно бесцветно, близко к серому. Но все же на красном канале дерево значительно светлее, а на синем, темнее. Это свидетельствует о том, что оттенок дерева красный. В нашем случае красный настолько силен, что свел серый к коричневому.

RGB и режим Screen

Мы можете сами имитировать RGB смешивание каналов. Таким образом я создал большую часть иллюстраций для этой статьи. Нарисуйте эллипсы на разных слоях, закрасьте их чистыми цветами. Чистым синим R0 G0 B255, чистым зеленым R0 G255 B0 и чистым красным R255 G0 B0. В панели слоев Windows > Layers поменяйте слоям режимы наложения на Screen. Режим наложения Screen отсекает темные пиксели, давая преимущество светлым пикселям. Но кроме этого он смешивает различные тона пикселей так же как смешивает их цветовая модель RGB.

Я старался писать максимально сжато, но статья получилась слишком объемной. Зато теперь вы полностью понимаете как устроены каналы RGB в программе Фотошоп, и не только в Фотошопе. Они везде устроены, одинаково, поверьте. Я буду развивать тему каналов в своих следующих статьях на эту тему. В следующих частях я опишу каналы в CMYK и Lab, а так же перейду к их практическому использованию в цветокоррекции и печати.


Как перевести rgb в cmyk, Переводим rgb в cmyk, Перевести rgb в cmyk, Как перевести rgb в cmyk в фотошопе, Перевести цвет из rgb в cmyk, Как в кореле перевести rgb в cmyk, Перевести изображение из rgb в cmyk, Как перевести rgb в cmyk в coreldraw, Как в иллюстраторе rgb перевести в cmyk, Как перевести rgb в cmyk в illustrator, Фотошоп cmyk, rgb перевести.

Многие наверняка задаются вопросом, что такое sRGB в настройках камеры, зачем это нужно и что лучше, sRGB или Adobe RGB?

RGB – это аббревиатура от названий основных цветов (Red, Green, Blue). Почему они основные? Потому что у человека, в отличие от некоторых других видов, трихроматическое зрение. То есть, в глазу есть рецепторы, восприимчивые к этим трём цветам. Огромный вклад в восприятие цвета делает наш мозг, поэтому задача правильного отображения цвета нетривиальна и требует значительных ухищрений.

Цветовое пространство – это множество цветов которые мы можем наблюдать или отображать. Существует много способов графически отображать цветовые пространства, но хитрые математики придумали один очень элегантный способ, который вы постоянно встречаете на просторах Интернет.

Концепцию цвета можно представить следующим образом: цвет состоит из двух составляющих – яркость и тональность. То есть, серый от белого отличается только яркостью, тональность у них одинаковая. В результате экспериментов в начале 20 века удалось выяснить диапазон цветов, которые воспринимаются человеком. С помощью математических преобразований, всё множество тональностей удалось отобразить на плоскости, и назвали эту диаграмму CIE 1931 (1931 – год, когда диаграмма была представлена). Таким образом, стало возможным описать цвет координатами x,y на графике, плюс яркость.

На диаграмме цвета указаны условно для наглядности, это вовсе не те цвета, которые вы видите в повседневной жизни.

С регистрацией цвета проблем особых никогда не было, у любой цифровой камеры цветовой охват, который видит сенсор, гораздо шире того, что может видеть человек. Отчасти поэтому применяются инфракрасные и ультрафиолетовые фильтры внутри камеры, чтобы упростить последующую обработку сигнала.

Проблемы возникли с отображением цвета, особенно на экране монитора. Возможности дисплеев сильно ограничены в силу физических причин, и получить полный набор цветов, которые различает человеческий мозг, было практически нереализуемым. Было много попыток создать цветной дисплей, отображающий большинство оттенков, но компромисса между цветопередачей и ценой устройства удалось достичь в 50ые на ЭЛТ-дисплеях.

Чтобы обуздать разнообразие цветных дисплеев и профессиональную обработку изображений на компьютере сделать более прогнозируемой, в 90ые был разработан стандарт sRGB. Он появился в следствие анализа возможностей наиболее распространённых на тот момент CRT(ЭЛТ)-мониторов. О ЖК-дисплеях тогда никто даже не мечтал, к тому же по характеристикам и цене ЖК сильно отставали от ЭЛТ и базой для стандарта быть не могли.

Принцип работы CRT-экранов простой – при смешивании трёх основных цветов (красный, зелёный, синий) получались разнообразные оттенки. Проблемы две:

  1. число доступных оттенков зависит от чистоты основных цветов, а чистых цветов очень сложно добиться
  2. только смешиванием трёх основных цветов все видимые цвета не получить

Стандарт sRGB описывает, какой именно чистоты должны быть основные цвета и какие именно оттенки достижимы при их смешивании. Так же определяется, где находится точка белого. На CIE-диаграмме стандарт sRGB выглядит как треугольник с координатами основных цветов в вершинах:

Легко видеть, насколько скромны возможности техники по сравнению с тем, чем наделила нас природа.

Даже если получить основные цвета исключительной чистоты, как это достигается на лазерных дисплеях, вы не получите полного цветового охвата, который мы наблюдаем в окружающем нас мире. Всё, на что способен такой дисплей, ограничивается треугольником:

К слову сказать, при печати нет таких жёстких ограничений в количестве источников первичных цветов и поэтому за вполне разумные деньги на крутых фотопринтерах применяется, например, 8-цветная печать. Цветовой охват при этом расширяется не очень высокой ценой и выглядит на диаграмме как многоугольник. Вот как выглядит цветовой охват не очень крутого принтера по сравнению с sRGB:

Но у принтеров при этом куча других проблем, в частности, зависимость цветопередачи от качества бумаги и прочее.

Adobe RGB – это другой, но очень похожий стандарт, он немного шире и охватывает больше цветов:

Вы наверняка захотите тут же побежать и переключить sRGB в вашей камере на Adobe RGB, но не спешите это делать.

Adobe RGB нужен только тем, кто профессионально занимается печатью и точно знает, что он делает (таким людям наши статьи читать не надо). Преобладающее большинство экранов и программ работает в стандарте sRGB и об Adobe RGB ничего не знает, так исторически сложилось. Более того, при попытке на sRGB экране отобразить Adobe RGB цвета, могут возникнуть проблемы с цветопередачей. sRGB гарантирует, что по крайней мере большинство людей увидят примерно те же цвета, что и вы.

Из-за ограниченного диапазона sRGB вы наверняка замечали, что сфотографировав красную розу, вы потом на фото не можете различить лепестки. Просто возможностей экрана недостаточно, чтобы изобразить все детали в оттенках красного, к примеру.

Конечно, тут много зависит от настроек монитора, поэтому фотографы предпочитают иметь дело с мониторами на IPS-матрицах и ищут модели, которые откалиброваны ещё на заводе, такие как LG IPS236V . Все производители стараются соответствовать стандарту sRGB, у кого-то получается лучше, у кого-то хуже.

В последнее время технологии сильно продвинулись вперёд и ЖК-мониторы порой демонстрируют цветовой охват даже шире, чем ЭЛТ-мониторы, хотя до недавнего времени это было невозможно, вот почему старые громоздкие экраны долго не удавалось вытеснить из дизайнерских отделов. Вот какой цветовой охват у профессионального ЖК-монитора:

Наши внимательные читатели наверняка уже измучили себя вопросом, что это за диаграмма в заголовке статьи, от какого она монитора? Это не монитор, а телефон Samsung Galaxy Note . Фокус в том, что в современных смартфонах используется новая технология дисплеев – AMOLED (органические светодиоды). Пока полноценные большие AMOLED-мониторы выходят очень дорогими, но я верю, что будущее именно за ними.

AMOLED позволяет достичь более чистых основных цветов и как следствие – более широкий цветовой охват. На практике это означает, что на Samsung Galaxy Note картинка будет более сочной и контрастной, чем на экранах предыдущих поколений.

Спасибо за внимание.

Цветовая информация в Photoshop хранится в так называемых каналах. Канал – это изображение, в котором точки для каждого составного цвета цветовой модели определяют яркость (количество) этого цвета. Сразу это понять непросто. Попробуем объяснить доступнее.

В зависимости от цветовой модели изображение может иметь три цветовых канала (для RGB) или четыре (для CMYK). Каждому цвету модели выделен отдельный канал, в каждом канале представлена серая копия изображения. В каналах уровень серого может иметь 256 градаций. Яркость серой точки показывает количество соответствующего каналу цвета в композитном изображении. Чем светлее точка, тем большее количество цвета данного канала используется в результирующей точке.

1. Загрузите любое цветное изображение. Если загруженное изображение создано в цветовой модели CMYK, преобразуйте его в RGB.

2. Откройте палитру Каналы . Вы видите четыре пункта: RGB , Красный , Зеленый и Синий . Красный , Зеленый и Синий – это и есть каналы вашего изображения.

3. Снимите флажки в виде глаза для каналов RGB , Красный и Зеленый . У вас останется включенным только канал Синий (рис. 7.1).

Рис. 7.1. Отображен канал Синий


МУЛЬТИМЕДИЙНЫЙ КУРС

В главе «Цветовые каналы» прилагаемого к книге компакт-диска содержатся несколько видеолекций, посвященных работе с цветовыми каналами.

Обратите внимание, что изображение в окне документа стало серым. Причем оно мало напоминает обычное черно-белое изображение. Некоторые участки, которые вроде бы должны быть светлыми, темные, и наоборот. Дело все в том, что градации серого показывают, сколько синего цвета участвует в формировании каждой цветной точки. Чем светлее точка, тем больше синего цвета на нее приходится. Если есть полностью черные точки, значит, в результирующем цвете этих точек синего нет совсем или его ничтожно мало. Посмотрите таким же образом Красный и Зеленый каналы. Вы увидите, что яркости отдельных участков изображения не соответствуют действительности. Еще раз подчеркнем, что в данном случае яркость точки определяет не яркость результирующей точки, а яркость цвета данного канала в этой точке.

Каналы RGB

Проведем простой эксперимент.

1. Создайте новое изображение с белым фоном.

2. Выберите инструмент Карандаш . Настройте кисть таким образом, чтобы линия карандаша получилась достаточно жирной, например 50 пикселов.

3. Выберите чисто красный цвет. Для этого в диалоговом окне выбора цветов укажите значение R равным 255 , а значения G и B равными 0 . Это цвет, который состоит только из красных субпикселов. Синие и зеленые субпикселы в этом цвете совершенно не участвуют (значение их яркости равно нулю).

4. Проведите в окне созданного документа линию.

5. Откройте палитру Каналы , после чего посмотрите каждый канал в отдельности.

Теперь опишем, что вы должны увидеть.

Канал Красный . Вы видите полностью белое изображение без каких-либо линий. Белый фон изображения говорит о том, что белый цвет содержит максимальный уровень красного (255). Линию вы тоже не видите, так как нарисовали ее цветом, в котором количество красного также равно 255, то есть в этом канале интенсивность красных субпикселов максимальна на всей площади рисунка.

Каналы Зеленый и Синий . Фоны этих каналов белые, так как участие синего и зеленого цветов в белом цвете также максимально (напомним, что белый цвет получается, когда значение всех трех составляющих RGB равно 255). Проведенная вами линия в данных каналах имеет черный цвет. Когда вы выбирали цвет инструмента, вы указали нулевые значения для цветов G и B , то есть в выбранном вами цвете синий и зеленый цвета не участвуют совсем. Именно поэтому в данных каналах линия имеет черный цвет, это говорит о том, что уровень соответствующих цветов в этих каналах минимален.

Теперь отобразите одновременно Красный и Зеленый каналы. Фон изображения стал желтым, а точка красной. Это результат смешивания каналов, то есть сейчас мы наложили Красный канал на Зеленый и при этом исключили Синий канал. В результате мы сложили 255 градаций красного цвета с таким же количеством зеленого цвета и тем самым получили желтый фон. Линия осталась красной, потому что к 255 градациям красного в канале Красный добавилось 0 градаций красного из канала Зеленый , то есть ничего не добавилось.

Если сложить каналы Зеленый и Синий , исключив канал Красный , мы получим бирюзовый фон (результат сложения 255 градаций зеленого и синего цвета) и черную линию. Ни синий, ни зеленый цвет не присутствуют в нарисованной нами линии (уровень данных цветов в соответствующих каналах нулевой), поэтому линия остается черной.

Каналы CMYK

Аналогичную картину мы увидим, создав изображение в цветовой модели CMYK. Только каналы CMYK, в отличие от RGB, инверсные, то есть черный и белый цвета в этих каналах поменяны местами. Белый цвет означает полное отсутствие красителя, а черный – максимальное его количество (100). Например, если мы создадим изображение с белым фоном и пурпурной линией (C = 0, M = 100, Y = 0 и K = 0), то в каналах увидим следующее.

Каналы Голубой , Желтый и Черный будут полностью белого цвета. В формировании белого фона данные цвета не участвуют (бумага и так белая сама по себе).

Канал Пурпурный будет содержать черную линию на белом фоне. В формировании фона данный цвет также не участвует, а вот в цвете линии интенсивность пурпурного цвета максимальна.

Если мы нанесем на белый фон линию другого, например зеленого, цвета, то в каналах CMYK эта линия будет серой с различной яркостью. Зеленый цвет в модели CMYK не присутствует, поэтому получается путем смешивания основных цветов. Степень яркости в каждом канале будет зависеть от количества соответствующего цвета в результирующем зеленом. Чем больше определенного цвета участвует в формировании результирующего, тем темнее будет линия в соответствующем канале. В большей степени в зеленом цвете участвуют голубой и желтый. Доля пурпурного и черного цветов не очень высока, поэтому линии на этих каналах будут очень бледными. Конечно, все еще зависит и от оттенка зеленого цвета. Можно создать цвет, в котором доли черного и пурпурного будут нулевыми, и это будет чистый зеленый цвет.

Мы так долго говорили о каналах, но до сих пор так и не объяснили, зачем они нужны. Вы, возможно, на первоначальных этапах не будете их использовать и вообще смотреть на палитру Каналы . Многие годами работают с Photoshop и совершенно не знают, с какой целью каналы используются, а то и вообще не подозревают о существовании таковых. Согласимся, что для любителя это не так и важно. Однако, когда вы дорастете до профессионального использования программы Photoshop и особенно если будете работать в организациях, выпускающих полиграфическую продукцию, вы непременно столкнетесь с таким понятием, как цветоделение. Вот здесь как раз вам и понадобятся каналы.

С помощью каналов очень удобно корректировать цветовую гамму изображения. Например, работая с RGB-фотографией, вы замечаете, что на отдельном ее участке преобладает красный цвет. Обычными методами (уровнями) или иной цветовой коррекцией это исправить непросто. Да и не всегда удобно. Отключаете все каналы, кроме красного, и, например, инструментом Затемнитель затеняете данный участок изображения, то есть вы затеняете только красный цвет, тем самым уменьшая уровень красного в композитном цвете. Вы даже можете не отключать при этом остальные каналы: достаточно просто выделить канал Красный . Однако с отключенными каналами проще контролировать свою работу.

Другое применение каналов – это цветоделение. Для печати картинки на типографском оборудовании требуется четыре серых изображения. Это именно те каналы, о которых мы говорили: каналы модели CMYK. Как правило, одно изображение распечатывается на четырех прозрачных пленках и на каждую пленку наносится содержимое одного канала. Дальше на основании интенсивности (уровня) черного на каждой из пленок оборудование наносит соответствующее количество красителя на носитель, чаще всего бумагу (рис. 7.2).


Рис. 7.2. Так выглядит изображение в отдельных каналах CMYK


Мы не случайно используем термин «носитель», поскольку изображение можно распечатывать на ткани, пластике и различных полимерных материалах.

Каналы-маски

Вы можете добавить в изображение новый канал. Однако это будет не цветовой, а так называемый альфа-канал, или канал-маска. Для чего могут использоваться такие каналы? Применений множество. Самое простое – это использование масок для изображения или качественного ретуширования графики.

Попробуйте создать новый канал, нажав третью слева кнопку в нижней части палитры Каналы . Скорее всего, все ваше изображение будет как будто накрыто полупрозрачной цветной пленкой, а в списке каналов появится новый канал Альфа 1 .

1. Теперь, предварительно выделив канал Альфа 1 , попробуйте взять инструмент Ластик и стереть участок изображения. В месте, где «прошелся» Ластик , будет проступать изображение с исходными цветами. Иными словами, вы создали полупрозрачный альфа-канал и сделали отдельные его участки прозрачными (рис. 7.3).


Рис. 7.3. Часть канала-маски стерта ластиком


2. Нажмите сочетание клавиш Ctrl+A , при этом все изображение будет выделено, и нажмите клавишу Delete . Содержимое альфа-канала будет удалено, а изображение предстанет в оригинальных цветах.

3. Снимите выделение, нажав сочетание клавиш Ctrl+D .

4. Выберите инструмент Кисть и определите для данного инструмента синий цвет.

5. Убедитесь, что канал Альфа 1 по-прежнему выделен.

6. Сделайте кистью несколько мазков.

Обратите внимание, что в изображении появляются штрихи, отличные от выбранного вами цвета, скорее всего красные, то есть, «рисуя» синей кистью, вы можете получить красные оттенки штрихов. Это происходит потому, что цвет кисти на самом деле не синий, а определенной градации серого. Взгляните на образец цвета в нижней части панели инструментов, чтобы убедиться в этом. Добавляя серые линии на альфа-канал, вы увеличиваете уровень яркости участков основного цвета альфа-канала (по умолчанию – красного). В результате этого цвет канала суммируется с остальными каналами.

Теперь немного о настройках альфа-канала.

Чтобы вызывать диалоговое окно настроек альфа-канала (рис. 7.4), нужно дважды щелкнуть кнопкой мыши на миниатюре этого канала на палитре Каналы .

Рис. 7.4. Диалоговое окно Параметры канала


В глаза сразу бросается образец цвета. По умолчанию – красный. Это цвет альфа-канала. Вспомните, что, какой бы цвет кисти вы ни выбрали, при рисовании кистью на альфа-канале появляются красные линии различной яркости (яркость зависит от выбранного оттенка). Вы можете изменить этот цвет, и тогда линии, нарисованные на альфа-канале, будут иметь другой цвет (выбранный вами).

В области Показывать цветом по умолчанию переключатель установлен в положение Маскированные области . Как действует альфа-канал в данном режиме при рисовании или стирании, вы видели. Если выбрать положение Выделенные области , альфа-канал будет действовать на изображение обратным способом, то есть закрашенные области станут прозрачными, а незакрашенные, наоборот, непрозрачными или полупрозрачными.

В поле Непрозрачность указывают степень непрозрачности альфа-канала. По умолчанию степень непрозрачности равняется 50 % , именно поэтому вы хорошо видите изображение сквозь «цветную пленку».

Следует отметить, что вы можете создать множество альфа-каналов, настроить степень их непрозрачности и цвета, далее нанести в этих каналах какие-либо штрихи и изображения. Вы можете также копировать содержимое любого канала в альфа-канал, применять к нему различные коррекции и т. д. Все это позволяет вам очень тонко настраивать цветовые параметры изображения, создавать оригинальные рисунки и т. д. При большом желании вы даже можете превратить черно-белое изображение в цветное. Для этого нужно преобразовать черно-белое изображение в модель RGB или CMYK, создать необходимое количество альфа-каналов (по числу цветов модели), скопировать изображение в эти каналы и раскрасить отдельные фрагменты изображения так, чтобы при смешивании каналов получились нужные цвета. Это, конечно, непросто и потребует много времени, терпения и опыта, но это возможно! Действительно, из старой черно-белой фотографии можно сделать цветную. Кстати, если все цветовые каналы содержат абсолютно одинаковую информацию, значит, пропорции всех цветов в отдельных точках равны. А одинаковые пропорции цветов – это всегда серая точка (в разных градациях яркости: от белой до черной). Иными словами, если изображения во всех цветовых каналах не отличаются друг от друга, значит, картинка черно-белая.

HEX / HTML

Цвет в формате HEX - это ни что иное, как шестнадцатеричное представление RGB.

Цвета представляются в виде трёх групп шестнадцатеричных цифр, где каждая группа отвечает за свой цвет: #112233, где 11 - красный, 22 - зелёный, 33 - синий. Все значения должны быть между 00 и FF.

Во многих приложениях допускается сокращённая форма записи шестнадцатеричных цветов. Если каждая из трёх групп содержит одинаковые символы, например #112233, то их можно записать как #123.

  1. h1 { color: #ff0000; } /* красный */
  2. h2 { color: #00ff00; } /* зелёный */
  3. h3 { color: #0000ff; } /* синий */
  4. h4 { color: #00f; } /* тот же синий, сокращённая запись */

RGB

Цветовое пространство RGB (Red, Green, Blue) состоит из всех возможных цветов, которые могут быть получены путём смешивания красного, зелёного, и синего. Эта модель популярна в фотографии, телевидении, и компьютерной графике.

Значения RGB задаются целым числом от 0 до 255. Например, rgb(0,0,255) отображается как синий, так как синий параметр установлен в его самое высокое значение (255), а остальные установлены в 0.

Некоторые приложения (в частности веб-браузеры) поддерживают процентную запись значений RGB (от 0% до 100%).

  1. h1 { color: rgb(255, 0, 0); } /* красный */
  2. h2 { color: rgb(0, 255, 0); } /* зелёный */
  3. h3 { color: rgb(0, 0, 255); } /* синий */
  4. h4 { color: rgb(0%, 0%, 100%); } /* тот же синий, процентная запись */

Цветовые значения RGB поддерживаются во всех основных браузерах.

RGBA

С недавних пор современные браузеры научились работать с цветовой моделью RGBA - расширением RGB с поддержкой альфа-канала, который определяет непрозрачность объекта.

Значение цвета RGB A задается в виде: rgba(red, green, blue, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: rgb(0, 0, 255); } /* синий в обычном RGB */
  2. h2 { color: rgba(0, 0, 255, 1); } /* тот же синий в RGBA, потому как непрозрачность: 100% */
  3. h3 { color: rgba(0, 0, 255, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: rgba(0, 0, 255, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: rgba(0, 0, 255, 0); } /* полностью прозрачный */

RGBA поддерживается в IE9+, Firefox 3+, Chrome, Safari, и в Opera 10+.

HSL

Цветовая модель HSL является представлением модели RGB в цилиндрической системе координат. HSL представляет цвета более интуитивным и понятным для восприятия образом, чем типичное RGB. Модель часто используется в графических приложениях, в палитрах цветов, и для анализа изображений.

HSL расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Lightness/Luminance (светлота/светлость/светимость, не путать с яркостью).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Lightness является процентным значением светлости (от 0% до 100%).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный */
  2. h2 { color: hsl(120, 100%, 75%); } /* светло-зелёный */
  3. h3 { color: hsl(120, 100%, 25%); } /* тёмно-зелёный */
  4. h4 { color: hsl(120, 60%, 70%); } /* пастельный зеленый */

HSL поддерживается в IE9+, Firefox, Chrome, Safari, и в Opera 10+.

HSLA

По аналогии с RGB/RGBA, для HSL имеется режим HSLA с поддержкой альфа-канала для указания непрозрачности объекта.

Значение цвета HSLA задается в виде: hsla(hue, saturation, lightness, alpha). Параметр alpha - это число в диапазоне от 0.0 (полностью прозрачный) до 1.0 (полностью непрозрачный).

  1. h1 { color: hsl(120, 100%, 50%); } /* зелёный в обычном HSL */
  2. h2 { color: hsla(120, 100%, 50%, 1); } /* тот же зелёный в HSLA, потому как непрозрачность: 100% */
  3. h3 { color: hsla(120, 100%, 50%, 0.5); } /* непрозрачность: 50% */
  4. h4 { color: hsla(120, 100%, 50%, .155); } /* непрозрачность: 15.5% */
  5. h5 { color: hsla(120, 100%, 50%, 0); } /* полностью прозрачный */

CMYK

Цветовая модель CMYK часто ассоциируется с цветной печатью, с полиграфией. CMYK (в отличие от RGB) является субтрактивной моделью, это означает что более высокие значения связаны с более тёмными цветами.

Цвета определяются соотношением голубого (Cyan), пурпурного (Magenta), жёлтого (Yellow), с добавлением чёрного (Key/blacK).

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, а точнее, размер точки растра, выводимой на фотонаборном аппарате на плёнке данного цвета (или прямо на печатной форме в случае с CTP).

Например, для получения цвета «PANTONE 7526» следует смешать 9 частей голубой краски, 83 частей пурпурной краски, 100 - жёлтой краски, и 46 - чёрной. Это можно обозначить следующим образом: (9,83,100,46). Иногда пользуются такими обозначениями: C9M83Y100K46, или (9%, 83%, 100%, 46%), или (0,09/0,83/1,0/0,46).

HSB / HSV

HSB (также известна как HSV) похожа на HSL, но это две разные цветовые модели. Они обе основаны на цилиндрической геометрии, но HSB/HSV основана на модели «hexcone», в то время как HSL основана на модели «bi-hexcone». Художники часто предпочитают использовать эту модель, принято считать что устройство HSB/HSV ближе к естественному восприятию цветов. В частности, цветовая модель HSB применяется в Adobe Photoshop.

HSB/HSV расшифровывается как Hue (цвет/оттенок), Saturation (насыщенность), Brightness/Value (яркость/значение).

Hue задаёт положение цвета на цветовом круге (от 0 до 360). Saturation является процентным значением насыщенности (от 0% до 100%). Brightness является процентным значением яркости (от 0% до 100%).

XYZ

Цветовая модель XYZ (CIE 1931 XYZ) является чисто математическим пространством. В отличие от RGB, CMYK, и других моделей, в XYZ основные компоненты являются «мнимыми», то есть вы не можете соотнести X, Y, и Z с каким-либо набором цветов для смешивания. XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

LAB

Цветовая модель LAB (CIELAB, «CIE 1976 L*a*b*») вычисляется из пространства CIE XYZ. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета.

Цветовые модели RGB и CMY (CMYK)

RGB (для дисплеев) и CMYK (для печати) являются наиболее распространенными системами представления цвета.

Основная модель субтрактивного синтеза цвета – полиграфическая система CMYK (сине-зеленый/голубой, пурпурный, желтый, ключевой/черный).

Самый распространенный вариант аддитивного смешения, предполагающего суммирование разноцветных потоков в единый результирующий поток, – модель RGB (красный, зеленый, синий).

Если субтрактивная схема применяется в полиграфии (с белым нулем – отсутствием краски на бумаге), то аддитивная (обладающая бо́льшим цветовым охватом) – в телевизорах, мониторах и т.п., где выключенный экран выглядит черным.

Поскольку RGB и CMY дополняют друг друга, между ними существует определенное соотношение. Если показать эту информацию в виде одного цветового круга, то цвета RGB и CMY будут в нем поочередно меняться. Если смешать два RGB-цвета, то получится CMY-цвет; если же, наоборот, смешать два CMY-цвета, то на этот раз получится RGB-цвет. Например, в модели CMY красный цвет описывается как смесь пурпурного и желтого. А в модели RGB пурпурный цвет описывается как смесь красного и синего.

Кроме того, в сравнении с RGB, CMYK обладает меньшим цветовым охватом. Законы физики не позволяют печатать цвета RGB. Для печати RGB- изображения следует преобразовать его аддитивные цвета в цвета CMY, т.е. перевести их в субтрактивные цвета.

Система цветопередачи RGB

RGB (англ. Red, Green, Blue – красный, зеленый, синий) – аддитивная цветовая модель (англ. Additive Primary Model), описывающая способ синтеза цвета для цветовоспроизведения. Аддитивной модель называется потому, что цвета получаются путем добавления (англ. addition ) к черному цвету. Выбор основных цветов в RGB обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза.

Модель RGB используется для воспроизведения спектра видимого света и представляет все то, что передает, фильтрует или ощущает световые волны (например, монитор, сканер или глаз) (рис. 7.5). Для создания различных цветов складываются разные уровни основных цветов (красного, зеленого и синего). Черный цвет – это отсутствие любого света.

Рис. 7.5.

Изображение в данной цветовой модели состоит из трех каналов. При смешении основных цветов, например, синего (В ) и красного (/?), мы получаем дополнительный пурпурный (англ. М – magenta ), при смешении зеленого (G ) и красного (R ) – дополнительный желтый (англ. Y – yellow ), при смешении зеленого (G ) и синего (В ) дополнительный циановый (англ. С – cyan ). При смешении всех трех цветовых компонентов мы получаем белый цвет. В телевизорах и мониторах применяются три электронных пушки (светодиода, светофильтра) для красного, зеленого и синего каналов.

Числовое отображение RGB

Каждая из координат RGB представляется в виде одного байта, значения которого обозначаются целыми числами от 0 до 255 включительно, где 0 – минимальная, а 255 – максимальная интенсивность.

COLORREF – стандартный тип для представления цветов в операционной системе Win32. Используется для определения цвета в RGB-виде. Размер – 4 байта.

Определить переменную типа COLORREF можно следующим образом:

COLORREFC = RGB (r,g, b ),

где г, g и b – интенсивность (в диапазоне от 0 до 255) соответственно красной, зеленой и синей составляющих определяемого цвета С.

Следовательно, ярко-синий цвет может быть определен как (0,0,255), красный – как (255,0,0), ярко-фиолетовый – (255,0,255), черный – (0,0,0), а белый – (255,255,255).

В HTML используется #RrGgBb-запись, называемая также шестнадцатеричной: каждая координата записывается в виде двух шестнадцатеричных цифр, без пробелов (цвета HTML см. далее). Например, #RrGgBb- запись белого цвета – #FFFFFF.

Для справки

Стандарты цветовых пространств RGB. Цветовая модель RGB является зависимой от устройства. Поскольку мониторы разных моделей и производителей различаются, было предложено несколько стандартов цветовых пространств для этой модели.

Наиболее распространенное цветовое пространство sRGB является стандартом для изображения на мониторе (профиль По умолчанию для компьютерной графики). Пространство sRGB, использующееся с цветовой.моделью RGB, имеет по многим тонам цвета более широкий цветовой охват (может представить более насыщенные цвета), чем типичный охват цветов цветовых пространств в CMYK, поэтому иногда изображения, хорошо выглядящие в RGB, значительно тускнеют и гаснут в CMYK.

Также распространены Adobe RGB и ProPhoto RGB. Цветовое пространство ProPhoto RGB, также известное как ROMM RGB (от англ. Reference Output Medium Metric – метрика образцового выходного материала), является цветовым пространством RGB, предназначенным для обработки фотографий и ориентированным на выходной материал. Стандарт разработан компанией Kodak, он предлагает особо широкий охват, предназначенный для фотоизображений.

RGB – самое используемое цветовое пространство, и у него есть как сильные, так и слабые стороны. С одной стороны, модель RGB оптимальна для редактирования изображений с высоким разрешением. В ней отображается широкий диапазон значений, и изображения в формате RGB могут обрабатываться при помощи почти всех инструментов и функций графических редакторов .

С другой стороны, RGB зависит от устройств. Какое бы ни было числовое определение цвета, способ его вывода на экран полностью зависит от аппаратуры отображения.

  • Графический редактор – программа (или пакет программ), предназначенная для создания и обработки графических файлов.