Импульсные и цифровые устройства. Импульсные устройства. Основные понятия и определения импульсной техники. Электронные ключи. Интегральные логические схемы

  • 21.06.2019

Все электронные устройства имеют дело с электрическими сигналами, изменяющимися во времени. Именно благодаря этому изменению во времени сигнал может нести в себе какую-то информацию. По характеру изменения различают сигналы аналоговые импульсные и цифровые.

Аналоговый сигнал может принимать любые значения в определенных пределах. В любой момент времени математически может быть представлен аналитической функцией без разрывов (рис 1.1а).

Рис 1.1. Электрические сигналы; а) аналоговый, б) импульсный, в) цифровой

Устройства, работающие только с аналоговыми сигналами, называются аналоговыми устройствами.

Цифровой сигнал может принимать только два значения высокое/низкое или 0/1 (иногда третье значение - «нет сигнала»). Допускаются некоторые отклонения от этих значений (рис 1.1в). Устройства, работающие исключительно с цифровыми сигналами, называются цифровыми устройствами.

Импульсный сигнал, как и аналоговый, может иметь любые значения в определенном диапазоне. В некоторые моменты времени его поведение резко изменяется и он не может быть описан единой аналитической функцией без разрывов (рис 1.1б). В современной электронике иногда импульсные сигналы формируются цифровыми методами (цифроаналоговый преобразователь, аналоговые коммутаторы и т.д.). Такие устройства принято называть аналого-цифровыми. Таким образом, понятие импульсный сигнал является обобщающим. Цифровые и аналого-цифровые устройства являются частным случаем импульсных устройств.

Цифровые сигналы защищены гораздо лучше аналоговых от действия шумов, наводок и помех. Небольшие отклонения от разрешенных значений не искажают цифровой сигнал, так как всегда существуют зоны допустимых отклонений. В определенных пределах на них не влияет изменение температуры, напряжения питания, разброс параметров элементов, допускают длительное хранение без потерь, качественную передачу по каналам связи.

Особенностью цифровых сигналов, чтобы его можно было распознать, является то, что он должен оставаться в каждом из своих разрешенных уровней хотя бы в течение какого-то минимального временного интервала. Аналоговый сигнал может принимать любое свое значение бесконечно малое время. Поэтому максимально достижимое быстродействие аналоговых устройств принципиально больше, чем цифровых.

Аналоговый сигнал более емкий с точки зрения передачи информации, так как передает информацию каждым текущим значением своего уровня в отличие от цифрового, у которого всего лишь два уровня. Для передачи того же объема полезной информации, который содержится в одном аналоговом сигнале, приходиться использовать многоразрядные цифровые сигналы (8, 16 разрядов, иногда и более).

Аналоговые устройства, как правило, требуют значительной трудоемкости на индивидуальную настройку и регулировку. Цифровые устройства проще проектировать и налаживать.

Взаимное преобразование аналоговых и цифровых сигналов требует применение специальной аппаратуры – аналого-цифровых и цифроаналоговых преобразователей. Так, чтобы реализовать преимущества цифровой обработки сигналов зачастую требуется значительные затраты.

Современные электронные устройства содержат обычно и аналоговую и цифровую часть. Аналоговая электроника чаще используется для предварительной обработки сигналов в реальном времени, когда на первый план выдвигается быстродействие, а требования к точности преобразования предъявляются умеренные. Цифровую обработку обычно используется на следующем этапе, когда требуется высокая точность преобразования сигналов, надежное долговременное хранение информации, передача по каналам связи в условиях помех. Однозначного рецепта нет, когда применять аналоговую и когда цифровую обработку сигналов. Граница зависит от уровня элементной базы и квалификации разработчика.

Рис. 1.2. Параметры импульсного сигнала

Импульсный сигнал, показанный на рис. 1.2, характеризуется следующими параметрами:

U m – амплитуда импульса – наибольшее отклонение напряжения Umax от исходного уровня Umin;

Если импульсы следуют через равные промежутки, то говорят о периодической последовательности импульсов с периодом повторения

T и = t и + t п,

где t и и t п – соответственно длительность импульса и паузы между импульсами; обычно определяются по уровню 0,5 от амплитуды импульса;

Участок импульса, на котором происходит отклонение напряжения от исходного уровня, называется фронтом , а участок, где напряжение возвращается к исходному уровню – спадом (срезом ). В реальном импульсе бывает трудно указать границы фронта и спада, и их длительность t ф и t ср рассчитываются на уровне 0.1 Um и 0.9U m . Уровень обычно по умолчанию считается равным 10% (0.1) от амплитуды, хотя иногда встречается 5% (0.05), но обязательно с оговоркой.

Число импульсов, следующих в течении одной секунды называется частотой повторения импульса Fи ;

Для описания периодической последовательности импульсов используется параметр скважность импульсов x, который представляет собой отношение интервала между импульсами (паузы) к длительности самого импульса ;

В тех случаях, когда обычно имеют дело с короткими периодическими импульсами (большой скважности), например, радиолокации, когда tи <

Частным случаем периодической последовательности импульсов, у которых длительность импульса равна длительности паузы, является меандр , для которого скважность x=1.

Цифровые сигналы являются частным случаем импульсных, имеют два разрешенных уровня напряжения. Для удобства формального математического описания один из этих уровней называется уровнем логической единицы (единичным уровнем), а другой – уровнем логического нуля (нулевым уровнем). Чаще всего уровню логического нуля соответствует низкий уровень напряжения, а логической единице – высокий уровень напряжения. Принято называть такую логику положительной . Иногда в системных шинах микропроцессоров, при передаче сигналов через каналы связи используют обратное представление, называемой отрицательной логикой ; логический нуль – высокий уровень, а логическая единица – низкий уровень. Есть и более сложные методы кодирования. Но мы в основном будем использовать понятия положительной логики. Структура типового логического элемента (ЛЭ) показана на Рис 1.3. Узел входной логики выполняет логические операции над входными сигналами. Каждый входной логический сигнал I (Input) описывается набором параметров;

¾ логические уровни входного/выходного напряжения Е 0 и Е 1 ,

¾ входные токи I 0 и I 1 , соответствующие входным уровням.

Каждый входной сигнал должен подаваться на отдельный вход ЛЭ. Иначе подаче нескольких входных сигналов на один вход ЛЭ возможна конкуренция сигналов и, как следствие, неопределенность уровня напряжения на входе, что конечно не допустимо.

Количество входов m называется коэффициентом объединения по входу m и может быть 1 £ m £1.

Рис. 1.3. Структура типового логического элемента.

Максимальное m=8 обусловлено тем, что единица информации - байт содержит 8 бит (может принимать 2 8 =256 состояний, что считается достаточным для кодирования любого символа информации – чисел от 0 до 9, букв алфавита и т.д.). В редких случаях, когда требуется ЛЭ с большим количеством входов, к входу ЛЭ подключают специальную ИС – логический расширитель.

Транзисторный ключ, который на рис 1.3 условно изображен как механический ключ, управляется результирующим сигналом входной логики и обычно выполняет две функции:

¾ логическую операцию отрицания «НЕ» (при высоком уровне на входе, ключ замыкается, и уровень сигнала на выходе становиться низким);

¾ обеспечивает требуемую нагрузочную способность ЛЭ, чтобы иметь возможность управлять последующими несколькими ЛЭ. Нагрузочная способность n (коэффициент разветвления) – число входов, которое может быть подключено к данному выходу без нарушения работы. Этот параметр определяется отношением выходного тока I out ЛЭ к входному I in

Стандартная величина n =10 при использовании микросхем одного типа (одной серии).

Входной ток микросхемы при приходе на вход логического нуля (), как правило, отличается от входного тока при приходе на вход логической единицы (). Например, = -0.4 мА, а = 20 мкА (считается, что положительный ток втекает во вход микросхемы, а отрицательный - вытекает из него). Точно так же выходной ток микросхемы при выдаче логического нуля () может отличаться (и обычно отличается) от выходного то­ка при выдаче логической единицы (). Например, для одной и той же микросхемы < -0,4 мА, a < 8 мА (считается, что положительный ток втекает в выход микросхемы, а отрицатель­ный - вытекает из него). Надо также учитывать, что разные входы и выходы одной и той же микросхемы могут иметь раз­личные входные и выходные токи.

Для выходных напряжений логического нуля () и едини­цы () в справочниках обычно задаются предельно допусти­мые значения при заданной величине выходного тока. При этом, чем больше выходной ток, тем меньше напряжение логической единицы и тем больше напряжение логического нуля. Напри­мер, > 2,5 В (при < - 0,4 мА), a < 0,5 В (при <8mA).

Задаются в справочниках также и допустимые уровни вход­ных напряжений, которые микросхема еще воспринимает как правильные логические уровни нуля и единицы. Например, > 2,0 В, < 0,8 В. Как правило, входные напряжения логи­ческих сигналов не должны выходить за пределы напряжения питания.

Устройства импульсной и цифровой электроники существенно отличается от устройств аналоговой электроники видом используемых сигналов (цифровые сигналы) и приёмами проектирования.
Цифровой сигнал может принимать два значения (высокого уровня и низкого уровня). Устройства, работающие с цифровыми сигналами, называются цифровыми.
Цифровыми сигналами сигналом представляются двоичные числа. Элементами сигнала являются нуль(0) и единица(1).
Цифровой сигнал может быть потенциальным или импульсивным:

Устройства для формирования цифровых сигналов

Для получения цифровых уровней, соответствующих логической 1 и логическому 0 применяют специальные схемы.

Аналоговый компаратор

Компаратор предназначен для сравнения аналоговых сигналов: входного (измеряемого) Uх и опорного (Uоп ). В момент равенства сигналов Uх = Uоп напряжение Uвых резко изменяются.
До момента t1 Uоп > Uх и Uвых =U+ нас .
В момент t1 Uх ≥ Uоп и Uвых =U- нас .
В момент t2 вновь наступает Uоп ≥ Uх и Uвых =U+ нас .
Пунктиром показано характеристика идеального компаратора, у которого переключение происходит мгновенно при Uх = Uоп . Сплошная линия соответствует реальному компаратору, у которого переключение происходит с запаздыванием относительно t1 и t2. Для получения на выходе компаратора цифровых уровней, соответствующих логическому нулю (0) и логической единицы (1), вводят ограничитель, состоящий из диодов VД1 и VД2.

Напряжение на открытом диоде около 0,7 В. По этому напряжение на выходе не может быть выше 5,7 В (при Uвых > 0 и открыт VД1). И ниже — 0,7 В (при Uвых < 0 и открыт VД2). Однако рассмотренные схемы компараторов отличаются низкой помехозащищённостью. Указанный недостаток устраняется при введении в схему положительной обратной связи.

Триггер Шмитта

Компаратор, уровни включения и выключения которого не совпадают, называют триггером Шмитта.
Резисторами R2 и R4 введена положительная обратная связь. Напряжение в точке А равна сумме напряжений Uоп и Uос . Напряжение Uос =(U’вых *R2)/(R2+R4)
Когда U’вых = U+ нас напряжение в т. А равно напряжению срабатывания Uсраб = Uоп + Uос . Когда U’вых = U- нас напряжение в т. А равно напряжению отпускания Uотп = Uоп — Uос .
За счёт положительной обратной связи компаратор обладает гистерезисом (рис в): переходы Uвых от одного уровня к другому происходят при разных входных напряжениях (Uсраб , Uотп .) Если амплитуда помехи меньше разности Uсраб — Uотп , то сложного срабатывания не будет (устраняется «дребезг»). Напряжение на выходе Uвых изменяются от уровня логической 1 до уровня логической 0.

Параметры компараторов

Компараторы описывается многими из тех параметров, которые характерны для ОУ (коэффициентом усиления, входным сопротивлением, коэффициентом ослабления синфазного сигнала, напряжение смещения нуля, значением входных токов и т.д.).На ряду с этим ему свойственны и специфические параметры, к которым относятся чувствительность и время переключение.
Чувствительность (разрешающая способность) характеризует точность сравнения сигналов и соответствует их минимальной разности ΔUвх min , при которой напряжение на выходе достигает уровня срабатывания логического элемента. Значение ΔUвх min у ИМС компараторов имеет порядок сотен микровольт, что хуже, чем у компараторов на ИМС операционных усилителей.
Время переключения tпер характеризует быстродействие компараторов и соответствует времени с момента сравнения до момента достижения выходных напряжением уровня срабатывания цифрового элемента. Время переключения существенно зависит от разности сигналов на входах. Типичные значения tпр составляют десятки, сотни НС.

Генераторы импульсных сигналов

Наиболее распространенные генераторы прямоугольных и линейно изменяющихся (пилообразных) импульсов напряжения. Генераторы могут работать в режимах: автоколебательном, ждущем, синхронизации. В автоколебательном режиме импульсные сигналы формируются непрерывно без внешнего воздействия. В ждущем режиме импульсный сигнал формируется лишь по приходу запускающего сигнала. В режиме синхронизации формируется импульсные напряжения, частота которых равна или кратное частоте синхронизирующего сигнала.

Генераторы прямоугольных импульсов

Подобно генераторам гармонических колебаний генераторы прямоугольных импульсов преобразуют энергию источника постоянного тока в энергию электрических колебаний. Генераторы импульсных сигналов восполняют на дискретных, логических элементах или на ОУ.

Симметричный мультивибратор в режиме автоколебаний

Мультивибратор выполнен на основе триггера Шмитта. R2 и R4 образуют положительную обратную связь, R1 и c образует отрицательную обратную связь. В зависимости от напряжения на выходе, которое может быть равно либо + Еп, либо — Еп (Еп — напряжение питания ОУ) на неинвертирующем входе ОУ устанавливается или, или
Ёмкость С перезаряжается с постоянной времени τ = RC.
Мультивибратор формирует прямоугольные импульсы (рис в) с периодом T=2RCgn(1+R3/R2)
Время tu1 заряда конденсатора С равно времени tu2 разряда, поэтому мультивибратор называется симметричным. Период колебаний T = tu1 + tu2.

Несимметричный мультивибратор времени автоколебаний

Для получения колебаний, у которых tu1 ≠ tu2 вместо резистора R1 включаем два разных резистора R1 и R2 и два диода VД1 и VД2. Резистором R1 можно менять постоянную времени зарядки конденсатора С, а с резистором R2- постоянную времени его разрядки.

Ждущий мультивибратор (одновибратор)

За счёт диода VD отрицательное напряжение на конденсаторе С (Uc) может иметь только отрицательное значение порядка — 0,7 В. Схема имеет одно устойчивое состояние, когда Uвых =U- нас = -Еп (диод VD открыт). Из этого состояния схема не может самостоятельно переключить к уровню Uвых =U+ нас =Еп.
С приходом положительного запускающего импульса Uзап = Uм > Uср схема переключается к уровню Uвых =U+ нас = Еп. После этого начинается заряд конденсатора С через резистор R1. Когда напряжение на конденсаторе Uc достигнет значение Uотп происходит возвращение схемы к уровню Uвых =U- нас =-Еп. В этом состоянии схема пребывает до поступления следующего запускающего импульсе.

Генераторы линейного изменяющегося напряжения (ГЛИН)

Линейно изменяющимся напряжением (пилообразным импульсом) называют напряжение, показанное на рисунке:

Импульс составляется двумя фронтами. Передний фронт (рабочий или прямой ход) является линейно изменяющимся длительностью tпр. Задний фронт (обратный ход) изменяется по экспоненциальному закону в течении времени tобр . Импульс характеризуется начальным уровнем Uо и амплитудой Um.
Пилообразные импульсы используются для разведки электронного луча в осциллографах, телевизорах и т.д.
Принцип построение ГЛИН основан на зарядке ёмкости постоянным током.
Линейно изменяющееся напряжение можно получить с помощью интегратора:

На вход подано постоянное напряжение Uвх = const. Ток через конденсатор С равен I=Uвх /R=const.
На конденсаторе С формируется линейно изменяющее напряжение Uвых =-Uвх g/RC.
Обратный ход формируется в процессе быстрой разрядки конденсатора после замыкания ключа Кл.

Аналого-цифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи

Преобразование аналогового сигнала в цифровой и обратное преобразование применяется в измерительной технике (осциллографы, вольт метры, генераторы и т.д), В бытовой аппаратуре (телевизор, музыкальные центры, автомобильная электроника и т.д), в компьютерной технике (ввод и вывод звука, видеомониторы, принтеры и т.д), в медицинской технике, в телефонии и т.д.
При этом применение АЦП и ЦАП постоянно расширяется по мере перехода от аналоговых устройств к цифровым.

Аналого-цифровые преобразователи (АЦП или ADC)

АЦП преобразует аналоговые сигналы в цифровые, поступающие на цифровые устройства для дальнейшей обработки обработки или хранения.
В общем случае микросхему АЦП можно в виде блока, имеющего один аналоговый вход, один или два входа для подачи опорного (образцового) напряжения, а также цифровые выходы для выдачи кода, соответствующего текущему значению аналогового сигнала.

Часто микросхема АЦП имеет так же входы для подачи тактового сигнала CLK, сигнала разрешения работы CS и выход для выдачи сигнала RDY, указывающего на готовность выходного цифрового кода. На микросхему подаётся одно или два питающих напряжения.
Опорное напряжение АЦП задаёт диапазон входного напряжения, в котором производится преобразование. Оно может быть постоянным или же допускать изменение в некоторых пределах. Иногда предусматривается подача на АЦП двух опорных напряжений с разными знаками, тогда АЦП способен работать как с положительными, так и с отрицательными входными напряжениями.
Выходной цифровой код N (n — разрядный) однозначно соответствует уровню входного напряжения. Код может принимать 2n значений, то есть АЦП может различать уровней входного напряжения. Количество разрядов выходного кода n представляет собой важнейшую характеристику АЦП. В момент готовности выходного кода выдаётся сигнал окончания преобразования RDY, по которому внешнее устройство может читать код N.
Управляется работа АЦП тактовым сигналом CLK, который задаёт частоту преобразования, то есть частоту выдачи выходных кодов. Предельная тактовая частота — второй важнейший параметр АЦП. В некоторых микросхемах имеется встроенный генератор тактовых сигналов, поэтому к их выводам подключается кварцевый генератор или конденсатор, задающий частоту преобразования. Сигнал CS разрешает работу микросхемы.
Выпускается множество самых разнообразных микросхем АЦП, различающихся скоростью работы (частота преобразования от сотен килогерц до сотен мегагерц), разрядностью (от 6 до 24), допустим диапазонами входного сигнала, величинами погрешностей, уровнями питающих напряжений, методами выдачи выходного кода (параллельный или последовательный), другими параметрами. Обычно микросхемы с большой количеством разрядов имеют невысокое быстродействие, а наиболее быстродействующие микросхемы имеют небольшое число разрядов. В качестве базового элемента любого АЦП используется компаратор напряжения, который сравнивает два входных аналоговых напряжения и в зависимости от результата сравнения выдаёт выходной цифровой сигнал (0 или 1).
Существует два основных принципа построения АЦП: параллельный и последовательный.
Принцип преобразования параллельного типа заключается в одновремённом сравнении входного напряжения с n опорными напряжениями и определением, между какими двумя опорными напряжениями оно лежит.
Схема 3-х разрядного параллельного так же представлено на рисунке:

Схема такого АЦП содержит резистивный делитель из резисторов, который делит опорное напряжение Uоп на (2n -1) уровней.
Входное напряжение Uвх сравнивается с помощью (2n -1) компараторов с уровнями (). Выходные сигналы компараторов (X1,X2....X7) с помощью кодирующего преобразователя преобразуется в n — разрядный (n = 3) двоичный код Z0 Z1 Z2.
Процесс преобразования происходит очень быстро, поэтому частота преобразования может достигать сотен МГц. Правда, они требуют применения большого количества компараторов, что вызывает технологические трудности при большом количестве разрядов (при n = 12 требуется 4095 компараторов).
Поэтому АЦП параллельного типа выпускают с числом разрядов n = 4...8
При необходимости иметь больше 8 разрядов применяют АЦП последовательного преобразования, недостатком которых являются малое быстродействие, что приводит к апертурной погрешности АЦП. Апертурная погрешность связана со скоростью изменения измеряемого сигнала (Uвх /dt). За время преобразования (tпр) в цифровой сигнал Uвх изменяется и возникает неопределённость, какое мгновенное значение Uвх (t) преобразовано в код. Для уменьшения апертурной погрешности перед АЦП последовательного преобразования устанавливается схема выборки и хранения.

Устройство выборки и хранения (УВХ)

Где ƒт — тактовые импульсы выборок. Буферы DА1 и DА2 имеют Rвх → ∞ и Rвых → 0. Ключ S1 переключается с такой частотой ƒт . Буфер DA1 благодаря малому Rвых позволяет конденсатору С1 зарядиться до мгновенного значения входного напряжения в каждом импульсе выборки (режим выборки). В интервале между импульсами выборок ключ S1 разомкнут и заряд удерживается на конденсаторе вследствие большого Rвх буфера DА2. (режим хранения) В течении времени хранения АЦП осуществляет преобразование выбранного мгновенного значения в код. Частота ƒт взятия выборок (отчётов) мгновенных значений должна удовлетворять неравенству: ƒт ≥ 2ƒmax, где ƒmax — наибольшая частота спектра аналогового сигнала Uвх.

Цифро-аналоговые преобразователи (ЦАП или DAC)

ЦАП преобразует цифровые сигналы цифровых устройств в аналоговые сигналы. В общем случае микросхему ЦАП можно представить в виде блока, имеющего несколько цифровых входов и один аналоговый вход, а также аналоговый выход.

На цифровые входы ЦАП подаётся n — разрядный код N, на аналоговый выход — опорное напряжение Uоп (другое распространенное обозначение — Uref ). Выходным сигналом является напряжение Uвых (другое обозначение — Uo ) или ток Iвых (другое обозначение lo ). При этом выходной ток или выходное напряжение пропорционально входному коду и опорному напряжению. Для некоторых микросхем опорное напряжение должно иметь строго заданный уровень, для других допускается менять его значение в широких пределах, в том числе и изменять его полярность (положительную на отрицательную и наоборот). ЦАП с большим диапазоном изменения опорного напряжения называется умножающим ЦАП, так как его можно легко использовать для умножения входного кода и любое опорное напряжение.
Кроме информационных сигналов микросхемы ЦАП требуют также подключения одного или двух источников питания и общего провода.
В качестве примера рассмотрим схему реализации 4 — разрядного (n — 4) ЦАП.

Транзисторные ключи S1...S4 управляются цифровым кодом X3X2X1X0. Резисторы R0 /8, R0 /4, R0 /2, R0 высокоточные двоично взвешенные.
Преобразования цифрового кода в выходной аналоговый сигнал основано на представлении двоичного числа Х в виде суммы степеней числа 2: X=X3g23 +X2g22 +X1g21 +X0g20 , где Х3, X2, X1, X0 могут принимать значения 0 или 1.(0 — при разомкнутом ключе, 1 — при замкнутом ключе). Выходное напряжение ЦАП будет связано со входным кодом Х и опорным напряжением Uоп формулой:
Знак минус получается из — за инверсии сигнала ОУ.
Таким образом, при входном коде 0000 выходное напряжение Uвых = 0, а при входном коде 1111 оно будет ровно Uвых = - К (X=1g23 +1g22 +1g21 +1g20 ) = - К. 15. Значение К выбирают таким, чтобы Uвых ≤ Uоп .

Сменяющиеся входные коды обусловливают сменяющееся напряжение на входе ЦАП:

От единицы в первом разряде (Хо = 1) на выходе появляются напряжения Uвых = ΔU (0001). При коде 1111 напряжение на выходе ЦАП равно:
Uвых = 1 (8 . ΔU) + 1(4 . ΔU) + 1(2 . ΔU) + 1 . ΔU = 15 . ΔU. Таким образом, выходной сигнал ЦАП состоит из ступенек, высота которых кратна Uвых /2n , а модуль Uвых пропорционален числу, двоичных код которого определяется состоянием ключей S1.... S4. Токи ключей суммируются в точке А, причём токи различных ключей различны (имеют разный вес: 23 , 22 , 21 , 20 ,).

Параметры АЦП и ЦАП

К основным параметрам АЦП и ЦАП следует отнести максимальное напряжение Umax (входное для АЦП и выходное для ЦАП), число разрядов кода n, разрешающую способность и погрешность преобразования.
Разрешающая способность ЦАП — выходное напряжение, соответствующее единице в младшем разряде входного кода: Δ=Umax /(2n -1), где 2n -1 — максимальный вес входного кода.
Так например, при Umax = 10 B n = 12, Δ =10/(212 -1) = 2,45 мВ. Чем больше n, тем меньше Δ и тем точнее выходным напряжением может быть представлен входной код. Относительное значение разрешающей способности δ= Δ/Umax = 1/2n-1
Ток же параметр АЦП определяется приведёнными выше выражениями и представляет собой входное напряжение, соответствующее приращению выходного кода на единицу в младшем разряде. В данном случае Δ - наименьшая различимая ступенька входного сигнала. Сигнал меньшего уровня АЦП не зарегистрирует. В соответствии с этим разрешающую способность отождествляют с чувствительностью АЦП.
Погрешность преобразования имеет статическую и динамическую составляющие. Статическая составляющая включает в себя методическую погрешность квантования (дискретности) и инструментальную погрешность от неидеальности элементов преобразователей. Погрешность квантования Δк обусловлена самим принципом представления непрерывного сигнала квантованными уровнями, отстоящими друг от друга на выбранный интервал. Ширина этого интервала и есть разрешающая способность преобразователя. Наибольшая погрешность квантования составляет половину разрешающей способности, а в общем случае: Δк = ± 0,5 Δ = ± 0,5 Umax /(2n -1); δк = ± 0,5 (1/(2n -1))
Инструментальная погрешность не должна превышать погрешность квантования. При этом полная абсолютная и относительная статические погрешности: Δст = ±Umax /(2n -1), δст = ± (1/(2n -1)),что соответствует разрешающей способности преобразователя.
Динамическая составляющая погрешности связана с быстродействием преобразователя (с временем преобразования tпр) и скоростью изменения входного сигнала (V). Чем меньше tпр и V тем меньше эта составляющая. Выбор ЦАП может, в частности, производится по значению tпр: за время tпр код на входе не должен, например, изменятся более чем на единицу в младшем разряде. Для АЦП период Топ, с которым осуществляется опрос входного напряжения (подключение к нему АЦП), следует выбирать больше tпр: Топ > tпр, т. е. между скоростью преобразования 1/ tпр и частотой опроса (ƒоп = 1/T) должно соблюдаться соотношение (1/ tпр) >ƒоп. С другой стороны, по теореме Котельникова, ƒоп связана с наивысшей частотой ƒmax в спектре непрерывного входного сигнала неравенством ƒоп ≥ 2 ƒmax. Поэтому АЦП должен обладать скоростью преобразования (1/ ƒпр) ≥ 2 ƒmax. При большом tпр нужно будет увеличивать период опроса, чтобы избежать больших динамических искажений. Для их уменьшения обычно выбирают АЦП с таким временем преобразования tпр, за которое входной сигнал изменяется не более чем на разрешающую способность Δ = Umax/(2n - 1).

Импульсными называют информационные и энергетические электронные устройства, основанные на работе переключающих элементов и управлении моментами включения и выключения этих элементов. В зависимости от закона управления различают системы с амплитудной, частотной, широтной и фазовой модуляцией. Первые электронно-ионные регуляторы, основанные на фазоимпульсном методе регулирования, были разработаны в СССР в 1937-1941 гг. Л.С. Гольдфарбом и Г.Р. Герценбергом. Они содержали все узлы, характерные и для современных систем импульсного регулирования: измеритель регулируемой величины, компаратор, усилитель рассогласования, импульсный модулятор и усилитель мощности для энергетического воздействия на объект управления.

Импульсные энергетические преобразовательные устройства, основанные на работе управляемых силовых вентилей и полупроводниковых ключевых элементов в замкнутых системах импульсного регулирования, являются основой быстро развивающегося направления силовой (энергетической) электроники.

Информационные импульсные устройства основаны на преобразовании информации с использованием одного из видов импульсной модуляции, дискретизации данных и изменении числа координат. Наиболее распространенные виды преобразования информации импульсными устройствами: развертка (сканирование), частотно- и широтно-импульсная модуляция, измерение временных характеристик сигнала (моментов перепада, периода, частоты).

Впервые идея сканирования как последовательного просмотра точек плоского объекта была запатентована в Германии в 1884 г. Паулем Нипковым. Диск П. Нипкова был основой первого телевизора с механической разверткой. Благодаря развертке плоский двумерный образ преобразовывался в одномерный сигнал яркости.

На принципе развертывания основано осциллографирование процессов, изменяющихся во времени. Привычная всем картина изменения сигнала в функции времени на экране электронно-лучевой трубки может быть получена при условии равномерного движения изображающего элемента (электронного луча, светящейся точки) по одной координате и отклонения этого элемента по другой координате на значение, пропорциональное сигналу. Идея развертки для наблюдения процессов была выдвинута Л.И. Мандель-штаммом в России в 1907 г., применение электронно-лучевой трубки с этой целью предложено в России Б.Л. Розингом в том же году. Эта фундаментальная идея дала множество выдающихся технических решений.

Применение развертывающего преобразования можно пояснить несколькими примерами из арсенала средств промышленной электроники.

Определение местонахождения поврежденного участка основано на использовании отраженного эхосигнала и точном измерении времени между посланным зондирующим импульсом и принятым отраженным.

К этому классу приборов относятся искатели повреждений в линиях электропередачи. Искатель повреждений генерирует зондирующий импульс напряжения, который распространяется в линии, порождая отражения от различных неоднородностей. Измеряя время между зондирующим и отраженным импульсами, можно определять местонахождение аварийного участка.

К этому же классу приборов относятся импульсные ультразвуковые дефектоскопы. Источником зондирующих сигналов в них служит пье-зопреобразователь, дающий акустический импульс; он же используется и для обратного преобразования отраженного акустического сигнала в электрический.

Точное измерение времени между зондирующим и отраженным импульсами производится одним из двух способов: измерением расстояния между импульсами на экране электронно-лучевой трубки или подсчетом числа меток времени, генерируемых с эталонной частотой. Второй из этих методов оказался более предпочтительным и получил широкое распространение и развитие.

Время -- наиболее удобная физическая величина для эталонирования и прецизионного измерения. Кварцевые генераторы давно и прочно вошедшие в практику радиотехнических систем, продолжают до наших дней сохранять свое место и значимость, как простые и сравнительно дешевые эталоны частоты или интервалов времени с точностью порядка 10 -6 --10 -7 .

Приборы для ультразвуковой дефектоскопии и искатели повреждений широко распространены в энергетике, машиностроении, железнодорожном транспорте. Они не требуют мощных установок высокого напряжения, как рентгеновские промышленные аппараты, экологически безопасны в отличие от радиоизотопных дефектоскопов. При частоте ультразвуковых колебаний 2--4 МГц удается обнаруживать неоднородности в материале площадью до 1 мм 2 . В Советском Союзе промышленное производство дефектоскопов ведется с 50-х годов.

Промышленное применение развертывающего преобразования связано с измерением ширины листа прокатываемого металла. При большой скорости движения полосы горячего металла в условиях вибрации единственным способом измерения могло быть бесконтактное оптическое сканирование. Измеритель проката был разработан в лаборатории автоматики Института черной металлургии (Г.Х. Зарезанко). Два сканирующих измерительных устройства определяли координаты обеих кромок листа, разность координат в 1960 г. с помощью показывающих и регистрирующих приборов позволяли быстро измерить и зафиксировать ширину ленты проката. Создателю установки пришлось решить проблему оптических помех, точного и воспроизводимого измерения положения фронта импульсов при сравнительно низкой крутизне.

Развертывающее преобразование в промышленных устройствах было реализовано с помощью специально разработанного для таких устройств прибора -- диссектора. Сравнительно низкая чувствительность компенсировалась большой яркостью источника света. Быстродействие диссектора оказалось существенно выше, чем у передающих телевизионных трубок с накоплением заряда.

Естественным следующим шагом на пути развития развертывающих и сканирующих устройств стали установки промышленного телевидения. Их основные функции -- наблюдение за процессами в условиях, когда непосредственное нахождение оператора вблизи объекта невозможно, нежелательно или сопряжено с опасностью .

На развитие импульсной техники решающее влияние оказало развитие радиолокации. Это направление способствовало, во-первых, формированию импульсов высокой энергии. Повышение мощности излучаемого импульса при разумных ограничениях на среднюю энергию установки стало возможным лишь благодаря импульсному характеру работы при отношении периода к длительности импульса порядка 1000. Во-вторых, разрешающая способность импульсного устройства во времени могла быть повышена только за счет увеличения крутизны фронтов используемых сигналов. Как и во многих других направлениях, промышленное использование импульсной техники стало вторичным результатом их применения в оборонных отраслях. Благодаря импульсному характеру сигнала удавалось получать импульсы высоких энергий от относительно маломощных устройств. Этому способствовало свойство электронных ламп с оксидными катодами давать огромные по сравнению со средними токи импульсной эмиссии. Электронная лампа со средним током в десятки миллиампер могла длительное время эксплуатироваться с импульсными токами в несколько ампер.

В отличие от радиолокационных систем технические средства промышленной электроники заняли полный диапазон возможностей и способов импульсной модуляции. Регулирование среднего и действующего напряжений осуществлялось путем изменения коэффициента заполнения при широтно-импульсном регулировании. Исторически первой была освоена разновидность импульсного регулирования, при которой синхронное с сетью отпирание вентиля осуществлялось с запаздыванием по отношению к моменту естественной коммутации. Широтно-импульсное регулирование постоянного напряжения получило распространение в высокоэкономичных импульсных стабилизаторах постоянного напряжения. Это стимулировало развитие и инженерное приложение теории замкнутых импульсных систем.

Анализу импульсных систем в 60-е годы посвящены фундаментальные работы Я.З. Цыпкина . В промышленной электронике для решения задач регулирования мощности импульсная техника стала главным инструментом воздействия. Классические методы управления преобразователями, основанные на использовании угла запаздывания отпирания управляемых вентилей, вначале базировались на сдвиге фазы управляющего сеточного напряжения ртутных преобразователей (так называемый горизонтальный метод). Следующим и гораздо более перспективным стал вертикальный метод. Сущность его состояла в фиксации момента сравнения развертывающего (гармонического или пилообразного) сигнала с управляющим. Вертикальный метод фазосмещения стал основным инструментом широтно-импульсного, фазоим-пульсного и (в соответствующем исполнении) частотно-импульсного регулирования.

Многоканальная система импульсно-фазового управления преобразователями служит для управления многофазными преобразователями. Система содержит несколько (по числу фаз) источников опорного напряжения, синхронных с напряжениями питания соответствующих фаз. Напряжения опорных источников сравниваются с помощью компараторов с единственным для всех фаз управляющим сигналом. Задержка срабатывания каждого компаратора дает запаздывание момента отпирания вентиля в соответствующей фазе. Форма опорного напряжения (косинусоидальная или пилообразная) дает разные регулировочные характеристики.

Для успешной реализации вертикального способа фазосмещения необходимо было решить вспомогательные задачи формирования опорного напряжения, сравнивания двух сигналов, формирования управляющего импульса определенной амплитуды и длительности в момент равенства двух сигналов. Для выполнения этих задач были разработаны специальные импульсные схемы: в 1918 г. М.А. Бонч-Бруевичем было предложено катодное реле; в 1919 г. американцы X. Абрагам и Е. Блох изобрели мультивибратор; в 1919 г. американцы В. Иклс и Ф. Джордан изобрели схему, без которой трудно представить себе современную компьютерную цивилизацию, -- триггер. Были сделаны сотни изобретений различного рода формирователей импульсов, генераторов линейно изменяющихся напряжений и токов, блокинг-генераторов (мощных импульсных схем с глубокой положительной обратной связью).

Анализ схем с обратными связями, возникновение колебаний в нелинейных системах, решение задач об устойчивости таких схем стали предметом работ А.А. Андронова, А.А. Витта, С.Э. Хайкина(1959 г.) .

Скачать книгу Импульсные и цифровые устройства абсолютно бесплатно.

Для того, чтобы бесплатно скачать книгу с файлообменников нажмите на ссылки сразу за описанием бесплатной книги.

"Импульс - единственная сила, способная преодолеть и инерцию, и силу тяжести". /Уилл Фергюсон/
Лучший учебник советского времени по курсу "Импульсные и цифровые устройства". Если повезет, сейчас можно найти у букинистов. А вообще-то, каждый радиоинженер должен знать этот курс как молитву, так как импульсы "преследуют" нас повсюду: электромагнитные импульсы, видеоимпульсы, короткие и длинные импульсы, импульсные источники питания, импульсные генераторы, радиолокация, лазеры и многое другое.
В книге представлены линейные и нелинейные устройства преобразования и формирования импульсных сигналов, электронные ключи, разнообразные импульсные устройства регенеративного типа, устройства формирования пилообразного напряжения и тока, логические схемы, основные элементы цифровых устройств и многокаскадные устройства функционального назначения.
При изложении уделяется внимание обеспечению надежного и стабильного режима работы устройств при действии неизбежных в условиях эксплуатации дестабилизирующих факторов и помеховых импульсов.

Предисловие
РАЗДЕЛ ПЕРВЫЙ. ОБЩИЕ СВЕДЕНИЯ ОБ ИМПУЛЬСНЫХ ПРОЦЕССАХ
Глава 1. Вводные сведения
§1.1. Импульсный режим работы и его особенности
§ 1.2. Роль импульсной техники в радиоэлектронике
§ 1.3. Предмет курса
§ 1.4. Из истории развития импульсной техники

Глава 2. Характеристика формы импульсов
§2.1. Форма и параметры импульсов
§ 2.2. Параметры типовых импульсов
§ 2.3. Аналитическое выражение импульсов
§ 2.4. Приближенная оценка длительности фронта
§ 2.5. Активная ширина спектра импульсов

РАЗДЕЛ ВТОРОЙ. ЛИНЕЙНЫЕ УСТРОЙСТВА ФОРМИРОВАНИЯ И ПРЕОБРАЗОВАНИЯ ИМПУЛЬСОВ
Глава 3. Интегрирующие цепи
§ 3.1. Назначение и принцип работы интегрирующей цепи
§ 3.2. Требования к параметрам интегрирующей цепи
§ 3.3. Варианты схем интегрирующей цепи

Глава 4. Дифференцирующие и укорачивающие цепи
§ 4.1. Дифференцирующие цепи
§ 4.2 Укорачивающие цепи

Глава 5. Импульсные трансформаторы
§ 5.1 Назначение импульсных трансформаторов
§ 5.2. Намагничивание сердечника трансформатора
§ 5.3. Эквивалентная схема трансформаторной цепи
§ 5.4. Искажение формы трансформированного импульса
§ 5.5. Требования к конструкции трансформатора

Глава 6. Линии временной задержки сигналов
§ 6.1 Назначение линии временной задержки
§ 6.2. Свойства немскажающих электрических систем временной задержки
§ 6.3. Электромагнитные линии временной задержки
§ 6.4. Искусственные линии задержки (ИЛЗ)
§ 6.5. Ультразвуковые линии задержки (УЛЗ)

Глава 7. Линейные формирующие цепи
§ 7.1. Общие положения
§ 7.2. Формирующие электромагнитные линии
§ 7.3. Искусственные формирующие линии
§ 7.4. Формирующие реактивные двухполюсники
§ 7.5. Схемы включения формирующих цепей

РАЗДЕЛ ТРЕТИЙ. ЭЛЕКТРОННЫЕ КЛЮЧИ И НЕЛИНЕЙНЫЕ УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ ФОРМЫ СИГНАЛОВ
Глава 8. Электронные ключи
§ 8.1. Общие положения
§ 8.2. Транзисторный ключ (ТК)
§ 8.3. Переходные процессы в транзисторном ключе
§ 8.4. Варианты транзисторных ключевых схем
§ 8.5. Диодный ключ

Глава 9. Нелинейные устройства преобразования сигналов и формирования импульсов
§ 9.1. Амплитудные ограничители
§ 9.2. Формирование импульсов путем ограничения и дифференцирования синусоидального напряжения
§ 9.3. Пик-трансформатор
§ 9.4. Фиксаторы уровня

РАЗДЕЛ ЧЕТВЕРТЫЙ. РЕГЕНЕРАТИВНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 10. Общие свойства регенеративных импульсных устройств
§ 10.1. Принципы построения регенеративных устройств
§ 10.2. Режимы работы регенеративных устройств

Глава 11. Мультивибраторы
§ 11.1. Мультивибраторы с анодно-сеточными связями
§ 11.2. Мультивибратор с коллекторно-базовыми связями
§.11.3. Ждущий мультивибратор с эмиттерной связью
§ 11.4. Типовые схемы ждущих мультивибраторов
§ 11.5. Ждущий мультивибратор с транзисторами разного типа проводимости
§ 11.6. Мультивибратор с мостовыми цепями
§ 11.7. Многофазные мультивибраторы

Глава 12. Блокинг-генераторы
§ 12.1. Общая характеристика блокинг-генератора
§ 12.2. Ламповый блокинг-генератор
§ 12.3. Варианты схем ламповых блокинг-генераторов
§ 12.4. Транзисторный блокинг-генератор

Глава 13. Импульсные делители частоты
§ 13.1 Принцип действия делителя частоты
§ 13.2. Стабильность режима деления частоты
§ 13.3. Ступенчатый делитель частоты

Глава 14. Триггеры
§ 14.1. Общие свойства триггеров и требования к ним
§ 14.2. Симметричный транзисторный триггер
§ 14.3. Схемы запуска триггера
§ 14.4. Обеспечение состояний покоя триггера
§ 14.5. Варианты схем триггеров

Глава 15. Импульсные устройства на полупроводниковых приборах с отрицательным сопротивлением
§ 15.1 Устройства на туннельных диодах (УТД)
§ 15.2. Устройства на лавинных транзисторах (УЛТ)

РАЗДЕЛ ПЯТЫЙ. ГЕНЕРАТОРЫ ЛИНЕЙНО ИЗМЕНЯЮЩЕГОСЯ НАПРЯЖЕНИЯ И ТОКА
Глава 16. Простейшие генераторы линейно изменяющегося напряжения. Методы линеаризации
§ 16.1. Параметры линейно изменяющегося напряжения
§ 16.2. Принцип построения генераторов ЛИН
§ 16.3. Простейшие генераторы ЛИН
§ 16.4. ГЛИН с токостабнлизующим элементом
§ 16.5. ГЛИН с компенсирующей э. д. с, вводимой посредством неинвертирующего усилителя
§ 16.6. ГЛИН с компенсирующей э. д. с, вводимой посредством инвертирующего усилителя

Глава 17. Генераторы ЛИН фантастронного типа
§ 17.1. Общие сведения
§ 17.2. Фантастрон со связью по экранирующей сетке
§ 17.3. Фантастрон с катодной связью
§ 17.4. Транзисторный фантастрон

Глава 18. Генераторы пилообразного тока
§ 18.1. Параметры пилообразного тока
§ 18.2. Принцип формирования пилообразного тока
§ 18.3. Схемы генераторов пилообразного тока

РАЗДЕЛ ШЕСТОЙ. ЭЛЕМЕНТЫ ЛОГИЧЕСКИХ СХЕМ
Глава 19. Общая характеристика логических схем
§ 19.1. Основные логические операции
§ 19.2. Классификация и характеристики логических схем

Глава 20. Основные логические схемы
§ 20.1. Схема логического отрицания (НЕ)
§ 20.2. Диодные схемы логического умножения (И)
§ 20.3. Диодные схемы логического сложения (ИЛИ)
§ 20.4. Логические схемы на туннельных диодах

Глава 21. Сложные и комбинированные логические схемы
§ 21.1. Диодно-транзнсторные логические схемы (ДТЛС)
§ 21.2. Транзисторные логические схемы (ТЛС)
§ 21.3. Логическая схема запрещения (ЗАПРЕТ)
§ 21.4. Логические схемы равнозначности и неравнозначности
§ 21.5. Многоступенчатые диодные логические схемы

РАЗДЕЛ СЕДЬМОЙ. МНОГОКАСКАДНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 22. Устройства кодирования сигналов
§ 22.1. Формирование импульсных кодов с фиксированными интервалами между импульсами
§ 22.2 Формирование импульсных кодов с регулируемыми интервалами между импульсами
§ 22.3. Регистрация двоичного цифрового кода
§ 22.4. Диодные дешифраторы
§ 22.5. Цифровые счетчики импульсов
§ 22.6. Кодирование непрерывно изменяющихся величин

Глава 23. Селекция импульсных сигналов
§ 23.1. Общие сведения
§ 23.2. Амплитудная селекция импульсов
§ 23.3 Селекция импульсов по частоте повторения
§ 23.4 Селекция импульсов по длительности
§ 23.5. Селекция кодированной серии импульсов

Название: Импульсные и цифровые устройства


Дорогие читатели если у Вас не получилось

скачать Импульсные и цифровые устройства

напишите об этом в комментарияхи и мы обязательно вам поможем.
Мы надеемся, что Вам понравилась книга и Вы получили удовольствие от чтения. В качестве благодарности можете оставить ссылку на наш сайт на форуме или блоге:) Электронная книга Импульсные и цифровые устройства предоставлена исключительно для ознакомления перед покупкой бумажной книги и не является конкурентом печатным изданиям.