Программа bpwin практическое использование. Описание интерфейса программы BPWin. Case-средства для моделирования предметной области

  • 16.04.2019
Бизнесмоделирование.
Модель в BPwin

Вопросы

1. Модель в IDEF0:
контекстная диаграмма А-0 (в каждой модели
может быть только одна контекстная
диаграмма);
диаграммы декомпозиции (в том числе
диаграмма первого уровня декомпозиции А0,
раскрывающая контекстную);
диаграммы дерева узлов;
диаграммы только для экспозиции (FEO).
2. Работа в BPwin

BPwin, ERwin – средства функционального и концептуального
моделирования, реализующие методологии IDEF0 и IDEF1X
соответственно. BPwin позволяет создавать сложные модели
бизнес-процессов при минимальных усилиях. BPwin поддерживает
три методологии – IDEF0, IDEF3 и DFD. Каждая из них призвана
решать свои специфические задачи. Также можно строить
смешанные модели.
Модель в BPwin рассматривается как совокупность работ, каждая из
которых оперирует с некоторым набором данных. Работы
изображаются в виде прямоугольников (блоков), данные – в виде
стрелок (дуг). Основу методологии IDEF0 составляет графический
язык описания бизнес-процессов. Модель в IDEF0 представлена
совокупностью иерархически упорядоченных и логически
связанных диаграмм.

Контекстная диаграмма является вершиной древовидной структуры диаграмм и
представляет собой самое общее описание системы и ее взаимодействия с
внешней средой (как правило, здесь описывается основное назначение
моделируемого объекта). После описания системы в целом проводится разбиение
ее на крупные фрагменты. Этот процесс называется функциональной
декомпозицией, а диаграммы, которые описывают каждый фрагмент и
взаимодействие фрагментов, называются диаграммами декомпозиции. После
декомпозиции контекстной диаграммы (получения диаграммы А0) проводится
декомпозиция каждого блока диаграммы А0 на более мелкие фрагменты и так
далее, до достижения нужного уровня подробности описания. После каждого
сеанса декомпозиции проводятся сеансы экспертизы – эксперты предметной
области (обычно это интервьюируемые аналитиками сотрудники предприятий)
указывают на соответствие реальных бизнес-процессов созданным диаграммам.
Найденные несоответствия исправляются и только после прохождения
экспертизы без замечаний можно приступать к следующему сеансу
декомпозиции. Так достигается соответствие модели реальным бизнес-процессам
на любом и каждом уровне модели. Синтаксис описания системы в целом и
каждого ее фрагмента одинаков во всей модели

Работа в BPwin

Термины:
1. Scope - область моделирования;
2. Purpose-цель моделирования;
3. Viewpoint -точка зрения;
4. Status - (черновой вариант, рабочий, окончательный и т. д.),
время создания и последнего редактирования
(отслеживается в дальнейшем автоматически по системной
дате);
5. Source -описываются источники информации для построения
модели (например, "Опрос экспертов предметной области и
анализ документации");
6. Activity –работы;
7. Arrow - стрелки.
General -служит для внесения имени проекта и модели, имени и
инициалов автора и временных рамок модели - AS-IS и ТОВЕ.

Интерфейс

Рис. 1 Меню и панель инструментов

В левой части, навигатор модели - Model Explorer
Основные инструменты
Рис. 2
1. Создать новую модель.
2. Открыть модель.
3. Сохранить модель.
4. Печать модели.
5. Мастер создания отчетов.
6. Выбор масштаба.
7. Масштабирование.
8. Увеличение участка
9. Проверка ошибок
10. Включение и выключение навигатора модели.

На основной панели инструментов (либо в любом желаемом месте экрана)
расположены инструменты редактора BPWin:
Рис.3
1. Pointer Tool – используется для выбора и определения позиции объектов
добавленных в диаграмму.
2. Activity Box Tool – используется для установки блоков в диаграмме.
3. Arrow Tool – используется, чтобы устанавливать дуги в диаграмме.
4. Squiggle Tool – используется для создания тильды (squiggle), которая
соединяет дугу с ее названием.
5. Text Block Tool – используется для создания текстовых блоков.
6. Diagram Dictionary Editor – открывает диалоговое окно Diagram Dictionary
Editor, где можно перейти на какую-либо диаграмму или создать новую
диаграмму.

7. Go to Sibling Diagram – используется для отображения следующей диаграммы
того же уровня.
8. Go to Parent Diagram – переход на родительскую диаграмму.
9. Go to Child Diagram – используется, чтобы отобразить диаграмму потомка
или разложить выделенный блок на диаграмму потомка.
Любая диаграмма состоит из совокупности следующих объектов:
Блоков;
Дуг;
Текстовых блоков.
Для работы с любым из этих объектов можно использовать либо основное меню,
либо контекстно-зависимое меню (меню, появляющееся при нажатии правой
кнопке мыши). Принципы работы с меню являются стандартными для среды
Windows. Объект сначала делается активным, затем над ним осуществляются
необходимые действия.
На основной панели инструментов расположены элементы управления, в
основном знакомые по другим Windows-интерфейсам.
Работы обозначают поименованные процессы, функции или задачи, которые
происходят в течение определенного времени и имеют распознаваемые
результаты. Работы изображаются в виде прямоугольников (блоков). Все работы
должны быть названы и определены. Имя работы должно быть в глагольной или
отглагольной форме (например, «Принять заказ», «Изготовление детали» и т.д.).

10. Описание и создание модели

IDEF0-модель предполагает наличие четко
сформулированной цели, единственного субъекта
моделирования и одной точки зрения.
Создание модели.
Пункт меню File ->New

11.

Взаимодействие работ с внешним миром и между собой описывается в виде стрелок.
Стрелки представляют собой некую информацию и обозначаются существительными
(на-пример, заказы клиентов, правила и процедуры и т.д.)
В IDEF0 различают пять типов стрелок:
1. Вход (Input) - материал или информация, которые используются или преобразуются
работой для получения результата (выхода). Допускается, что работа может не иметь ни
одной стрелки входа. Каждый тип стрелок подходит к определенной стороне
прямоугольника, изображающего работу, или выходит из нее. Стрелка входа рисуется
как входящая в левую грань работы («заказы»). Очень часто сложно определить,
являются ли данные входом или управлением. В этом случае подсказкой может служить
то, перерабатывают-ся/изменяются ли данные в работе или нет. Если изменяются, то
скорее всего это вход, если нет - управление.
2. Управление (Control) - правила, стратегии, процедуры или стандарты, которыми
руководствуется работа. Каждая работа должна иметь хотя бы одну стрелку
управления. Стрелка управления рисуется как входящая в верхнюю грань работы
("правила и процедуры") Управление влияет на работу, но не преобразуется работой. В
случае возникновения неопределенности в статусе стрелки (управление или контроль)
рекомендуется рисовать стрелку управления.
3. Выход (Output) - материал или информация, которые производятся работой. Каждая
работа должна иметь хотя бы одну стрелку выхода. Работа без результата не имеет
смысла и не должна моделироваться. Стрелка выхода рисуется как исходящая из правой
грани работы ("Проданныое изделие").

12.

4. Механизм (Mechanism) - ресурсы, которые выполняют работу, например
персонал предприятия, станки, устройства и т. д. Стрелка механизма рисуется как
входящая в ниж-нюю грань работы. ("Бухгалтерская система"). По усмотрению
аналитика стрелки механизма могут не изображаться в модели.
5. Вызов (Call) - специальная стрелка, указывающая на другую модель работы.
Стрел-ка вызова рисуется как исходящая из нижней грани работы ("Другая
модель работы"). Стрелка вызова используется для указания того, что некоторая
работа выполняется за пределами моделируемой системы. В BPwin стрелки
вызова используются в механизме слияния и разделения моделей. Для внесения
граничной стрелки входа надо:
щелкнуть по кнопке с символом стрелки
палитре инструментов и перенести курсор к левой стороне экрана, пока не
появится начальная темная полоска;
щелкнуть один раз по полоске (откуда выходит стрелка) и еще раз в левой части
работы со стороны входа (где заканчивается стрелка); щелкнуть правой кнопкой
мыши на линии стрелки, во всплывающем меню выбрать Name и добавить имя
стрелки во вкладке Name диалога Arrow Properties.
в

13. Пример модели.

14.

Процесс моделирования системы в IDEF0 начинается с создания контекстной
диаграммы - диаграммы наиболее абстрактного уровня описания системы в
целом, содержащей определение субъекта моделирования, цели и точки зрения на
модель.
Под субъектом понимается сама система, при этом необходимо точно установить,
что входит в систему, а что лежит за ее пределами, другими словами, определить,
что будет в дальнейшем рассматриваться как компоненты системы, а что как
внешнее воздействие. На определение субъекта системы будут существенно
влиять позиция, с которой рассматривается система, и цель моделирования -
вопросы, на которые построенная модель должна дать ответ. Другими словами, в
начале необходимо определить область моделирования. Описание области как
системы в целом, так и ее компонентов является основой построения модели
Цель моделирования
Цель моделирования определяется из ответов на следующие вопросы:
Почему этот процесс должен быть смоделирован?
Что должна показывать модель?
Что может получить клиент?
.

15.

Точка зрения (Viewpoint).
Под точкой зрения понимается перспектива, с которой наблюдалась система при
построении модели Точка зрения должна соответствовать цели и границам
моделирования. Как правило, выбирается точка зрения человека, ответственного
за моделируемую работу в целом.
IDEF0-модель предполагает наличие четко сформулированной цели,
единственного субъекта моделирования и одной точки зрения. Для внесения
области, цели и точки зрения в модели IDEF0 в BPwin следует выбрать пункт
меню Model/Model Properties, вызывающий диалог Model Properties. В закладке
Purpose следует внести цель и точку зрения,

16.

17. Декомпозиция

После создания контекстной диаграммы необходимо расписать работу
отдельных
участков. Для этого декомпозируем эту диаграмму.
Для декомпозиции необходимо в браузере щелкнуть левой кнопкой мыши
на имени
диаграммы, а затем нажать кнопку (Go to Child Diagram), затем в
диалоговом окне

18.

19. Конечная модель

20. Дерево узлов

21.

22. Стоимостный анализ

Для стоимостного анализа, обычно сначала строится
функциональная модель существующей организации работы -
AS-IS (как есть). После построения модели AS-IS проводится
анализ бизнес-процессов, потоки данных и объектов
перенаправляются и улучшаются, в результате строится модель
ТО-ВЕ. Как правило, строится несколько моделей ТО-ВЕ, из
которых по какому-либо критерию выбирается наилучшая.
Проблема состоит в том, что таких критериев много и непросто
определить важнейший. Для того чтобы определить качество
созданной модели с точки зрения эффективности бизнеспроцессов, необходима система метрики, т. е. качество следует
оценивать количественно.
BPwin предоставляет аналитику два инструмента для оценки
модели - стоимостный анализ, основанный на работах (Activity
Based Costing, ABC), и свойства, определяемые пользователем
(User Defined Properties, UDP). Функциональное оценивание –
ABC – это технология выявления и исследования стоимости
выполнения той или иной функции (действия). Исходными
данными для функционального оценивания являются затраты на
ресурсы (материалы, персонал и т.д.).

23.

Для стоимостного анализа, обычно сначала строится функциональная модель
существующей организации работы - AS-IS (как есть). определить важнейший.
Для того чтобы определить качество созданной модели с точки зрения
эффективности бизнес-процессов, необходима система метрики, т. е. качество
следует оценивать количественно.
BPwin предоставляет аналитику два инструмента для оценки модели -
стоимостный анализ, основанный на работах (Activity Based Costing, ABC), и
свойства, определяемые пользователем (User Defined Properties, UDP).
Функциональное оценивание – ABC – это технология выявления и исследования
стоимости выполнения той или иной функции (действия). Исходными данными
для функционального оценивания являются затраты на ресурсы (материалы,
персонал и т.д.).
После построения модели AS-IS проводится анализ бизнес-процессов, потоки
данных и объектов перенаправляются и улучшаются, в результате строится
модель ТО-ВЕ. Как правило, строится несколько моделей ТО-ВЕ, из которых по
какому-либо критерию выбирается наилучшая.

24.

При проведении стоимостного анализа в BPwin сначала задаются единицы
измерения времени и денег. Для задания единиц измерения следует вызвать
диалог Model Properties (меню Model), закладка ABC Units

25. Центры затрат

Объект затрат - причина, по которой работа
выполняется, обычно основной выход работы. Стоимость
работ есть суммарная стоимость объектов затрат ("Сборка
и тестирование компьютеров"
Двигатель затрат - характеристики входов и управлений
работы ("Заказы клиентов", "Правила сборки и тестирования",
"Персонал производственного отдела", которые влияют на то,
как выполняется и как долго длится работа;
Центры затрат, которые можно трактовать как статьи
расхода

26.

27.

Для задания стоимости работы (для каждой работы на диаграмме декомпозиции)
следует щелкнуть правой кнопкой мыши по работе и на всплывающем меню
выбрать Cost

28.

Результаты стоимостного анализа наглядно представляются на специальном
отчете BPwin, настройка которого производится в диалоговом окне Activity Cost
Report (меню Tools/Reports/Activity Cost Report) . Отчет позволяет
документировать имя, номер, определение и стоимость работ, как суммарную, так
и раздельно по центрам затрат
Результаты стоимостного анализа могут существенно повлиять на очередность
выполнения работ. Результаты стоимостного анализа наглядно представляются на
специальном отчете BPwin, настройка которого производится в диалоговом окне Activity
Cost Report (меню Tools/Reports/Activity Cost Report) . Отчет позволяет документировать
имя, номер, определение и стоимость работ, как суммарную, так и раздельно по центрам
затрат.

Министерство науки и образования РФ

ГОУ ВПО Тольяттинский государственный университет

IDEF 0-технологии. Моделирование с помощью

программного продукта BPWin

Тольятти, 2008

За основу составления методических рекомендаций использован учебник Черемных СВ. и др. Моделирование и анализ систем. IDEF-технологии: практикум/ , . - М.: Финансы и статистика, 200с, ил. - (Прикладные информационные технологии).

Материалы подготовлены Отделом менеджмента качества

1 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ IDEF-МОДЕЛИРОВАНИЯ.. 4

1.1 Что такое BPWin?. 4

1.2 Модель BPWin. 4

1.3 Методологии моделирования, поддерживаемые BPWin. 4

1.3.1 Функциональное моделирование (IDEF0) 5

1.3.2 Диаграммы потоков данных (DFD) 5

1.3.3 Описание бизнес-процессов (IDEF3) 6

1.4 Рабочее место BPWin. 7

1.5 Дерево модели. 7

1.6 Область для рисования. 8

1.7 Панель инструментов BPWin. 8

1.8 Помощь. 9

1.9 Построение контекстных диаграмм.. 9

1.11 Оформление моделей. 12

1.12 Ветвление и объединение стрелок. 13

1.13 Опции отображения. 14

1.14 Другие виды диаграмм IDEF0. 14

1.15 Открытие древовидных и FEO-диаграмм.. 15

1.16 Разбиение и объединение моделей. 15

1.17 Печать диаграмм BPWin. 16

2 МЕТОДОЛОГИЯ ФУНКЦИОНАЛЬНОГО МОДЕЛИРОВАНИЯ IDEF0. 18

2.2.1 Синтаксис и семантика моделей IDEF0. 18

2.2.1.1 Модели IDEF0. 18

2.2.1.2 Действия. 18

2.2.1.3 Границы и связи. 19

2.2.1.4 Туннели. 23

2.2.2 Построение моделей IDEF0. 23

2.2.2.1 Диаграммы.. 23

2.2.2.2 Построение моделей. 25

2.2.2.3 Точка зрения. 25

2.2.2.4 Границы моделирования. 25

2.2.2.5 Выбор наименования контекстного блока. 26

2.2.2.6 Определение стрелок на контекстной диаграмме. 26

2.2.2.7 Нумерация блоков и диаграмм.. 27

2.2.2.8 Связь между диаграммой и ее родительским функциональным блоком.. 27

2.2.2.9 Два подхода к началу моделирования ("в ширину" и "в глубину") 28

2.2.2.10 Когда остановиться?. 28

2.2.2.11 Другие диаграммы IDEF0. 28

2.2.2.12 Удаление диаграмм.. 30

3 ПРАКТИЧЕСКИЕ ЗАНЯТИЯ.. 31

3.1 Создание контекстной диаграммы.. 31

3.3 Создание диаграммы узлов. 36

3.4 Создание FEO-диаграммы.. 38

ГЛОССАРИЙ.. 40


1 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ IDEF-МОДЕЛИРОВАНИЯ

1.1 Что такое BPWin?

BPWin - мощный инструмент моделирования для анализа, документирования и понимания комплексных бизнес-процессов.

Моделирование полезно:

· для устранения избыточных или ненужных блоков (функций);

· для сокращения затрат;

· для совершенствования работы компании;

· для повышения качества обслуживания клиентов.

1.2 Модель BPWin

С использованием BPWin строятся диаграммы бизнес-процессов, ясно показывающие бизнес-процессы (блоки), результаты их работы и ресурсы, необходимые для их функционирования. BPWin-модель обеспечивает объединенную картину того, как организация добивается выполнения своих целей, от маленьких отделов до всей компании в целом. На рисунке 1 изображено главное окно программы BPWin.

Также можно использовать BPWin для моделирования потоков работ, потоков процессов и потоков данных.

Рисунок 1.1 - Главное окно BPWin

1.3 Методологии моделирования, поддерживаемые BPWin

BPWin поддерживает три методологии моделирования:

· функциональное моделирование (IDEF0);

· описание бизнеc-процесcов (IDEF3);

· диаграммы потоков данных (DFD).

Поддержкой трех методологий моделирования в одной программе BPWin объединяет три ключевых подхода к моделированию бизнес–процессов, что вполне удовлетворяет потребности как системных аналитиков, так и специалистов технологов.

При создании новой модели достаточно просто выбрать нужную методологию в диалоговом окне появляющемся каждый раз при создании новой модели BPWin (рисунок 2).

Рисунок 1.2 - Выбор нотации моделирования

1.3.1 Функциональное моделирование (IDEF0)

Функциональное моделирование является технологией анализа системы в целом как набора связанных между собой действий или функций. Действия системы анализируются независимо от объекта (ob), который обеспечивает их исполнение. Моделировать деловой процесс можно исходя из различных перспектив и временных рамок. Например, Вы можете смоделировать процесс заказа услуг клиентом так, как Вы видите его в идеале, а не так, как это происходит в настоящее время.

Рисунок 1.3 - Пример диаграммы IDEF0

С функциональной точки зрения Вы можете также абстрагироваться от проблем физической реализации модели.

На рисунке 3 показан пример простой диаграммы IDEF0.

1.3.2 Диаграммы потоков данных (DFD)

Диаграммы потоков данных (DFD) моделируют системы как взаимосвязанный набор действий, которые обрабатывают данные в "хранилище" как внутри, так и вне границ моделируемой системы. Диаграммы потоков данных обычно применяются при моделировании информационных систем .

На рисунке 4 приведен пример диаграммы потоков данных.

Стрелки в DFD показывают, как объекты (данные) фактически взаимодействуют между собой. Это представление, объединяющее хранимые в системе данные и внешние для системы объекты, дает DFD-моделям большую гибкость для отображения физических характеристик системы, таких, как проблемы обмена данными, разработка схем их хранения и обработки.

1.3.3 Описание бизнес-процессов (IDEF3)

Методология IDEF3 - это методология моделирования, предназначенная для обеспечения структурированного подхода к описанию бизнес-процесса как упорядоченной последовательности событий одновременно с описанием любых участвующих в бизнес-процессе объектов и относящихся к ним правил.

Создание диаграмм потоков работ - техника, хорошо подходящая для сбора данных о системе и применяющаяся как часть структурного подхода к анализу и проектированию системы. В отличие от других методов моделирования бизнес-процессов, IDEF3 требует строгого использования синтаксиса и семантики во избежание получения неполного или противоречивого описания системы.

На рисунке 5 приведен пример диаграммы IDEF3.

Рисунок 1.4 - Пример диаграммы DFD

Рисунок 1.5 - Пример диаграммы IDEF3

Диаграммы IDEF3 применяются:

· для улучшения понимания результатов моделирования бизнес-процессов;

· для определения момента окончания моделирования;

· для сбора информации о схеме работы моделируемой компании.

Построение моделей IDEF3 иногда позволяет упростить функциональное моделирование системы по методологии IDEF0 и получило заслуженное признание как довольно удобный способ анализа потенциальных усовершенствований системы. Диаграммы IDEF3 обеспечивают дискретность моделирования процесса , что может использоваться для контроля за ходом выполнения работ .

1.4 Рабочее место BPWin

Рабочее место BPWin выполнено в виде рабочего стола, состоящего из нескольких окон. На рабочем столе размещены:

· стандартная панель инструментов;

· панель инструментов ModelMart;

· дерево модели;

· область для рисования;

· панель инструментов BPWin;

· статусная строка.

Панель Меню BPWin . Панель Меню BPWin соответствует стандартам Windows и обеспечивает доступ ко всем функциям BPWin. Некоторые из них:

Печать . Чтобы открыть окно печати, на панели Меню выберите File, затем Print.

Масштаб . На панели Меню выберите View, затем измените масштаб изображения для активной диаграммы или для всех диаграмм в модели на тот, который Вам нужен.

Стандартная панель инструментов . Стандартная панель инструментов (рисунок 6) обеспечивает быстрый доступ к часто выполняемым задачам.

Рисунок 1.6 - Стандартная панель инструментов BPWin

Как и любая другая панель инструментов BPWin, стандартная панель может быть расположена в любой стороне экрана или находиться в любом месте в области диаграммы. Вы можете также показывать или скрывать ее, используя функцию View на панели Меню.

1.5 Дерево модели

Дерево модели BPWin (рисунок 1.7) - мощный инструмент, который используется для просмотра структуры модели и изменения любых объектов диаграмм в любой открытой модели BPWin. Одновременно работая с несколькими моделями, можно рассматривать все диаграммы или только активные при свернутой и развернутой структуре иерархического дерева. Для любой используемой методологии перечень исследуемых моделей дает полное представление обо всей модели. С использованием дерева можно также выполнять задачи моделирования.

Вы можете показывать и скрывать дерево модели, щелкая кнопкой Model Explorer. Когда дерево модели активно, оно находится в раздвигающемся окне слева, а активная диаграмма - в правом.

Рисунок 1.7 - Дерево модели BPWin

Дерево модели {рисунок 1.7) используется:

· для просмотра разных моделей, построенных с использованием различных методологий моделирования;

· для переключения режимов просмотра диаграмм или действий;

· для немедленного перехода к просмотру или работе с соответствующей диаграммой в рабочем пространстве BPWin посредством щелчка на названии диаграммы или действия;

· для просмотра действий и объектов диаграммы согласно уровням декомпозиции;

· для редактирования имени модели, диаграммы или действия посредством двойного нажатия на соответствующем названии;

· для просмотра соответствующих FEO-диаграмм, Node Tree или родственных диаграмм посредством щелчка на названии объекта

· диаграммы в иерархическом дереве.

1.6 Область для рисования

Область для рисования - это большая площадь справа от главного окна BPWin, в котором расположено дерево модели. Она состоит из трех областей:

· заголовок;

· область для рисования;

· название.

Когда дерево моделей скрыто, рисунок занимает полную область окна. Вы можете создавать диаграммы BPWin, редактировать их, управлять ими в области для рисования. По Вашему желанию диаграмма может быть масштабирована при помощи инструментов настройки масштаба.

1.7 Панель инструментов BPWin

Панель инструментов BPWin содержит инструменты для рисования объектов в диаграмме BPWin. Эти инструменты могут быть размещены в любой стороне экрана или находиться где-то в области диаграммы. Вы можете показывать или скрывать панель инструментов, используя функцию View на панели Меню. В BPWin существуют три разные панели инструментов - по числу поддерживаемых программой методологий (рисунок 1.8).

IDEF0 IDEF3 DFD

Рисунок 1.8 - Три вида инструментальных панелей

Нужная панель инструментов подбирается программой автоматически при выборе одной из предлагаемых при первоначальном создании модели методологий.

1.8 Помощь

При возникновении проблем в процессе работы с BPWin использование Help - самый быстрый способ их решения. Чтобы приступить к работе с BPWin Online Help, выберите раздел Help на панели Меню, затем выберите один из предложенных вариантов и продолжите поиск интересующей Вас темы.

Рисунок 1.9 - Окно контекстно-зависимой помощи

Вы можете также нажать F1 в любом поле ввода, чтобы просмотреть контекстно-зависимую помощь для текущего диалогового окна или варианта меню. Заметьте, что кнопка "Помощь" имеется также в диалоговом окне на рисунке 1.9. Вы найдете кнопки Помощь на большинстве диалоговых окон.

1.9 Построение контекстных диаграмм

Контекстная диаграмма - это модель, которая представляет систему как набор действий, в которые каждое действие преобразует некоторый объект или набор объектов. Модель представляется как набор иерархических действий. Высшее действие иерархии называется действием контекста. Это самый высокий уровень, который непосредственно описывает систему. Уровни ниже называются порожденными декомпозициями и представляют подпроцессы родительского действия.

При создании модели сначала необходимо изобразить самый высокий уровень, действие контекста. Наименование действия описывает систему непосредственно и, как правило, состоит из одного активного глагола в сочетании с обобщающим существительным, которое разъясняет цель деятельности с точки зрения самого общего взгляда на систему.

Каждый блок может иметь различные типы связанных с ним стрелок. Стрелки обозначают людей, места, вещи, понятия или события. Стрелки связывают границы диаграммы с блоками, а также действия (блоки) на диаграмме между собой. В диаграммах IDEF0 имеются четыре основных типа стрелок.

Вход блока представляет материал или информацию, которая должна быть использована или преобразована блоком, чтобы произвести продукцию (выпуск). Стрелки входа всегда направляются в левую сторону блока. Стрелки входа необязательны, так как некоторые действия не могут преобразовать или изменять (заменять) что-либо.

Каждый блок должен иметь, по крайней мере, одну стрелку контроля (управления). Управление всегда входит в вершину блока. Управление представляется в виде правил, инструкций, политики, процедур или стандартов. Оно влияет на деятельность без фактического преобразования чего-либо. Управление может также использоваться для описания процедуры начала или окончания выполнения действия.

Стрелки выхода (выпуска) - это материал или информация, произведенная блоком. Каждый блок должен иметь, по крайней мере, одну стрелку выхода (выпуска). Процессы, которые не производят продукции (выпуска), лучше не моделировать вообще.

Механизмы исполнения - это те ресурсы, которые обеспечивают выполнение действия. В качестве механизма исполнения могут быть рассмотрены персонал компании, машины или оборудование, которые обеспечивают выполнение деятельности. Стрелка механизма может отсутствовать, если определено, что это не важно для работы блока.

Контекстная диаграмма изображает деятельность самого верхнего уровня и обозначает границу моделирования относительно цели, возможностей и точки зрения. Название контекстной диаграммы находится в дереве модели непосредственно под общим описанием.

Для создания контекстной диаграммы необходимо сначала создать новую модель, выбрав пункт "New" в меню "File". В появившемся диалоговом окне необходимо набрать имя модели и выбрать ее тип. Этот диалог также отображается при запуске BPWin.

Рисунок 1.10 - Диалог задания свойств модели

После создания модели можно задать ее параметры. Список свойств модели - это диалог, в котором можно задать такие параметры, как полное наименование модели, ее словесное описание и состояние, в котором находится модель, например "в работе" или "для публикации" (рисунок 1.10).

1.10 Декомпозиция

Декомпозиционное разложение модели используется в моделировании бизнес-процессов, чтобы дать более подробное описание блоков. Каждое из этих действий может в свою очередь быть декомпозировано. При каждой декомпозиции блока создается новая диаграмма. Число декомпозиций не ограничено и полностью зависит от уровня сложности, который необходимо показать в модели: Обратите внимание на кружок на рисунке 1.11. Если действие не было декомпозировано, в верхнем левом углу блока будет появляться символ "листа". После декомпозиции данного блока символ "листа" исчезнет.

Рисунок 1.11 - Обозначение блока, не имеющего декомпозиции

Как декомпозировать блоки с использованием BPWin?

Это может быть сделано двумя способами. В диаграмме нужно выбрать действие, которое необходимо декомпозировать. Для этого выберите необходимый инструмент в наборе инструментов BPWin или в дереве модели, затем щелкните на действии, которое нужно декомпозировать. Выбранное меню содержит команду декомпозиции. В появившемся диалоговом окне необходимо задать тип и число необходимых подблоков. При декомпозиции блока BPWin создает новую диаграмму, которая является диаграммой разложения "родительской" диаграммы. Заметьте, что новые действия не связаны между собой и не поименованы - это Ваша следующая задача. Вы должны задать взаимодействие между блоками и "привязать" к новым блокам стрелки, которые автоматически унаследованы от родительской диаграммы.

Имя блока и его другие свойства вводятся в закладке "Name" списка свойств блока. Для вывода свойств блока на экран достаточно дважды щелкнуть на блоке.

Следующим шагом при создании диаграммы должно быть соединение всех использованных на диаграмме блоков с использованием стрелок, представляющих входы, результаты работы, средства управления и механизмы, Для этого достаточно соединить исходящую точку стрелки с точкой ее окончания. Окончанием стрелки может быть одна из сторон функциональных блоков и граница диаграммы. BPWin автоматически выделяет допустимые окончания для создаваемых стрелок. Для рисования стрелки необходимо выбрать инструмент "стрелка" из комплекта инструментов.

Задание имени стрелки производится в закладке "Name" диалога свойств стрелок. Для вызова этого диалога достаточно дважды щелкнуть на нужной стрелке.

Если стрелка заканчивается на границе диаграммы BPWin, она помечается "туннелем" из квадратных скобок. Аналогично помечаются стрелки в родительской диаграмме, если в диаграмме декомпозиции удаляется перенесенная из нее стрелка. Квадратный туннель на начале стрелки указывает, что стрелка "не решена" в пределах иерархии модели (не имеется никакой другой стрелки с таким же именем в любой другой диаграмме модели). Для поддержания целостности модели необходимо "разрешать" стрелки, помеченные "туннелями" из квадратных скобок, одним из следующих способов:

· преобразованием в "туннель" из круглых скобок;

· добавлением новой стрелки, соединяющей соответствующий блок с границей диаграммы;

В любой момент работы с диаграммой существует возможность добавления на нее новых блоков с использованием инструмента "Activity box Tool" панели инструментов. Для добавления блока необходимо щелкнуть на этом инструменте, а затем - на диаграмме в том месте, где необходимо расположить новый блок. После того как дополнительный блок создан, вы можете связать его стрелками с другими блоками, задать его название и другие свойства.

Нумерация блоков производится автоматически при их создании. Номера могут быть относительными или постоянными, они отражают иерархическое положение блока в пределах модели. Вы можете управлять нумерацией блоков на диаграмме, используя закладку "Presentation" диалога ввода свойств модели.

Перемещение любых объектов на диаграмме осуществляется с помощью их "захвата" мышью и перемещения в новое место. При перемещении блоков одновременно перемещаются и связанные с ними стрелки. Функциональные блоки могут быть также перемещены между диаграммами с использованием команд Cut/Paste из меню "Edit". Номера блокам диаграммы BPWin присваивает автоматически. При изменении взаимного расположения блоков эти номера могут изменяться.

Изменение размеров объектов диаграммы может быть сделано перемещением их границ. Существует возможность запрета изменения размера объектов: это можно сделать на вкладке "Layout" диалога ввода свойств модели.

Если включен просмотр дерева модели, существует возможность просмотра модели как дерева диаграмм или дерева функциональных блоков. Вершина дерева модели имеет кнопку переключателя Diagrams/Activities для отображения соответственно дерева диаграмм или дерева действий. Дерево диаграмм открывается по умолчанию при запуске BPWin. Дерево моделей BPWin использует специальный набор графических символов для представления диаграмм и действий в пределах дерева объектов. Вы можете использовать это дерево, чтобы переключиться на соответствующую модель, диаграмму или действие для выполнения редактирования.

1.11 Оформление моделей

Использование цветовой палитры . В диаграмме BPWin Вы можете устанавливать цветовые свойства для действий, стрелок и текстовых блоков; Использовать цвет в диаграммах не обязательно, но это может быть полезным:

· для выделения недостаточно проработанных моментов;

· для выделения внесенных изменений;

· для отображения похожих по смыслу объектов.

Изменение цвета блоков диаграммы . Изменение цвета объекта осуществляется с использованием цветового редактора (рисунок 1.12). Чтобы изменить цвет объекта, необходимо:

· щелкнуть правой кнопкой мыши на объекте, выбрать в появившемся меню пункт "Color";

· выбрать необходимый цвет объекта из предложенной палитры.

Рисунок 1.12 - Цветовой редактор

Выбор атрибутов шрифта . Атрибуты шрифта (рисунок 1.13), такие как тип, размер и стиль, могут использоваться для выделения или группировки функциональных блоков. Для изменения шрифта необходимо:

· щелкнуть правой кнопкой мыши на объекте, выбрать в появившемся меню пункт "Font";

· выбрать нужный шрифт и, при необходимости, задать его атрибуты.

Сделанные изменения можно применить и ко всем аналогичным объектам на диаграмме, включив соответствующие опции в левом нижнем углу окна диалога: All activities in this diagram (только для данной диаграммы) или All activities in this model (для всей модели).

Рисунок 1.13 - Выбор шрифта

Оформление стрелок . Использование стилей стрелок, применяемых на диаграмме, важно для целостности и удобочитаемости создаваемых диаграмм IDEF0. Вы можете изменять вид стрелок, устанавливая их толщину, форму и цвет. Цвет стрелки устанавливается с использованием редактора цветов, как описано выше. Толщина стрелок также может быть изменена, что может применяться для выделения отдельных процессов на диаграмме. Для изменения толщины стрелки необходимо:

· щелкнуть правой кнопкой на стрелке и выбрать в меню пункт "Style editor";

· выбрать необходимую толщину стрелки в разделе "Thickness".

Обратите внимание на то, что форма стрелки определена в соответствии с используемой методологией. Стрелки типа "Relational" не описаны в методологии IDEF0, но могут использоваться, если строгое следование IDEF0 не обязательно. Диалог выбора вида и оформления стрелки приведен на рисунок 1.14.

Рисунок 1.14 - Выбор вида и оформления стрелки

1.12 Ветвление и объединение стрелок

Ветвление и объединение стрелок необходимо для обеспечения связи одной стрелки с несколькими функциональными блоками и наоборот. Объединенные стрелки используются для создания общего перехода от нескольких функциональных блоков к одному или к границе. Ветви и объединения создаются с использованием инструмента "Стрелка". Для удобства чтения диаграммы желательно именовать каждую ветку разделенной стрелки.

Названия стрелок отображаются автоматически и могут быть перемещены с помощью "захвата" мышью. Для соединения стрелки с ее названием может быть использован инструмент "Squiggle" с панели инструментов IDEF0 или IDEF3.

Для прояснения содержимого диаграмм можно помещать на них текстовые блоки, содержащие произвольные пояснения. Для добавления текстового блока на диаграмму необходимо:

· выбрать инструмент "Text" и нажать на том месте диаграммы, где необходимо разместить пояснения;

· в появившемся текстовом окне необходимо ввести текст пояснения.

К текстовым блокам применимы все описанные выше инструменты оформления.

1.13 Опции отображения

Вы можете отображать или скрывать определенные объекты диаграммы и отдельные элементы оформления. Например, Вы можете переключать тени функциональных блоков на диаграмме. Параметры меню "View" (рисунок 1.15) относятся одновременно ко всем диаграммам Вашей модели.

В этом же меню производится настройка рабочего места BPWin. Например, можно отобразить или скрыть стандартную панель инструментов, панель инструментов "ModelMart", панель инструментов "BPWin", дерево модели и строку состояния. Обратите внимание на пункт меню "Zoom", позволяющий изменять масштаб просматриваемых диаграмм. Этот пункт меню дублирует инструмент "Zoom" стандартной панели инструментов.

Рисунок 1.15 - Опции отображения

1.14 Другие виды диаграмм IDEF0

В дополнение к контекстным диаграммам и диаграммам декомпозиции другие типы диаграмм BPWin позволяют упростить представление и разработку модели. Например, может оказаться необходимым разработать сценарий "что-если" для модели.

В этом подразделе будет рассмотрено создание двух типов моделей:

· диаграммы "только для представления" (For Exposition Only - FEO);

· древовидные диаграммы.

При правильном использовании эти типы диаграмм упрощают документирование моделей.

Создание диаграмм FEO . Диаграмма FEO может быть использована для пояснения какой-либо части процесса, отражения особой точки зрения или выделения функциональных деталей, которые невозможно показать с использованием синтаксиса IDEF0. Они могут снабжаться дополнительным поясняющим текстом и не обязательно должны разрабатываться с учетом ограничений стандарта IDEF0. Диаграммы FEO могут быть ассоциированы с любой существующей в модели диаграммой, но не являются иерархической частью модели. Диаграмма FEO - копия любой существующей в модели диаграммы. Диаграмма идентифицируется с помощью:

· задаваемого разработчиком имени;

· идентификатора вида AxF, где х показывает исходную диаграмму, а символ F показывает, что диаграмма имеет тип FEO.

FEO-диаграммы добавляются в модель с использованием пункта "Add FEO diagram" меню "Diagram ". В диалоговом окне "Add New FEO Diagram" выберите один из следующих типов диаграммы для копирования:

· если Вы выбираете "Context Diagram ", просто напечатайте имя новой диаграммы в поле "Name";

· если Вы выбираете "Decomposition Diagram", активизируется выпадающий список "Copy From", показывающий все диаграммы декомпозиции в модели.

После нажатия кнопки ОК будет создана и отображена на рабочем столе BPWin.

Так же, как и для любой другой диаграммы, Вы можете открыть диалог ввода свойств FEO диаграммы для ввода ее свойств.

Создание древовидных диаграмм (Node Tree Diagrams). Древовидные диаграммы используются для отображения структуры модели в целом. В них, как правило, вершина (самый верхний узел) соответствует диаграмме контекстного уровня. Однако в качестве вершины может быть использован любой функциональный блок модели, при этом его подблоки будут показаны в качестве ветвей дерева.

Просмотр моделей с использованием древовидных диаграмм позволяет акцентировать внимание на функциональной декомпозиции модели безотносительно к существующим внутри и вовне модели потокам. При изменении структуры модели древовидная модель перестраивается автоматически по мере внесения изменений в модель.

Древовидные модели нумеруются по шаблону AxN аналогично диаграммам FEO.

Древовидные диаграммы добавляются в модель с использованием пункта меню " Add Node Tree" меню " Diagram". При этом выводится диалоговое окно "Node Tree Wizard", в котором задаются:

· функциональный блок вершины;

· количество уровней, на которые диаграмма показывается вниз;

· параметры форматирования.

После нажатия кнопки ОК древовидная диаграмма создается и высвечивается на рабочем столе BPWin.

1.15 Открытие древовидных и FEO-диаграмм

Древовидные и FEO-диаграммы объединяются под названием "родственные" диаграммы. Они не отражаются непосредственно в дереве модели, однако дерево модели может быть использовано для их открытия. Для этого нужно, во-первых, переключить дерево модели в режим "Diagram" (кнопка в левом нижнем углу экрана), а затем щелкнуть правой кнопкой мыши по названию диаграммы. При этом BPWin выдаст соответствующий список родственных диаграмм. Для открытия родственных диаграмм также можно использовать инструмент "Go to Sibling Diagram" на панели инструментов BPWin.

1.16 Разбиение и объединение моделей

Разбиение моделей в BPWin используется, как правило, для поддержки коллективной разработки моделей. Единая модель может быть разделена на части, чтобы позволить нескольким разработчикам создавать собственные функциональные блоки модели. По завершении разработки разделенная на части модель может быть объединена в одну для отображения бизнес-процесса в целом. При разбиении моделей на две каждая из них поддерживает собственный набор функциональных блоков, стрелок и других объектов BPWin.

Разбиение модели . Дня разбиения модели на части необходимо придерживаться следующего алгоритма:

· определите часть модели, которую необходимо отделить;

· щелкните правой кнопкой мыши на выбранном функциональном блоке;

· выберите пункт меню "Split model";

· в диалоговом окне "Split options" введите имя, соответствующее имени функционального блока (использование этого имени позволит впоследствии объединить модель);

· включите опцию "Copy entire dictionaries", чтобы скопировать словари объектов в отделяемую часть модели;

· нажмите кнопку ОК.

В дереве модели будет создана и отображена новая модель. Обратите внимание наследующие моменты:

· блок, с которого производилось разбиение, становится диаграммой контекстного уровня в новой модели;

· в исходной связи появляется стрелка связи с именем, соответствующим имени новой модели;

· все дочерние диаграммы функционального блока перенесены в новую модель;

· разбитый функциональный блок остается в исходной модели.

После создания новой модели можно использовать диалог ввода свойств модели для определения свойств созданной модели.

Объединение моделей . По завершении разработки разделенных моделей BPWin позволяет их объединение в одну. Для объединения моделей:

· название стрелки связи должно соответствовать названию импортируемой модели;

· название функционального блока в контекстной диаграмме импортируемой модели должно соответствовать названию аналогичного функционального блока в основной модели.

При слиянии BPWin копирует все функциональные блоки, стрелки и другую информацию (кроме контекстной диаграммы) из импортируемой модели в основную. BPWin пропускает диаграмму контекстного уровня в импортируемой модели, поскольку она уже существует в основной модели. Все декомпозиции в импортируемой модели относятся в основной модели к целевому функциональному блоку. Целевой функциональный блок в основной модели всегда должен иметь исходящую из него стрелку связи.

После открытия основной и импортируемой модели нужно:

· щелкнуть правой кнопкой мыши на функциональном блоке основной модели, к которому нужно импортировать данные;

· выбрать из меню пункт "Merge Model";

· диалог "Continue with merge?" подтверждает, что именно Вы хотите объединить, и позволяет задать опции объединения.

По завершении объединения можно заметить, что дерево модели обновляется для отражения изменений в основной модели.

1.17 Печать диаграмм BPWin

После того как Вы создали модель, Вы захотите продемонстрировать ее другим на бумаге. BPWin поможет Вам в этом с помощью разнообразных функций для печати диаграмм. Некоторые из них:

· выбрать диаграмму (или диаграммы), которую Вы хотите напечатать;

· включить сообщения диаграммы с распечатками диаграммы;

· включить родительскую диаграмму для диаграммы, которую Вы будете печатать;

· определить спецификацию диаграммы для печати: цветовая гамма, внешние границы диаграммы;

· отправить диаграмму в файл для последующей печати;

· определить, как печатать диаграммы: каждая диаграмма на одном листе по выбору, пакетная печать всех диаграмм модели с указанием количества их на листе.

Вы можете печатать диаграммы BPWin из меню Печати Диаграммы BPWin, которое может быть открыто из меню "File" командой "Print" или нажатием изображения принтера в панели инструментов (рисунок 1.16). Этот режим позволяет Вам определять опции печати, упомянутые ранее.

Рисунок 16 - Диалог выбора опций печати

Как Вы уже смогли понять, вид напечатанной модели зависит от выбора опций печати, которые Вы установили. Вы можете поэкспериментировать перед печатью для определения, какие установки работают лучше для вашего случая.

2 МЕТОДОЛОГИЯ ФУНКЦИОНАЛЬНОГО МОДЕЛИРОВАНИЯ IDEF0

Методология функционального моделирования IDEF0 - это технология описания системы в целом как множества взаимозависимых действий, или функций. Важно отметить функциональную направленность IDEF0 - функции системы исследуются независимо от объектов, которые обеспечивают их выполнение. "Функциональная" точка зрения позволяет четко отделить аспекты назначения системы от аспектов ее физической реализации. На рисунке 3 приведен пример типовой диаграммы IDEF0.

Наиболее часто IDEF0 применяется как технология исследования и проектирования систем на логическом уровне. По этой причине он, как правило, используется на ранних этапах разработки проекта, до IDEF3 моделирования для сбора данных и моделирования процесса "как есть". Результаты IDEF0 анализа могут применяться при проведении проектирования с использованием моделей IDEF3 и диаграмм потоков данных.

2.2.1 Синтаксис и семантика моделей IDEF0

2.2.1.1 Модели IDEF0

IDEF0 сочетает в себе небольшую по объему графическую нотацию (она содержит только два обозначения: блоки и стрелки) со строгими и четко определенными рекомендациями, в совокупности предназначенными для построения качественной и понятной модели системы.

Методология IDEF0 в некоторой степени напоминает рекомендации, существующие в книгоиздательском деле, часто набор напечатанных моделей IDEF0 организуется в брошюру (называемую в терминах IDEF0 комплект), имеющую содержание, глоссарий и другие элементы, характерные для законченной книги.

Первый шаг при построении модели IDEF0 заключается в определении назначения модели - набора вопросов, на которые должна отвечать модель. Набор вопросов можно сравнить с предисловием, в котором раскрывается назначение книги.

Границы моделирования предназначены для обозначения ширины охвата предметной области и глубины детализации и являются логическим продолжением уже определенного назначения модели. Как читающий модель, так и непосредственно ее автор должны понимать степень детальности ответов на поставленные в назначении модели вопросы.

Следующим шагом указывается предполагаемая целевая аудитория, для нужд которой создается модель. Зачастую от выбора целевой аудитории зависит уровень детализации, с которым должна создаваться модель. Перед построением модели необходимо иметь представление о том, какие сведения о предмете моделирования уже известны, какие дополнительные материалы и (или) техническая документация для понимания модели могут быть необходимы целевой аудитории, какие язык и стиль изложения являются наиболее подходящими.

Под точкой зрения понимается перспектива, с которой наблюдалась система при построении модели. Точка зрения выбирается таким образом, чтобы учесть уже обозначенные границы моделирования и назначение модели. Однажды выбранная точка зрения остается неизменной для всех элементов модели. При необходимости могут быть созданы другие модели, отображающие систему с других точек зрения. Вот несколько примеров точек зрения при построении моделей: клиент, поставщик, владелец , редактор.

2.2.1.2 Действия

Действие, обычно в IDEF0 называемое функцией, обрабатывает или переводит входные параметры (сырье, информацию и т. п.) в выходные. Поскольку модели IDEF0 представляют систему как множество иерархических (вложенных) функций, в первую очередь должна, быть определена функция, описывающая систему в целом - контекстная функция. Функции изображаются на диаграммах как поименованные прямоугольники, или функциональные блоки. Имена функций в IDEF0 подбираются по сходным правилам с именами действий в IDEF3 - с использованием глаголов или отглагольных существительных. Важно подбирать имена таким образом, чтобы они отражали систему так, как если бы она обозревалась с точки зрения, выбранной для моделирования.

Пример функционального блока приведен на рисунке 2.1.

Рисунок 2.1 – Функциональный блок IDEF0

Выше мы определяли IDEF0 модели как иерархическое множество вложенных блоков. Любой блок может быть декомпозирован на составляющие его блоки. Декомпозицию часто ассоциируют с моделированием "сверху вниз", однако это не совсем верно. Функциональную декомпозицию корректнее определять как моделирование "снаружи вовнутрь", в котором мы рассматриваем систему наподобие луковицы, с которой последовательно снимаются слои.

2.2.1.3 Границы и связи

Чтобы быть полезным, описание любого блока должно, как минимум, включать в себя описание объектов, которые блок создает в результате своей работы ("выхода"), и объектов, которые блок потребляет или преобразует ("вход").

В IDEF0 также моделируются управление и механизмы исполнения. Под управлением понимаются объекты, воздействующие на способ, которым блок преобразует вход в выход. Механизм исполнения - объекты, которые непосредственно выполняют преобразование входа в выход, но не потребляются при этом сами по себе.

Для отображения категорий информации, присутствующих на диаграммах IDEF0, существует аббревиатура ICOM, отображающая четыре возможных типа стрелок:

I (Input) - вход - нечто, что потребляется в ходе выполнения процесса;

С (Control) - управление - ограничения и инструкции, влияющие на ход выполнения процесса;

О (Output) - выход - нечто, являющееся результатом выполнения процесса;

М (Mechanism) - исполняющий механизм - нечто, что используется для выполнения процесса, но не потребляется само по себе. Рисунок 2.2 показывает 4 возможных типа стрелок в IDEF0, каждый из типов соединяется со своей стороной функционального блока.

Рисунок 2.2 - Каждый тип стрелки соединяется со своей

стороной функционального блока

Для названия стрелок, как правило, употребляются имена существительные. Стрелки могут представлять собой людей, места, вещи, идеи или события. Как и в случае с функциональными блоками, присвоение имен всем стрелкам на диаграмме является только необходимым условием для понимания читателем сути изображенного. Отдельное описание каждой стрелки в текстовом виде может оказаться критическим фактором для построения точной и полезной модели.

Стрелки входа . Вход представляет собой сырье, или информацию, потребляемую или преобразуемую функциональным блоком для производства выхода. Стрелки входа всегда направлены в левую сторону прямоугольника, обозначающего в IDEF0 функциональный, блок. Наличие входных стрелок на диаграмме не является обязательным, так как возможно, что некоторые блоки ничего не преобразуют и не изменяют. Примером блока, не имеющего входа, может служить "принятие решения руководством", где для принятия решения анализируется несколько факторов, но ни один из них непосредственно не преобразуется и не потребляется в результате принятия какого-либо решения.

Стрелки управления . Стрелки управления отвечают за регулирование того, как и когда выполняется функциональный блок, и, если он выполняется, какой выход получается в результате его выполнения. Так как управление контролирует поведение функционального блока для обеспечения создания желаемого выхода, каждый функциональный блок должен иметь, как минимум, одну стрелку управления. Стрелки управления всегда входят в функциональный блок сверху.

Управление часто существует в виде правил, инструкций, законов, политики, набора необходимых процедур или стандартов. Влияя на работу блока, оно непосредственно не потребляется и не трансформируется в результате. Может оказаться, что целью функционального блока является как раз изменение того или иного правила, инструкции, стандарта и т. п. В этом случае стрелка, содержащая соответствующую информацию, должна рассматриваться не как управление, а как вход функционального блока.

Управление можно рассматривать как специфический вид входа. В случаях, когда неясно, относить ли стрелку к входу или к управлению, предпочтительно относить ее к управлению до момента, пока неясность не будет разрешена.

Стрелки выхода . Выход - это продукция или информация, получаемая в результате работы функционального блока. Каждый блок должен иметь, как минимум, один выход. Действие, которое не производит никакого четко определяемого выхода, не должно моделироваться вообще (по меньшей мере, должно рассматриваться в качестве одного из первых кандидатов на исключение из модели).

При моделировании непроизводственных предметных областей выходами, как правило, являются данные, в каком-либо виде обрабатываемые функциональным блоком. В этом случае важно, чтобы названия стрелок входа и выхода были достаточно различимы по своему смыслу. Например, блок "Прием пациентов" может иметь стрелку "Данные о пациенте" как на входе, так и на выходе. В такой ситуации входящую стрелку можно назвать "Предварительные данные о пациенте", а исходящую - "Подтвержденные данные о пациенте".

Стрелки механизма исполнения . Механизмы являются ресурсом, который непосредственно исполняет моделируемое действие. С помощью механизмов исполнения могут моделироваться: ключевой персонал, техника и (или) оборудование. Стрелки механизма исполнения могут отсутствовать в случае, если оказывается, что они не являются необходимыми для достижения поставленной цели моделирования.

Комбинированные стрелки . В IDEF0 существует пять основных видов комбинированных стрелок: выход - вход, выход - управление, выход - механизм исполнения, выход - обратная связь на управление и выход - обратная связь на вход.

Стрелка выход - вход применяется, когда один из блоков должен полностью завершить работу перед началом работы другого блока. Так, на рисунок 2.3 формирование счета должно предшествовать приему заказа.

Рисунок 2.3 - Комбинация стрелок выход - вход

Стрелка выход - управление отражает ситуацию преобладания одного блока над другим, когда один блок управляет работой другого. На рисунке 2.4 принципы формирования инвестиционного портфеля управляют поведением брокеров на бирже.

Рисунок 2.4 - Комбинированная стрелка выход - управление

Стрелки выход - механизм исполнения встречаются реже и отражают ситуацию, когда выход одного функционального блока применяется в качестве оборудования для работы другого блока. На рисунке 2.5 зажим, устройство, используемое для закрепления детали во время ее сборки, должно быть собрано для того, чтобы выполнить сборку детали.

Рисунок 2.5 - Комбинированная стрелка выход - механизм исполнения

Обратные связи на вход и на управление применяются в случаях, когда зависимые блоки формируют обратные связи для управляющих ими блоков. На рисунке 2.6 получаемая от брокеров информация о текущих биржевых курсах применяется для корректировки стратегии игры на бирже .

Рисунок 2.6 - Комбинированная стрелка выход - обратная связь на управление

Стрелка выход - обратная связь на вход обычно применяется для описания циклов повторной обработки чего-либо. Рисунок 2.7 может служить примером применения стрелки такого типа. Кроме того, связи выход - обратная связь на вход могут применяться в случае, если бракованная продукция может заново использоваться в качестве сырья, как это происходит, например, при производстве оконного стекла, когда разбитое в процессе производства стекло перемалывается и переплавляется заново вместе с обыкновенным сырьем.

Рисунок 2.7 - Комбинированная стрелка выход - обратная связь на вход

Разбиение и соединение стрелок . Выход функционального блока может использоваться в нескольких других блоках. Фактически чуть ли не главная ценность IDEF0 заключается в том, что эта методология помогает выявить взаимозависимости между блоками системы. Соответственно IDEF0 предусматривает как разбиение, так и соединение стрелок на диаграмме. Разбитые на несколько частей стрелки могут, иметь наименования, отличающиеся от наименования исходной стрелки. Исходная и разбитые (или объединенные) стрелки в совокупности называются связанными. Такая техника обычно применяется для того, чтобы отразить использование в процессе только части сырья или информации, обозначаемых исходной стрелкой (рисунок 2.8). Аналогичный подход применяется и к объединяемым стрелкам.

Рисунок 2.8 - Разбитая на две части и переименованная стрелка

2.2.1.4 Туннели

Понятие связанные стрелки используется для управления уровнем детализации диаграмм. Если одна из стрелок диаграммы отсутствует на родительской диаграмме (например, ввиду своей несущественности для родительского уровня) и не связана с другими стрелками той же диаграммы, точка входа этой стрелки на диаграмму или выхода с нее обозначается туннелем. На рисунке 2.9, например, стрелка "корпоративная информационная система" - важный механизм исполнения для данной диаграммы, но, возможно, она более нигде не используется в модели. Туннель в данном случае используется как альтернатива загромождению родительских диаграмм помещением на них несущественных для их уровня стрелок.

Рисунок 2.9 - Пример применения туннеля

2.2.2 Построение моделей IDEF0

В этом подразделе мы рассмотрим методику построения моделей IDEF0 более подробно.

2.2.2.1 Диаграммы

На рисунке 2.10 типовая диаграмма IDEF0 показана вместе с находящейся на ее полях служебной информацией. Служебная информация состоит из хорошо выделенных верхнего и нижнего колонтитулов (заголовка и "подвала") - Элементы заголовка используются для отслеживания процесса создания модели. Элементы "подвала" отображают наименование модели, к которой относится диаграмма, и показывают ее расположение относительно других диаграмм модели.

Рисунок 2.10 - IDEF0-диаграмма со служебной информацией на полях

Все элементы заголовка диаграммы перечислены в таблице 2.1.

Таблица 2.1 - Элементы заголовка диаграммы IDEF0

Поле

Назначение

Используется для отражения внешних ссылок на данную диаграмму (заполняется на печатном документе вручную)

Author, date, project

При ручном редактировании программ пользователи могут зачеркивать цифру каждый раз, когда они вносят очередное изменение

Статус отражает состояние разработки или утверждения данной диаграммы. Это поле используется для реализации формального процесса публикации я шагами пересмотра и утверждения

Новая диаграмма, глобальные изменения или новый автор для существующей диаграммы

Диаграмма достигла некоторого приемлемого для читателей уровня и готова для предоставления на утверждение

Диаграмма одобрена и утверждена. Какие-либо изменения не предвидятся

Диаграмма готова для окончательной печати и публикации

ФИО читателя

Дата знакомства читателя с диаграммой

Набросок расположения функциональных блоков на родительской диаграмме, на котором подсвечен декомпозируемый данный диаграммой блок. Для диаграммы самого верхнего уровня (контекстной диаграммы) в поле помещается контекст ТОР

Все элементы "подвала" диаграммы перечислены в таблице 2.2.

Таблица 2.2 - Элементы "подвала" диаграммы IDEF0

Поле

Назначение

Номер диаграммы, совпадающий с номером родительского функционального блока

Имя родительского функционального блока

Number (еще называют C-Number)

Уникальный идентификатор данной версии данной диаграммы. Таким образом, каждая новая версия диаграммы будет иметь новое значение в этом поле. Как правило, C-Number состоит из инициалов автора (которые предполагаются уникальными среди всех аналитиков проекта) и последовательного уникального идентификатора, например, SDO005. При публикации эти номера могут быть заменены стандартными номерами страниц. Если диаграмма замещает другую диаграмму, номер заменяемой диаграммы может быть заключен в скобки – SDJ005 (SDO004). Это обеспечивает хранение истории изменений всех диаграмм модели.

2.2.2.2 Построение моделей

Ни одна модель не должна строиться без ясного осознания объекта и целей моделирования. Выбранное определение цели моделирования должно отвечать на следующие вопросы:

· Почему моделируется данный процесс?

· Что выявит данная модель?

· Как ознакомившиеся с этой моделью смогут ее применить?

Следующее предложение может служить примером формулирования цели моделирования. Выявить задачи каждого работника компании и понять в целом взаимосвязь между отдельно взятыми задачами для разработки руководства по обучению новых сотрудников.

Модели строятся для того, чтобы ответить на набор поставленных вопросов. Такие вопросы формулируются на ранних стадиях моделирования и впоследствии служат основой для четкого и краткого определения цели моделирования. Примерами таких вопросов могут быть:

· Каковы задачи менеджера?

· Каковы задачи клерка?

· Кто контролирует работу?

· Какая технология нужна для выполнения каждого шага? и т. п.

2.2.2.3 Точка зрения

С методической точки зрения при моделировании полезно использовать мнение экспертов, имеющих разные взгляды на предметную область, однако каждая отдельно взятая модель должна разрабатываться исходя из единственной заранее определенной точки зрения. Часто другие точки зрения вкратце документируются в прикрепленных диаграммах FEO (см. ниже) исключительно для наглядности изложения.

Точку зрения нужно подбирать достаточно аккуратно, основой для выбора должна служить поставленная цель моделирования. Наименованием точки зрения может быть наименование должности, подразделения или роли (например, руководитель отдела или менеджер по продажам). Как и в случае с определением цели моделирования, четкое определение точки зрения необходимо для обеспечения внутренней целостности модели и предотвращения постоянного изменения ее структуры. Может оказаться необходимым построение моделей с разных точек зрения для детального отражения всех особенностей выделенных в системе функциональных блоков.

2.2.2.4 Границы моделирования

Одним из положительных результатов построения функциональных моделей оказывается прояснение границ моделирования системы в целом и ее основных компонентов. Хотя и предполагается, что в процессе работы над моделью будет происходить некоторое изменение границ моделирования, их вербальное (словесное) описание должно поддерживаться с самого начала для обеспечения координации работы участвующих в проекте аналитиков. Как и при определении цели моделирования, отсутствие границ затрудняет оценку степени завершенности модели, поскольку границы моделирования имеют тенденцию к расширению с ростом размеров модели.

Границы моделирования имеют два компонента: ширину охвата и глубину детализации. Ширина охвата обозначает внешние границы моделируемой системы. Глубина детализации определяет степень подробности, с которой нужно проводить декомпозицию функциональных блоков.

Чтобы облегчить правильное определение границ моделирования при разработке моделей IDEF0, существенные усилия затрачиваются на разработку и рецензирование контекстной диаграммы IDEF0 (диаграммы "самого верхнего" уровня). Иногда даже прибегают к построению дополнительной диаграммы для отображения уровня, более высокого, чем контекстный, для данной модели, что позволяет обозначить систему, внутри которой располагается объект для моделирования. Существенные затраты на разработку контекстной диаграммы вполне оправданы, поскольку она является своего рода "точкой отсчета" для остальных диаграмм модели и вносимые в нее изменения каскадом отражаются на все лежащие ниже уровни.

Когда границы моделирования понятны, становятся ясными и причины, по которым некоторые объекты системы не вошли в модель.

2.2.2.5 Выбор наименования контекстного блока

Рекомендуемой последовательностью действий при построении модели "с нуля" являются: формулирование цели моделирования, выбор точки зрения, определение границ моделирования. Наименование контекстного блока - функционального блока самого высокого уровня - обобщает определение границ моделирования.

Правила подбора имени для контекстного блока в целом не отличаются от общих правил наименования функциональных блоков, поэтому для них обычно подбирают обобщающие названия, типа "Управление отделом по работе с клиентами", "Обработка заказов" и т. п.

2.2.2.6 Определение стрелок на контекстной диаграмме

Стрелки диаграмм IDEF0 обычно проще проектировать в следующем порядке: выход, вход, механизм исполнения, управление. Каждый функциональный блок обозначает отдельную функцию, и эта функция часто имеет ясно и кратко описываемые результаты работы. Наличие неясностей при анализе выходов того или иного функционального блока - возможный сигнал необходимости проведения реинжиниринга рассматриваемого бизнес-процесса.

Определение выходов . После идентификации возможных выходов полезно провести анализ модели на предмет покрытия ею всех возможных сценариев поведения процесса. Это означает, что если существует вероятность возникновения той или иной ситуации в ходе процесса, модель отражает возможность возникновения такой ситуации. Многие начинающие аналитики забывают отразить негативные результаты работы функциональных блоков. Например, блок "Провести экзамен по вождению" определенно произведет поток водителей, только что получивших права, но вполне правомерно ожидать и потока лиц, не сдавших экзамен. Негативные результаты часто используются в качестве обратных связей, анализ на их наличие должен проводиться для каждого блока. Важным также является необходимость включения в модель спорных стрелок, принятие решения о наличии которых в модели вполне можно переложить на плечи рецензирующих модель экспертов.

Определение входов . Входы можно рассматривать как особым образом преобразуемые функциональными блоками для производства выхода сырье или информацию. В производственных отраслях определить, как входное сырье преобразуется в готовую продукцию , обычно довольно просто. Однако при моделировании информационных потоков входной поток данных может представляться не потребляемым и не обрабатываемым вообще. Случаи, когда входящие и исходящие стрелки называются в точности одинаково, крайне редки и в основном указывают на бесполезность данного блока для системы в целом или на некорректный выбор имени для исходящей стрелки. Решением может служить применение более подробного описания для входящих и исходящих потоков данных. Например, вход может иметь название "Предварительный диагноз пациента", а выход - "Уточненный диагноз пациента".

Определение механизмов исполнения . После создания входов и выходов можно приступить к рассмотрению механизмов исполнения, или ресурсов, относящихся к функциональному блоку. В понятие механизма исполнения входят персонал, оборудование, информационные системы и т. п. Например, функциональный блок "Собрать деталь" может потребовать использования какого-либо оборудования, например гаечного ключа. При приеме экзаменов на водительские права механизмом исполнения является инспектор ГИБДД , Как правило, определить механизмы исполнения для функциональных блоков довольно просто.

Определение управления . Должно быть определено управление, контролирующее ход работы функционального блока. Все функциональные блоки в IDEF0 должны иметь хотя бы одно управление. В случаях, когда не ясно, относить ли стрелку к входу или к управлению, следует ее рисовать как управление. Важно помнить, что управление можно рассматривать как особую форму входа функционального блока.

Когда контекстная диаграмма представляется завершенной, попробуйте задать следующие вопросы:

· Обобщает ли диаграмма моделируемый бизнес-процесс?

· Согласуется ли диаграмма с границами моделирования, точкой зрения и целью моделирования?

· Подходит ли выбранный уровень детализации стрелок для контекстного блока? (Обычно на контекстной диаграмме рекомендуется рисовать не более шести стрелок каждого типа.)

2.2.2.7 Нумерация блоков и диаграмм

Все функциональные блоки IDEF0 нумеруются. В номерах допускается использование префиксов произвольной длины, но в подавляющем большинстве моделей используется префикс А. Номер блока проставляется за префиксом. Контекстный блок всегда имеет номер АО.

Префикс повторяется для каждого блока модели. Номера используются для отражения уровня декомпозиции, на котором находится блок. Блок АО декомпозируется в блоки А1, А2, A3 и т. д. А1 декомпозируется в А11, А12, А13 и т. д. А11 декомпозируется в A1l1, A112, А113 и т. д. Для каждого уровня декомпозиции в конец номера добавляется одна цифра.

Номер блока можно изменить. Для этого необходимо щелнуть правой кнопкой мыши по пустому полю, выбрать Model Propetions – Nambering и установить необходимые параметры.

2.2.2.8 Связь между диаграммой и ее родительским функциональным блоком

Функциональный блок декомпозируется, если необходимо детально описать его работу. При декомпозиции блока полезно рассмотреть его жизненный цикл, это поможет определить функциональные блоки получающейся "детской" диаграммы. Например, жизненный цикл блока "Поджарить бифштекс" может выглядеть как следующая последовательность: "Подготовить продукты", "Отбить мясо", "Разогреть масло" и т. д.

При моделировании IDEF0 важно иметь в виду, что граница детской диаграммы есть граница родительского функционального блока. Это означает, что вся работа выполняется блоками самого нижнего уровня. В отличие от иерархии, применяемой в структурном программировании, блоки верхнего уровня не являются субъектами управления для блоков нижнего уровня. Это означает, что в IDEF0 дети - это те же объекты, что и их родители, только показанные с большей детализацией. Действия генерального директора компании на диаграммах IDEF0 могут отражаться рядом с действиями простых рабочих.

На концах граничных стрелок (начинающихся или заканчивающихся за пределами диаграммы) детских диаграмм помещаются коды ICOM, чтобы показать, где находится соответствующая стрелка на родительской диаграмме (рис. 2.12). Они нужны для проверки целостности модели и могут быть полезны, когда порядок расположения стрелок на детской диаграмме отличается от порядка их расположения на родительской диаграмме. Код ICOM состоит из латинской буквы I, С, О или М и числа, показывающего расположение стрелки на родительской диаграмме в порядке сверху вниз или слева направо.

Рисунок 2.12 - ICOM-коды на граничных стрелках

2.2.2.9 Два подхода к началу моделирования ("в ширину" и "в глубину")

Модели могут проектироваться с использованием подхода "в ширину", когда каждая диаграмма максимально детализируется перед своей декомпозицией, и с подходом "в глубину", когда сначала определяется иерархия блоков, а затем создаются соединяющие их стрелки. Естественно, возможно применение комбинации этих подходов, причем иерархия блоков может иногда немного измениться после того, как нарисованы стрелки. Это происходит из-за того, что создание стрелок может изменить понимание внутренней архитектуры моделируемого объекта.

2.2.2.10 Когда остановиться?

Сформулированная цель моделирования содержит вопросы, на которые должна отвечать модель. Когда становится возможным получение ответов на них с помощью модели, модель считается удовлетворяющей поставленным требованиям и рассматривается как завершенная. При построении декомпозиции первого уровня нужно следить за тем, чтобы все блоки на диаграмме лежали внутри определенных ранее границ моделирования. Перед декомпозированием блока нужно удостовериться, не приведет ли это к превышению установленной ранее глубины детализации для данной модели. Еще одно правило состоит в том, что моделирование IDEF0 должно продолжаться до тех пор, пока стрелки предшествования (вход и выход) преобладают на диаграммах.

При необходимости дальнейшей детализации отдельных процессов могут быть использованы диаграммы IDEF3.

2.2.2.11 Другие диаграммы IDEF0

В дополнение к контекстным диаграммам и диаграммам декомпозиции при разработке и представлении моделей могут применяться другие виды IDEF0-диаграмм.

Дерево модели . Это обзорная диаграмма, показывающая структуру всей модели. На рисунке 2.13 и 2.14 приведены фрагменты такой диаграммы. Обычно вершина дерева соответствует контекстному блоку, под вершиной выстраивается вся иерархия блоков модели. Однако не запрещается назначать вершиной произвольный блок, помещая под ним все его детские блоки. Из-за высокой итеративности функционального моделирования можно ожидать, что дерево модели будет неоднократно изменяться существенным образом до тех пор, пока не будет получена его стабильная версия. Обзор модели с использованием дерева помогает сконцентрироваться на функциональной декомпозиции модели.

Рисунок 2.13 - Фрагмент дерева модели

Рисунок 2.14 – Фрагмент дерева модели

Презентационные диаграммы . Презентационные диаграммы (For Exposition Only diagrams - FEO diagrams) часто включают в модели, чтобы проиллюстрировать другие точки зрения или детали, выходящие за рамки традиционного синтаксиса IDEF0 (рисунок 2.15). Диаграммы FEO допускают нарушение любых правил построения диаграмм IDEF0 в целях выделения важных с точки зрения аналитика частей модели. Естественно, если диаграмма FEO включена в модель исключительно для отображения другой точки зрения на систему, она скорее всего будет выглядеть как обыкновенная диаграмма IDEF0, удовлетворяя всем ограничениям IDEF0.

Один из способов использования FEO-диаграмм состоит в отделении функционального блока от его окружения посредством создания диаграммы с единственным блоком и всеми относящимися к нему стрелками наподобие контекстной диаграммы (рис. 2.15). Это может оказаться полезным в ситуациях, когда необходимо быстро получить информацию об интерфейсе (стрелках) функционального блока, а соответствующая диаграмма декомпозиции содержит слишком много, объектов.

Кроме того, встречаются следующие виды презентационных диаграмм;

· копия диаграммы IDEF0, которая содержит все функциональные блоки, и стрелки, относящиеся только к одному из функциональных блоков, - это позволяет отразить взаимодействие между этим блоком и другими объектами диаграммы;

· копия диаграммы IDEF0, которая содержит все функциональные блоки, и стрелки, непосредственно относящиеся только к входу и (или) к выходу родительского блока;

· различные точки зрения, как правило, на глубину одного уровня декомпозиции.

Рисунок 2.15 - Диаграмма FEO для выделения функционального блока и его стрелок

2.2.2.12 Удаление диаграмм

Для того чтобы удалить диаграмму, щелкните на панели инструментов на кнопке «Diagram Dictionary Editor» , в появившемся окне выберите тип (Diagram Type) и название диаграммы, которую необходимо удалить, и нажмите Delete (рисунок 2.16).

Рисунок 2.16 – Удаление диаграмм

3 ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

В качестве примера рассмотрим деятельность вымышленной компании Quill, которая существует 5 лет и занимается в основном сборкой и продажей настольных компьютеров и ноутбуков. Годовой оборот компании составляет примерно 20 млн. долл. Компания закупает компоненты для компьютеров от трех независимых поставщиков, а не производит компоненты самостоятельно. Она только собирает и тестирует компьютеры. Компания реализует продукцию через магазины и специализируется на покупателях, для которых главный критерий при покупке - стоимость компьютера. Предполагаемый объем рынка для компании Quill в последующие 2 года - 50 млн. долл.

Несмотря на некоторое увеличение объема продаж, прибыли уменьшаются, растет конкуренция на рынке. Чтобы не потерять позиции, компания решает проанализировать текущие бизнес-процессы и реорганизовать их с целью увеличения эффективности производства и продаж. Основные процедуры в компании таковы:

· продавцы принимают заказы клиентов;

· операторы группируют заказы по типам компьютеров;

· операторы собирают и тестируют компьютеры;

· операторы упаковывают компьютеры согласно заказам;

· кладовщик отгружает клиентам заказы.

В настоящее время компания Quill использует купленную бухгалтерскую информационную систему, которая позволяет оформить заказ, счет и отследить платежи по счетам.

Улучшение деятельности компании должно касаться структуры управления компанией, эффективности производства и внутреннего контроля. В результате реорганизация может потребовать внедрения новой корпоративной информационной системы (состоящей не только из одного бухгалтерского модуля).

Однако перед тем как пытаться производить какие-то улучшения, необходимо разобраться в существующих бизнес-процессах.

3.1 Создание контекстной диаграммы

Для создания контекстной диаграммы выполните следующие действия.

1. Запустите BPWin. (Кнопка Пуск – Все программы –AllFusion Process Modeler или ярлык на рабочем столе ).

2. Появляется диалоговое окно I would like to. Внесите имя модели {Деятельность компании Quill} и выберите Туре - IDEF0. Нажмите кнопку ОК.

3. В появившемся окне на вкладке General можно добавить разработчика диаграммы (Auhtor) и его инициалы (Auhtor initials). Нажмите кнопку ОК.

4. Автоматически создается контекстная диаграмма.

5. Перед тем как приступить к работе, необходимо настроить язык модели – кириллический. Для этого, выберите Model – Defaul Fonts – выберите из списка любую вкладку и щелкните по ней – в ячейке с названием Script установите «Кириллический», далее в левом нижнем углу экрана установите галочки напротив необходимых опций: All activities in this diagram (только для данной диаграммы); All activities in this model или Change all occurrences (для всей модели).

6. Обратите внимание на кнопку на панели инструментов. Эта кнопка включает и выключает инструмент просмотра и навигации - Model Explorer (появляется слева). Кнопка Activities /Diagrams переключает режим Model Explorer. В режиме Activities щелчок правой кнопкой по объекту в Model Explorer позволяет редактировать его свойства.

7. Если Вам непонятно, как выполнить то или иное действие, Вы можете вызвать помощь - клавиша F1 или меню Help.

8. Перейдите в меню Model / Model Properties. В закладке General диалогового окна Model Properties следует внести имя модели {Деятельность компании Quill}, имя проекта Project {Модель деятельности Quill}, имя автора и тип модели - Time Frame {AS-IS} – «как есть»).

9. В закладке Definition внесите определение {Это учебная модель, описывающая деятельность компании Quill} и Scope {Общее управление бизнесом компании: исследование рынка , закупка компонентов, сборка, тестирование и продажа продуктов}.

10. В закладке Status установите WORKING и нажмите кнопку ОК.

11. Перейдите на контекстную диаграмму и правой кнопкой мыши щелкните по работе. В контекстном меню выберите Name Editor. В закладке Name внесите имя {Деятельность компании Quill}.

12. В закладке Definition внесите определение {Текущие бизнес-процессы компании Quill}.

13. В закладке Status установите WORKING и щелкните по кнопке ОК.

14. Создайте стрелки на контекстной диаграмме (таблица 3.1). Для этого выберите кнопку на панели инструментов.

Таблица 3.1 – Данные для построения стрелок

3.2 Создание диаграммы декомпозиции

1. Для того чтобы декомпозировать процесс (на процессы нижнего уровня), выделите блок, выберите кнопку перехода на нижний уровень в палитре инструментов , в диалоговом окне Activity Box Count выберите вид диаграммы IDEF0, установите необходимое число работ, для данного примера – 3, на диаграмме нижнего уровня и нажмите кнопку ОК (рисунок 3.1)

Рисунок 3.1 – Создание диаграммы декомпозиции

Автоматически будет создана диаграмма декомпозиции. Правой кнопкой мыши щелкните по работе, выберите Name Editor и внесите имя работы. Повторите операцию для всех трех работ. Затем внесите определение и статус для каждой работы согласно таблица 3.2.

Таблица 3.2 - Описание работ дли диаграммы декомпозиции

2. Перейдите в режим рисования стрелок. Свяжите граничные стрелки (кнопка на палитре инструментов) с остальными так, как показано на рисунке 3.2.

Рисунок 3.2 – Диаграмма декомпозиции

3. Правой кнопкой мыши щелкните по ветви стрелки управления работы "Сборка и тестирование компьютеров" и переименуйте ее в "Правила сборки и тестирования" (рисунок 3.3).

Внесите определение (Definision) для новой ветви: "Инструкции по сборке, процедуры тестирования, критерии производительности и т. д."

Рисунок 3.3 – Диаграмма декомпозиции

Правой кнопкой мыши щелкните по ветви стрелки механизма работы "Продажи и маркетинг" и переименуйте ее в "Систему оформления заказов".

4. Создайте новые внутренние стрелки так, как показано на рисунке 3.4.

Рисунок 3.4 – Создание внутренних стрелок

5. Создайте стрелку обратной связи (по управлению) "Результаты сборки и тестирования" (рисунок 3.5), идущую от работы "Сборка и тестирование компьютеров" к работе "Продажи и маркетинг". Для большей наглядности, измените стиль стрелки, для этого щелкните правой кнопкой мыши по стрелке, из контекстного меню выберите Style, в Thickness измените толщину линии. Если необходимо, установите опцию Extra Arrowhead и Squiggle (из контекстного меню).

Рисунок 3.5 – Создание стрелки обратной связи

6. Создайте новую граничную стрелку выхода "Маркетинговые материалы" из работы "Продажи и маркетинг". Эта стрелка автоматически не попадает на диаграмму верхнего уровня и имеет квадратные скобки на наконечнике . Если вы хотите, чтобы данная стрелка отражалась на всех диаграммах (в том числе и 0-го уровня), щелкните правой кнопкой мыши по концу стрелки и из контекстного меню выберите Arrow Tunnel, в появившемся окне (рисунок 3.6) отметьте Resolve it to border arrow и нажмите кнопку ОК.

Рисунок 3.6 – Туннелирование стрелки

Задание. Декомпозируется работа "Сборка и тестирование компьютеров". В результате проведения экспертизы получена следующая информация:

· производственный отдел получает заказы клиентов от отдела продаж по мере их поступления;

· диспетчер координирует работу сборщиков, сортирует заказы, группирует их и дает указание на отгрузку компьютеров, когда они готовы;

· каждые 2 часа диспетчер группирует заказы отдельно для настольных компьютеров и ноутбуков и направляет на участок сборки;

· сотрудники участка сборки собирают компьютеры согласно спецификациям заказа и инструкциям по сборке. Когда группа компьютеров, соответствующая группе заказов, собрана, она направляется на тестирование. Тестировщики тестируют каждый компьютер и в случае необходимости могут заменить неисправные компоненты;

· тестировщики направляют результаты тестирования диспетчеру, который на основании этой информации принимает решение о передаче компьютеров соответствующей группы заказов на отгрузку.

На основе этой информации внесите новые работы и стрелки (таблицы 3.3 и 3.4).

Функциональный блок

Описание

Статус

Просмотр заказов, установка расписания выполнения заказов, просмотр результатов тестирования, формирование групп заказов на сборку и отгрузку

Сборка настольных компьютеров

Сборка настольных компьютеров в соответствии с инструкциями и указанием диспетчера

Сборка ноутбуков

Сборка ноутбуков в соответсвии с инструкциями и указаниями диспетчера

Тестирование компьютеров

Тестирование компьютера и компонент. Замена неработающих компонент.

Таблица 3.4 – Описание стрелок для декомпозиции процесса «Сборка и тестирование компьютеров»

Источник

Назначение

Тип назначения

Диспетчер

Отслеживание расписания и управление сборкой и тестированием

Заказы клиентов

Отслеживание расписания и управление сборкой и тестированием

Заказы на настольные компьютеры

Отслеживание расписания и управление сборкой и тестированием

Сборка настольных компьютеров

Заказы на ноутбуки

Отслеживание расписания и управление сборкой и тестированием

Сборка ноутбуков

Компоненты

Сборка настольных компьютеров

Сборка ноутбуков

Тестирование компьютеров

Настольные компьютеры

Сборка настольных компьютеров

Тестирование компьютеров

Ноутбуки

Сборка ноутбуков

Тестирование компьютеров


Продолжение таблицы 3.4

Персонал производственного отдела

Сборка настольных компьютеров

Сборка ноутбуков

Правила сборки и тестирования

Правила и процедуры

Сборка настольных компьютеров

Сборка ноутбуков

Тестирование компьютеров

Результаты сборки и тестирования

Сборка настольных компьютеров

Сборка ноутбуков

Тестирование компьютеров

Результаты тестирования

Тестирование компьютеров

Отслеживание расписания и управление сборкой и тестированием

Собранные компьютеры

Тестирование компьютеров

Тестировщик

Персонал производственного отдела

Тестирование компьютеров

Указание передать компьютеры на отгрузку

Отслеживание расписания и управление сборкой и тестированием

Тестирование компьютеров

Туннелируйте и свяжите на верхнем уровне граничные стрелки, если это необходимо.

3.3 Создание диаграммы узлов

1. Для создания диаграммы узлов выберите меню Diagram/Add Node Tree. Установите опции диалогового окна Node Tree Wizard, как показано на рисунок 3.8.

Рисунок 3.8 – Построение диаграммы узлов: а) – шаг 1, б) – шаг 2

2. Щелкните по кнопке ОК. Создается диаграмма дерева узлов (рисунок 3.9).

Рисунок 3.9 – Диаграмма узлов «Деятельность компании Quill» (вид 1)

3. Для того чтобы создать диаграмму дерева узлов, подобную рисунку 3.10, выберите меню Diagram/Add Node Tree, в диалоговом окне Node Tree Wizard (рисунок 3.8б) отключите опцию Bullet Last Level и щелкните по кнопке ОК.

Рисунок 3.10 - Диаграмма узлов «Деятельность компании Quill» (вид 2)

3.4 Создание FEO-диаграммы

При обсуждении бизнес-процессов возникла необходимость детально рассмотреть взаимодействие работы "Сборка и тестирование компьютеров" с другими работами. Чтобы не модифицировать диаграмму декомпозиции, создайте FEO-диаграмму, на которой будут только стрелки работы "Сборка и тестирование компьютеров" (рисунок 3.11):

1. Выберите пункт меню Diagram / Add FEO Diagram.

2. В диалоговом окне Add New FEO Diagram выберите тип и внесите имя диаграммы FEO. Щелкните по кнопке ОК.

3. Для определения диаграммы перейдите в Diagram / Diagram Properties и в закладке Diagram Text внесите определение.

4. Удалите лишние стрелки на диаграмме FEO.

5. Для перехода между стандартной диаграммой, деревом узлов и FEO используйте кнопку на палитре инструментов.

Рисунок 3.11 - FEO-диаграмма «Сборка и тестирование компьютеров»

Задание . В результате проведения экспертизы от сотрудников производственного отдела получена дополнительная информация - оказалось, что неисправные компоненты направляются на отгрузку. Для уточнения информации необходима дополнительная экспертиза в отделе отгрузки. Создайте FEO для проведения такой экспертизы.

Постройте FEO на основе диаграммы А0 («Деятельность компании Quill») и добавьте стрелку "Неисправные компоненты". Стрелка должна идти с выхода "Сборка и тестирование компьютеров" на вход "Отгрузка и получение" (рисунок 3.12).

Рисунок 3.12 – FEO-диаграмма «Деятельность компании Quill»

3.5 Декомпозиция процесса "Продажа и маркетинг"

Работа по продажам и маркетингу заключается в ответах на телефонные звонки клиентов, предоставлении клиентам информации о ценах, оформлении заказов, внесении заказов в информационную систему и исследовании рынка.

На основе этой информации декомпозируйте работу "Продажи и маркетинг" (IDEF0).

Создайте следующие работы:

· предоставление информации о ценах;

· оформление заказов;

· исследование рынка.

Результат декомпозиции представлен на рисунок 3.13.

ГЛОССАРИЙ

Границы моделирования (Scope) - ширина охвата и глубина детализации при описании моделируемого набора объектов.

Действие (Activity) - описание набора мероприятий, имеющего целью обработку или передачу данных или ресурсов (например, "Обработать заказ" или "Провести технический контроль"). Модели IDEF0 выделяют неэффективные действия (у которых отсутствует управление или выход) и, таким образом, способствуют работе по проведению реинжиниринга бизнес-процессов. Действие в модели 1DEF3, называемое также единицей работы, описывает обработку, мероприятие, принятие решения или другую процедуру, выполняемую системой или организацией. Действия в диаграммах DFD отображают обработку или передачу данных.

Механизм исполнения (Mechanism arrow) - стрелка, входящая в блок диаграммы IDEF0 снизу и обозначающая персонал, оборудование и другие, не потребляемые в процессе функционирования ресурсы, используемые для выполнения действия, обозначаемого блоком.

Стрелка (Arrow) - стрелка на диаграмме IDEF0 представляет вход, управление, выход или механизм выполнения действия. На диаграммах IDEF3 стрелки обозначают порядок выполнения действий (стрелки, нарисованные сплошной линией), отношения (стрелки, нарисованные прерывистой линией) или поток (двухконечные стрелки, нарисованные сплошной линией). В DFD стрелка обозначает поток данных между действиями, хранилищами данных и внешними ссылками.

Управление (Control arrow) - ограничение для блока диаграммы IDEF0, определяющее как, когда и при каких условиях выполняется действие, обозначенное этим блоком. Это правила, стандарты, законы, должностные инструкции и т. п. Стрелки, обозначающие управление, входят в блоки диаграммы IDEF0 сверху.


1. Создание модели процессов в BPwin

1.1. Инструментальная среда BPwin


BPwin имеет достаточно простой и интуитивно понятный интерфейс пользователя, дающий возможность аналитику создавать сложные модели при минимальных усилиях. Ниже будет описан интерфейс версии 2.5.

Рис. 1.1. Интегрированная среда разработки модели BPwin 2.5


При запуске BPwin по умолчанию появляется основная панель инструментов, палитра инструментов (вид которой зависит от выбранной нотации) и, в левой части, навигатор модели - Model Explorer (рис. 1.1).

Функциональность панели инструментов доступна из основного меню Bpwin (табл. 1.1).


Таблица 1.1. Описание элементов управления основной панели инструментов Bpwin2.5

Элемент управления Описание Соответствующий пункт меню
Создать новую модель File/New
Открыть модель File/Open
Сохранить модель File/Save
Напечатать модель File/Print
Выбор масштаба View/Zoom
Масштабирование View/Zoom
Проверка правописания Tools/Spelling
Включение и выключение навигатора модели Model Explorer View/Model Explorer
Включение и выключение дополнительной панели инструментов работы с ModelMart ModelMart

При создании новой модели возникает диалог, в котором следует указать, будет ли создана модель заново, или она будет открыта из файла либо из репозитория ModelMart, внести имя модели и выбрать методологию, в которой будет построена модель (рис. 1.2).

Как было указано выше, BPwin поддерживает три методологии - IDEF0, IDEF3 и DFD, каждая из которых решает свои специфические задачи. В BPwin возможно построение смешанных моделей, т. е. модель может содержать одновременно как диаграммы IDEF0, так и IDEF3 и DFD. Состав палитры инструментов изменяется автоматически, когда происходит переключение с одной нотации на другую, поэтому палитра инструментов будет рассмотрена позже.

Рис. 1.2. Диалог создания модели


Модель в BPwin рассматривается как совокупность работ, каждая из которых оперирует с некоторым набором данных. Работа изображается в виде прямоугольников, данные - в виде стрелок. Если щелкнуть по любому объекту модели левой кнопкой мыши, появляется всплывающее контекстное меню, каждый пункт которого соответствует редактору какого-либо свойства объекта.

Установка цвета и шрифта объектов. Пункты контекстного меню Font Editor и Color Editor вызывают соответствующие диалоги для установки шрифта (в том числе его размера и стиля) и цвета объекта. Кроме того, BPwin позволяет установить шрифт по умолчанию для объектов определенного типа на диаграммах и в отчетах. Для этого следует выбрать меню Tools/Default Fonts, после чего появляется каскадное меню, каждый пункт которого служит для установки шрифтов для определенного типа объектов:

Context Activity - работа на контекстной диаграмме;

Context Arrow - стрелки на контекстной диаграмме;

Decomposition Activity - работы на диаграмме декомпозиции;

Decomposition Arrow - стрелки на диаграмме декомпозиции;

NodeTree Text - текст на диаграмме дерева узлов;

Frame User Text - текст, вносимый пользователем в каркасе диаграмм;

Frame System Text - системный текст в каркасе диаграмм;

Text Blocks - текстовые блоки;

Parent Diagram Text - текст родительской диаграммы;

Parent Diagram Title Text - текст заголовка родительской диаграммы;

Report Text - текст отчетов.


1.2. Методология IDEF0

1.2.1. Принципы построения модели IDEF0


На начальных этапах создания ИС необходимо понять, как работает организация, которую собираются автоматизировать. Никто в организации не знает, как она работает в той мере подробности, которая необходима для создания ИС. Руководитель хорошо знает работу в целом, но не в состоянии вникнуть в детали работы каждого рядового сотрудника. Рядовой сотрудник хорошо знает, что творится на его рабочем месте, но плохо знает, как работают коллеги. Поэтому для описания работы предприятия необходимо построить модель. Такая модель должна быть адекватна предметной области, следовательно, она должна содержать в себе знания всех участников бизнес-процессов организации.

Наиболее удобным языком моделирования бизнес-процессов является IDEF0, предложенный более 20 лет назад Дугласом Россом (SoftTech, Inc.) и называвшийся первоначально SADT - Structured Analysis and Design Technique. (Подробно методология SADT излагается в книге Дэвида А. Марка и Клемента Мак-Гоуэна "Методология структурного анализа и проектирования SADT"M.:Meтaтexнoлoгия, 1993.) В начале 70-х годов вооруженные силы США применили подмножество SADT, касающееся моделирования процессов, для реализации проектов в рамках программы ICAM (Integrated Computer-Aided Manufacturing). В дальнейшем это подмножество SADT было принято в качестве федерального стандарта США под наименованием IDEF0. Подробные спецификации на стандарты IDEF можно найти на сайте http://www.idef.com .

В IDEF0 система представляется как совокупность взаимодействующих работ или функций. Такая чисто функциональная ориентация является принципиальной - функции системы анализируются независимо от объектов, которыми они оперируют. Это позволяет более четко смоделировать логику и взаимодействие процессов организации.

Под моделью в IDEF0 понимают описание системы (текстовое и графическое), которое должно дать ответ на некоторые заранее определенные вопросы.

Моделируемая система рассматривается как произвольное подмножество Вселенной. Произвольное потому, что, во-первых, мы сами умозрительно определяем, будет ли некий объект компонентом системы, или мы будем его рассматривать как внешнее воздействие, и, во-вторых, оно зависит от точки зрения на систему. Система имеет границу, которая отделяет ее от остальной Вселенной. Взаимодействие системы с окружающим миром описывается как вход (нечто, что перерабатывается системой), выход (результат деятельности системы), управление (стратегии и процедуры, под управлением которых производится работа) и механизм (ресурсы, необходимые для проведения работы). Находясь под управлением, система преобразует входы в выходы, используя механизмы.

Процесс моделирования какой-либо системы в IDEF0 начинается с определения контекста, т. е. наиболее абстрактного уровня описания системы в целом. В контекст входит определение субъекта моделирования, цели и точки зрения на модель.

Под субъектом понимается сама система, при этом необходимо точно установить, что входит в систему, а что лежит за ее пределами, другими словами, мы должны определить, что мы будем в дальнейшем рассматривать как компоненты системы, а что как внешнее воздействие. На определение субъекта системы будет существенно влиять позиция, с которой рассматривается система, и цель моделирования - вопросы, на которые построенная модель должна дать ответ. Другими словами, первоначально необходимо определить область (Scope) моделирования. Описание области как системы в целом, так и ее компонентов является основой построения модели. Хотя предполагается, что в течение моделирования область может корректироваться, она должна быть в основном сформулирована изначально, поскольку именно область определяет направление моделирования и когда должна быть закончена модель. При формулировании области необходимо учитывать два компонента - широту и глубину. Широта подразумевает определение границ модели - мы определяем, что будет рассматриваться внутри системы, а что снаружи. Глубина определяет, на каком уровне детализации модель является завершенной. При определении глубины системы необходимо не забывать об ограничениях времени - трудоемкость построения модели растет в геометрической прогрессии от глубины декомпозиции. После определения границ модели предполагается, что новые объекты не должны вноситься в моделируемую систему; поскольку все объекты модели взаимосвязаны, внесение нового объекта может быть не просто арифметической добавкой, но в состоянии изменить существующие взаимосвязи. Внесение таких изменений в готовую модель является, как правило, очень трудоемким процессом (так называемая проблема "плавающей области").

Цель моделирования (Purpose). Модель не может быть построена без четко сформулированной цели. Цель должна отвечать на следующие вопросы:

Почему этот процесс должен быть замоделирован?

Что должна показывать модель?

Что может получить читатель?

Формулировка цели позволяет команде аналитиков сфокусировать усилия в нужном направлении. Примерами формулирования цели могут быть следующие утверждения: "Идентифицировать и определить текущие проблемы, сделать возможным анализ потенциальных улучшений", "Идентифицировать роли и ответственность служащих для написания должностных инструкций", "Описать функциональность предприятия с целью написания спецификаций информационной системы" и т. д.

Точка зрения (Viewpoint). Хотя при построении модели учитываются мнения различных людей, модель должна строиться с единой точки зрения. Точку зрения можно представить как взгляд человека, который видит систему в нужном для моделирования аспекте. Точка зрения должна соответствовать цели моделирования. Очевидно, что описание работы предприятия с точки зрения финансиста и технолога будет выглядеть совершенно по-разному, поэтому в течение моделирования важно оставаться на выбранной точке зрения. Как правило, выбирается точка зрения человека, ответственного за моделируемую работу в целом. Часто при выборе точки зрения на модель важно задокументировать дополнительные альтернативные точки зрения. Для этой цели обычно используют диаграммы FEO (For Exposition Only), которые будут описаны в дальнейшем.

IDEF0-модель предполагает наличие четко сформулированной цели, единственного субъекта моделирования и одной точки зрения. Для внесения области, цели и точки зрения в модели IDEF0 в BPwin следует выбрать пункт меню Edit/Model Properties, вызывающий диалог Model Properties (рис. 1.3). В закладке Purpose следует внести цель и точку зрения, а в закладку Definition - определение модели и описание области.

Рис. 1.3. Диалог задания свойств модели


В закладке Status того же диалога можно описать статус модели (черновой вариант, рабочий, окончательный и т. д.), время создания и последнего редактирования (отслеживается в дальнейшем автоматически по системной дате). В закладке Source описываются источники информации для построения модели (например, "Опрос экспертов предметной области и анализ документации"). Закладка General служит для внесения имени проекта и модели, имени и инициалов автора и временных рамок модели - AS-IS и ТО-ВЕ.

Модели AS-IS и ТО-ВЕ. Обычно сначала строится модель существующей организации работы - AS-IS (как есть). На основе модели AS-IS достигается консенсус между различными единицами бизнеса по тому, "кто что сделал" и что каждая единица бизнеса добавляет в процесс. Модель AS-IS позволяет выяснить, "что мы делаем сегодня" перед тем, как перепрыгнуть на то, "что мы будем делать завтра". Анализ функциональной модели позволяет понять, где находятся наиболее слабые места, в чем буду г состоять преимущества новых бизнес-процессов и насколько глубоким изменениям подвергнется существующая структура организации бизнеса. Детализация бизнес-процессов позволяет выявить недостатки организации даже там, где функциональность на первый взгляд кажется очевидной. Признаками неэффективной деятельности могут быть бесполезные, неуправляемые и дублирующиеся работы, неэффективный документооборот (нужный документ не оказывается в нужном месте в нужное время), отсутствие обратных связей по управлению (на проведение работы не оказывает влияния ее результат), входу (объекты или информация используются нерационально) и т. д. Найденные в модели AS-IS недостатки можно исправить при создании модели ТО-ВЕ (как будет) - модели новой организации бизнес-процессов. Модель нужна ТО-ВЕ для анализа альтернативных/лучших путей выполнения работы и документирования того, как компания будет делать бизнес в будущем.

Следует указать на распространенную ошибку при создании модели AS-IS - это создание идеализированной модели. Примером может служить создание модели на основе знаний руководителя, а не конкретного исполнителя работ. Руководитель знаком с тем, как предполагается выполнение работы по руководствам и должностным инструкциям и часто не знает, как на самом деле подчиненные выполняют рутинные работы. В результате получается приукрашенная, искаженная модель, которая несет ложную информацию и которую невозможно в дальнейшем использовать для анализа. Такая модель называется SHOULD_BE (как должно бы быть).

Технология проектирования ИС подразумевает сначала создание модели AS-IS, ее анализ и улучшение бизнес-процессов, т. е. создание модели ТО-ВЕ, и только на основе модели ТО-ВЕ строится модель данных, прототип и затем окончательный вариант ИС. Построение системы на основе модели AS-IS приводит к автоматизации предприятия по принципу "все оставить как есть, только чтобы компьютеры стояли", т. е. ИС автоматизирует несовершенные бизнес-процессы и дублирует, а не заменяет существующий документооборот. В результате внедрение и эксплуатация такой системы приводит лишь к дополнительным издержкам на закупку оборудования, создание программного обеспечения и сопровождение того и другого.

Иногда текущая AS-IS и будущая ТО-ВЕ модели различаются очень сильно, так что переход от начального к конечному состоянию становится неочевидным. В этом случае необходима третья модель, описывающая процесс перехода от начального к конечному состояния системы, поскольку такой переход - это тоже бизнес-процесс.

Результат описания модели можно получить в отчете Model Report. Диалог настройки отчета по модели вызывается из пункта меню Report/Model Report. В диалоге настройки следует выбрать необходимые поля, при этом автоматически отображается очередность вывода информации в отчет (рис. 1.4).

Рис. 1.4. Отчет по модели


Диаграммы IDEF0. Основу методологии IDEF0 составляет графический язык описания бизнес-процессов. Модель в нотации IDEF0 представляет собой совокупность иерархически упорядоченных и взаимосвязанных диаграмм. Каждая диаграмма является единицей описания системы и располагается на отдельном листе.

Модель может содержать четыре типа диаграмм:

Контекстную диаграмму (в каждой модели может быть только одна контекстная диаграмма);

Диаграммы декомпозиции;

Диаграммы дерева узлов;

Диаграммы только для экспозиции (FEO).

Контекстная диаграмма является вершиной древовидной структуры диаграмм и представляет собой самое общее описание системы и ее взаимодействия с внешней средой. После описания системы в целом проводится разбиение ее на крупные фрагменты. Этот процесс называется функциональной декомпозицией, а диаграммы, которые описывают каждый фрагмент и взаимодействие фрагментов, называются диаграммами декомпозиции. После декомпозиции контекстной диаграммы проводится декомпозиция каждого большого фрагмента системы на более мелкие и так далее, до достижения нужного уровня подробности описания. После каждого сеанса декомпозиции проводятся сеансы экспертизы - эксперты предметной области указывают на соответствие реальных бизнес-процессов созданным диаграммам. Найденные несоответствия исправляются, и только после прохождения экспертизы без замечаний можно приступать к следующему сеансу декомпозиции. Так достигается соответствие модели реальным бизнес-процессам на любом и каждом уровне модели. Синтаксис описания системы в целом и каждого ее фрагмента одинаков во всей модели.

Диаграмма дерева узлов показывает иерархическую зависимость работ, но не взаимосвязи между работами. Диаграмм деревьев узлов может быть в модели сколь угодно много, поскольку дерево может быть построено на произвольную глубину и не обязательно с корня.

Диаграммы для экспозиции (FEO) строятся для иллюстрации отдельных фрагментов модели, для иллюстрации альтернативной точки зрения, либо для специальных целей.


1.2.2. Работы (Activity)


Работы обозначают поименованные процессы, функции или задачи, которые происходят в течение определенного времени и имеют распознаваемые результаты. Работы изображаются в виде прямоугольников. Все работы должны быть названы и определены. Имя работы должно быть выражено отглагольным существительным, обозначающим действие (например, "Изготовление детали", "Прием заказа" и т.д.). Работа "Изготовление детали" может иметь, например, следующее определение: "Работа относится к полному циклу изготовления изделия от контроля качества сырья до отгрузки готового упакованного изделия". При создании новой модели (меню File/New) автоматически создается контекстная диаграмма с единственной работой, изображающей систему в целом (рис. 1.5).

Рис. 1.6. Редактор задания свойств работы


Для внесения имени работы следует щелкнуть по работе правой кнопкой мыши, выбрать в меню Name Editor и в появившемся диалоге внести имя работы. Для описания других свойств работы служит диалог Activity Properties (рис. 1.6).

Рис. 1.5. Пример контекстной диаграммы


Диаграммы декомпозиции содержат родственные работы, т.е. дочерние работы, имеющие общую родительскую работу. Для создания диаграммы декомпозиции следует щелкнуть по кнопке

Возникает диалог Activity Box Count (рис. 1.7), в котором следует указать нотацию новой диаграммы и количество работ на ней. Остановимся пока на нотации IDEF0 и щелкнем на ОК. Появляется диаграмма декомпозиции (рис. 1.8). Допустимый интервал числа работ 2-8. Декомпозировать работу на одну работу не имеет смысла: диаграммы с количеством работ более восьми получаются перенасыщенными и плохо читаются. Для обеспечения наглядности и лучшего понимания моделируемых процессов рекомендуется использовать от трех до шести блоков на одной диаграмме.

Рис. 1.7. Диалог Activity Box Count


Если оказывается, что количество работ недостаточно, то работу можно добавить в диаграмму, щелкнув сначала по кнопке

на палитре инструментов, а затем по свободному месту на диаграмме.

Работы на диаграммах декомпозиции обычно располагаются по диагонали от левого верхнего угла к правому нижнему.

Такой порядок называется порядком доминирования. Согласно этому принципу расположения в левом верхнем углу располагается самая важная работа или работа, выполняемая по времени первой. Далее вправо вниз располагаются менее важные или выполняемые позже работы. Такое расположение облегчает чтение диаграмм, кроме того, на нем основывается понятие взаимосвязей работ (см. ниже).

Рис. 1.8. Пример диаграммы декомпозиции


Каждая из работ на диаграмме декомпозиции может быть в свою очередь декомпозирована. На диаграмме декомпозиции работы нумеруются автоматически слева направо. Номер работы показывается в правом нижнем углу. В левом верхнем углу изображается небольшая диагональная черта, которая показывает, что данная работа не была декомпозирована. Так, на рис. 1.9 работа "Сборка изделия" имеет номер 3 и не была еще декомпозирована. Работа "Контроль качества" (номер 4) имеет нижний уровень декомпозиции.

Рис. 1.9. Пример декомпозируемых работ


1.2.3. Стрелки (Arrow)


Взаимодействие работ с внешним миром и между собой описывается в виде стрелок. Стрелки представляют собой некую информацию и именуются существительными (например, "Заготовка", "Изделие", "Заказ").

В IDEF0 различают пять типов стрелок:

Вход (Input) - материал или информация, которые используются или преобразуется работой для получения результата (выхода). Допускается, что работа может не иметь ни одной стрелки входа. Каждый тип стрелок подходит к определенной стороне прямоугольника, изображающего работу, или выходит из нее. Стрелка входа рисуется как входящая в левую грань работы. При описании технологических процессов (для этого и был придуман IDEF0) не возникает проблем определения входов. Действительно, "Сырье" на рис. 1.5 - это нечто, что перерабатывается в процессе "Изготовление изделия" для получения результата. При моделировании ИС, когда стрелками являются не физические объекты, а данные, не все так очевидно. Например, при "Приеме пациента" карта пациента может быть и на входе и на выходе, между тем качество этих данных меняется. Другими словами, в нашем примере для того, чтобы оправдать свое назначение, стрелки входа и выхода должны быть точно определены с тем, чтобы указать на то, что данные действительно были переработаны (например, на выходе - "Заполненная карта пациента"). Очень часто сложно определить, являются ли данные входом или управлением. В этом случае подсказкой может служить то, перерабатываются/изменяются ли данные в работе или нет. Если изменяются, то скорее всего это вход, если нет - управление.

Управление (Control) - правила, стратегии, процедуры или стандарты, которыми руководствуется работа. Каждая работа должна иметь хотя бы одну стрелку управления. Стрелка управления рисуется как входящая в верхнюю грань работы. На рис. 1.5 стрелки "Задание"и "Чертеж" - управление для работы "Изготовление изделия". Управление влияет на работу, но не преобразуется работой. Если цель работы - изменить процедуру или стратегию, то такая процедура или стратегия будет для работы входом. В случае возникновения неопределенности в статусе стрелки (управление или вход) рекомендуется рисовать стрелку управления.

Выход (Output) - материал или информация, которые производятся работой. Каждая работа должна иметь хотя бы одну стрелку выхода. Работа без результата не имеет смысла и не должна моделироваться. Стрелка выхода рисуется как исходящая из правой грани работы. На рис. 1.5 стрелка "Готовое изделие" является выходом для работы "Изготовление изделия".

Механизм (Mechanism) - ресурсы, которые выполняют работу, например персонал предприятия, станки, устройства и т. д. Стрелка механизма рисуется как входящая в нижнюю грань работы. На рис. 1.5 стрелка "Персонал предприятия" является механизмом для работы "Изготовление изделия". По усмотрению аналитика стрелки механизма могут не изображаться в модели.

Вызов (Call) - специальная стрелка, указывающая на другую модель работы. Стрелка вызова рисуется как исходящая из нижней грани работы. На рис. 1.5 стрелка "Другая модель работы" является вызовом для работы "Изготовление изделия". Стрелка вызова используется для указания того, что некоторая работа выполняется за пределами моделируемой системы. В BPwin стрелки вызова используются в механизме слияния и разделения моделей.

Граничные стрелки. Стрелки на контекстной диаграмме служат для описания взаимодействия системы с окружающим миром. Они могут начинаться у границы диаграммы и заканчиваться у работы, или наоборот. Такие стрелки называются граничными.

Для внесения граничной стрелки входа следует:

Щелкнуть по кнопке с символом стрелки

в палитре инструментов перенести курсор к левой стороне экрана, пока не появится начальная штриховая полоска;

Щелкнуть один раз по полоске (откуда выходит стрелка) и еще раз в левой части работы со стороны входа (где заканчивается стрелка);

Вернуться в палитру инструментов и выбрать опцию редактирования стрелки

Щелкнуть правой кнопкой мыши на линии стрелки, во всплывающем меню выбрать Name Editor и добавить имя стрелки в закладке Name диалога IDEF0 Arrow Properties.

Стрелки управления, выхода, механизма и выхода изображаются аналогично. Для рисования стрелки выхода, например, следует щелкнуть по кнопке с символом стрелки в палитре инструментов, щелкнуть в правой части работы со стороны выхода (где начинается стрелка), перенести курсор к правой стороне экрана, пока не появится начальная штриховая полоска, и щелкнуть один раз по штриховой полоске.

Имена вновь внесенных стрелок автоматически заносятся в словарь (Arrow Dictionary).

Рис. 1.10. Диалог IDEF0 Arrow Properties


ICOM-коды. Диаграмма декомпозиции предназначена для детализации работы. В отличие от моделей, отображающих структуру организации, работа на диаграмме верхнего уровня в IDEF0 - это не элемент управления нижестоящими работами. Работы нижнего уровня - это то же самое, что работы верхнего уровня, но в более детальном изложении. Как следствие этого границы работы верхнего уровня - это то же самое, что границы диаграммы декомпозиции. ICOM (аббревиатура от Input, Control, Output и Mechanism) - коды, предназначенные для идентификации граничных стрелок. Код ICOM содержит префикс, соответствующий типу стрелки (I, С, О или М), и порядковый номер (рис. 1.11).

Рис. 1.11. Фрагмент диаграммы декомпозиции с ICOM -кодами (I1, С1 и С2)

BPwin вносит ICOM-коды автоматически. Для отображения ICOM-кодов следует включить опцию Show ICOM codes на закладке Presentation диалога Model Properties (меню Edit/Model Properties).

Рис. 1.12. Словарь стрелок


Словарь стрелок редактируется при помощи специального редактора Arrow Dictionary Editor, в котором определяется стрелка и вносится относящийся к ней комментарий (рис. 1.12). Словарь стрелок решает очень важную задачу. Диаграммы создаются аналитиком для того, чтобы провести сеанс экспертизы, т. е. обсудить диаграмму со специалистом предметной области. В любой предметной области формируется профессиональный жаргон, причем очень часто жаргонные выражения имеют нечеткий смысл и воспринимаются разными специалистами по-разному. В то же время аналитик - автор диаграмм должен употреблять те выражения, которые наиболее понятны экспертам. Поскольку формальные определения часто сложны для восприятия, аналитик вынужден употреблять профессиональный жаргон, а, чтобы не возникло неоднозначных трактовок, в словаре стрелок каждому понятию можно дать расширенное и, если это необходимо, формальное определение.

Содержимое словаря стрелок можно распечатать в виде отчета (меню Report/Arrow Report...) и получить тем самым толковый словарь терминов предметной области, использующихся в модели.

Несвязанные граничные стрелки (unconnected border arrow). При декомпозиции работы входящие в нее и исходящие из нее стрелки (кроме стрелки вызова) автоматически появляются на диаграмме декомпозиции (миграция стрелок), но при этом не касаются работ. Такие стрелки называются несвязанными и воспринимаются в BPwin как синтаксическая ошибка.

Рис. 1.13. Пример несвязанных стрелок


На рис. 1.13 приведен фрагмент диаграммы декомпозиции с несвязанными стрелками, генерирующийся BPwin при декомпозиции работы "Изготовление изделия" (см. рис. 1.5). Для связывания стрелок входа, управления или механизма необходимо перейти в режим редактирования стрелок, щелкнуть по наконечнику стрелки и щелкнуть по соответствующему сегменту работы. Для связывания стрелки выхода необходимо перейти в режим редактирования стрелок, щелкнуть по сегменту выхода работы и затем по стрелке.

Внутренние стрелки. Для связи работ между собой используются внутренние стрелки, т. ё. стрелки, которые не касаются границы диаграммы, начинаются у одной и кончаются у другой работы.

Для рисования внутренней стрелки необходимо в режиме рисования стрелок щелкнуть по сегменту (например, выхода) одной работы и затем по сегменту (например, входа) другой. В IDEF0 различают пять типов связей работ.

Связь по входу (output-input), когда стрелка выхода вышестоящей работы (далее - просто выход) направляется на вход нижестоящей (например, на рис. 1.14 стрелка "Детали" связывает работы "Изготовление деталей" и "Сборка изделия").

Рис. 1.14. Связь по входу


Связь по управлению (output-control), когда выход вышестоящей работы направляется на управление нижестоящей. Связь по управлению показывает доминирование вышестоящей работы. Данные или объекты выхода вышестоящей работы не меняются в нижестоящей. На рис. 1.15 стрелка "Чертеж" связывает работы "Создание чертежа детали" и "Изготовление детали"), при этом чертеж не претерпевает изменений в процессе изготовления деталей.

Рис. 1.15. Связь по управлению


Обратная связь по входу (output-input feedback), когда выход нижестоящей работы направляется на вход вышестоящей. Такая связь, как правило, используется для описания циклов. На рис. 1.16 стрелка "Дрек" связывает работы "Переработка сырья" и "Контроль качества", при этом выявленный на контроле брак направляется на вторичную переработку.

Рис. 1.16. Обратная связь по входу


Обратная связь по управлению (output-control feedback), когда выход нижестоящей работы направляется на управление вышестоящей (стрелка "Рекомендации", рис. 1.17). Обратная связь по управлению часто свидетельствует об эффективности бизнес - процесса. На рис. 1.17 качество изделия может быть повышено путем непосредственного регулирования процессами изготовления деталей и сборки изделия в зависимости от результата (выхода) работы "Контроль качества"

Рис. 1.17. Обратная связь по управлению

Связь выход-механизм (output-mechanism), когда выход одной работы направляется на механизм другой. Эта взаимосвязь используется реже остальных и показывает, что одна работа подготавливает ресурсы, необходимые для проведения другой работы (рис. 1.18).

Явные стрелки. Явная стрелка имеет источником одну-единственную работу и назначением тоже одну-единственную работу.

Рис. 1.18. Связь выход-механизм


Разветвляющиеся и сливающиеся стрелки. Одни и те же данные или объекты, порожденные одной работой, могут использоваться сразу в нескольких других работах. С другой стороны, стрелки, порожденные в разных работах, могут представлять собой одинаковые или однородные данные или объекты, которые в дальнейшем используются или перерабатываются в одном месте. Для моделирования таких ситуаций в IDEF0 используются разветвляющиеся и сливающиеся стрелки. Для разветвления стрелки нужно в режиме редактирования стрелки щелкнуть по фрагменту стрелки и по соответствующему сегменту работы. Для слияния двух стрелок выхода нужно в режиме редактирования стрелки сначала щелкнуть по сегменту выхода работы, а затем по соответствующему фрагменту стрелки.

Смысл разветвляющихся и сливающихся стрелок передается именованием каждой ветви стрелок. Существуют определенные правила именования таких стрелок. Рассмотрим их на примере разветвляющихся стрелок. Если стрелка именована до разветвления, а после разветвления ни одна из ветвей не именована, то подразумевается, что каждая ветвь моделирует те же данные или объекты, что и ветвь до разветвления (рис. 1.19).

Рис. 1.19. Пример именования разветвляющейся стрелки


Если стрелка именована до разветвления, а после разветвления какая-либо из ветвей не именована, то подразумевается, что эти ветви соответствуют именованию. Если при этом какая-либо ветвь после разветвления осталась неименованной, то подразумевается, что она моделирует те же данные или объекты, что и ветвь до разветвления (рис. 1.20).

Рис. 1.20. Другой пример именования разветвляющейся стрелки

Недопустима ситуация, когда стрелка до разветвления не именована, а после разветвления не именована какая-либо из ветвей. BPwin определяет такую стрелку как синтаксическую ошибку (рис. 1.21).

Рис. 1.21. Пример неверного именования разветвляющейся стрелки


Правила именования сливающихся стрелок полностью аналогичны - ошибкой будет считаться стрелка, которая после слияния не именована, а до слияния не именована какая-либо из ее ветвей. Для именования отдельной ветви разветвляющихся и сливающихся стрелок следует выделить на диаграмме только одну ветвь, после этого вызвать редактор имени и присвоить имя стрелке. Это имя будет соответствовать только выделенной ветви.

Тоннелирование стрелок. Вновь внесенные граничные стрелки на диаграмме декомпозиции нижнего уровня изображаются в квадратных скобках и автоматически не появляются на диаграмме верхнего уровня (рис. 1.22).

Рис. 1.22. Неразрешенная (unresolved) стрелка


Для их "перетаскивания" наверх нужно сначала выбрать кнопку

на палитре инструментов и щелкнуть по квадратным скобкам граничной стрелки. Появляется диалог Border Arrow Editor (рис. 1.23).

Рис. 1.23. Диалог Border Arrow Editor


Если щелкнуть по кнопке Resolve Border Arrow, стрелка мигрирует на диаграмму верхнего уровня, если по кнопке Change To Tunnel - стрелка будет затоннелирована и не попадет на другую диаграмму. Тоннельная стрелка изображается с круглыми скобками на конце (рис. 1.24).

Тоннелирование может быть применено для изображения малозначимых стрелок. Если на какой-либо диаграмме нижнего уровня необходимо изобразить малозначимые данные или объекты, которые не обрабатываются или не используются работами на текущем уровне, то их необходимо направить на вышестоящий уровень (на родительскую диаграмму). Если эти данные не используются на родительской диаграмме, их нужно направить еще выше, и т. д. В результате малозначимая стрелка будет изображена на всех уровнях и затруднит чтение всех диаграмм, на которых она присутствует. Выходом является тоннелирование стрелки на самом нижнем уровне. Такое тоннелирование называется "не-в-родительской-диаграмме".

Другим примером тоннелирования может быть ситуация, когда стрелка механизма мигрирует с верхнего уровня на нижний, причем на нижнем уровне этот механизм используется одинаково во всех работах без исключения. (Предполагается, что не нужно детализировать стрелку механизма, т. е. стрелка механизма на дочерней работе именована до разветвления, а после разветвления ветви не имеют собственного имени). В этом случае стрелка механизма на нижнем уровне может быть удалена, после чего на родительской диаграмме она может быть затоннелирована, а в комментарии к стрелке или в словаре можно указать, что механизм будет использоваться во всех работах дочерней диаграммы декомпозиции. Такое тоннелирование называется "не-в-дочерней-работе" (рис. 1.24).

Рис. 1.24. Типы тоннелирования стрелок


1.2.4. Нумерация работ и диаграмм


Все работы модели нумеруются. Номер состоит из префикса и числа. Может быть использован префикс любой длины, но обычно используют префикс А. Контекстная (корневая) работа дерева имеет номер АО. Работы i декомпозиции АО имеют номера А1, А2, A3 и т. д. Работы декомпозиции нижнего уровня имеют номер родительской работы и очередной порядковый номер, например работы декомпозиции A3 будут иметь номера А31, А32, АЗЗ, А34 и т. д. Работы образуют иерархию, где каждая работа может иметь одну родительскую и несколько дочерних работ, образуя дерево. Такое дерево называют деревом узлов, а вышеописанную нумерацию - нумерацией по узлам. Имеются незначительные варианты нумерации, которые i можно настроить в закладке Presentation диалога Model Properties (меню Edit/Model Properties).

Диаграммы IDEF0 имеют двойную нумерацию. Во-первых, диаграммы имеют номера по узлу. Контекстная диаграмма всегда имеет номер А-0, декомпозиция контекстной диаграммы - номер А0, остальные диаграммы декомпозиции - номера по соответствующему узлу (например, Al, A2, А21, А213 и т. д.). BPwin автоматически поддерживает нумерацию по узлам, т. е. при проведении декомпозиции создается новая диаграмма и ей автоматически присваивается соответствующий номер. В результате проведения экспертизы диаграммы могут уточняться и изменяться, следовательно, могут быть созданы различные версии одной и той же (с точки зрения ее расположения в дереве узлов) диаграммы декомпозиции. BPwin позволяет иметь в модели только одну диаграмму декомпозиции в данном узле. Прежние версии диаграммы можно хранить в виде бумажной копии либо как FEO-диаграмму. (К сожалению, при создании FEO-диаграмм отсутствует возможность отката, т. е. можно получить из диаграммы декомпозиции FEO, но не наоборот.) В любом случае следует отличать различные версии одной и той же диаграммы. Для этого существует специальный номер - C-number, который должен присваиваться автором модели вручную. C-number - это произвольная строка, но рекомендуется придерживаться стандарта, когда номер состоит из буквенного префикса и порядкового номера, причем в качестве префикса используются инициалы автора диаграммы, а порядковый номер отслеживается автором вручную, например МСВ00021.


1.2.5. Диаграммы дерева узлов и FEO


Диаграмма дерева узлов показывает иерархию работ в модели и позволяет рассмотреть всю модель целиком, но не показывает взаимосвязи между работами (стрелки) (рис. 1.25). Процесс создания модели работ является итерационным, следовательно, работы могут менять свое расположение в дереве узлов многократно. Чтобы не запутаться и проверить способ декомпозиции, следует после каждого изменения создавать диаграмму дерева узлов. Впрочем, BPwin имеет мощный инструмент навигации по модели -Model Explorer, который позволяет представить иерархию работ и диаграмм в удобном и компактном виде, однако этот инструмент не является составляющей стандарта IDEF0.

Рис. 1.25. Диаграмма дерева узлов


Для создания диаграммы дерева узлов следует выбрать в меню пункт Insert/Node Tree. Возникает диалог формирования диаграммы дерева узлов Node Tree Definition (рис. 1.26).

Рис. 1.26. Диалог настройки диаграммы дерева узлов


В диалоге Node Tree Definition следует указать глубину дерева - Number of Levels (по умолчанию 3) и корень дерева (по умолчанию - родительская работа текущей диаграммы). По умолчанию нижний уровень декомпозиции показывается в виде списка, остальные работы - в виде прямоугольников. Для отображения всего дерева в виде прямоугольников следует выключить опцию Bullet Last Level. При создании дерева узлов следует указать имя диаграммы, поскольку, если в нескольких диаграммах в качестве корня на дереве узлов использовать одну и ту же работу, все эти диаграммы получат одинаковый номер (номер узла + постфикс N, например AON) и в списке открытых диаграмм (пункт меню Window) их можно будет различить только по имени.

Диаграммы "только для экспозиции" (FEO) часто используются в модели для иллюстрации других точек зрения, для отображения отдельных деталей, которые не поддерживаются явно синтаксисом IDEF0. Диаграммы FEO позволяют нарушить любое синтаксическое правило, поскольку по сути являются просто картинками - копиями стандартных диаграмм и не включаются в анализ синтаксиса. Например, работа на диаграмме FEO может не иметь стрелок управления и выхода. С целью обсуждения определенных аспектов модели с экспертом предметной области может быть создана диаграмма только с одной работой и одной стрелкой, поскольку стандартная диаграмма декомпозиции содержит множество деталей, не относящихся к теме обсуждения и дезориентирующих эксперта. Но если FEO используется для иллюстрации альтернативных точек зрения (альтернативный контекст), рекомендуется все-таки придерживаться синтаксиса IDEF0. Для создания диаграммы FEO следует выбрать пункт меню Insert/FEO Diagram. В возникающем диалоге Create New FEO Diagram следует указать имя диаграммы FEO и тип родительской диаграммы (рис. 1.27).

Рис. 1.27. Диалог создания FEO-диаграммы


Новая диаграмма получает номер, который генерируется автоматически (номер родительской диаграммы по узлу + постфикс F, например A1F).


1.2.6. Каркас диаграммы


На рис. 1.28 показан типичный пример диаграммы декомпозиции с граничными рамками, которые называются каркасом диаграммы.

Рис. 1.28. Пример диаграммы декомпозиции с каркасом


Каркас содержит заголовок (верхняя часть рамки) и подвал (нижняя часть). Заголовок каркаса используется для отслеживания диаграммы в процессе моделирования. Нижняя часть используется для идентификации и позиционирования в иерархии диаграммы.

Смысл элементов каркаса приведен в табл. 1.2 и 1.3.


Таблица 1.2. Поля заголовка каркаса (слева направо)

Поле Смысл
Used At Используется для указания на родительскую работу в случае, если на текущую диаграмму ссылались посредством стрелки вызова
Autor, Date, Rev, Prpject Имя создателя диаграммы, дата создания и имя проекта, в рамках которого была создана диаграмма. REV-дата последнего редактирования диаграммы
Notes 123456789 10 Используется при проведении сеанса экспертизы. Эксперт должен (на бумажной копии диаграммы) указать число замечаний, вычеркивая цифру из списка каждый раз при внесении нового замечания
Status Статус отображает стадию создания диаграммы, отображая все этапы публикации
Working Новая диаграмма, кардинально обновленная диаграмма или новый автор диаграммы
Draft Диаграмма прошла первичную экспертизу и готова к дальнейшему обсуждению
Recommended Диаграмма и все ее сопровождающие документы прошли экспертизу. Новых изменений не ожидается
Publication Диаграмма готова к окончательной печати и публикации
Reader Имя читателя (эксперта)
Date Дата прочтения (экспертизы)
Context Схема расположения работ в диаграмме верхнего уровня. Работа, являющаяся родительской, показана темным прямоугольником, остальные – светлым. На контекстной диаграмме (А-0) показана надпись ТОР. В левом нижнем углу показывается номер по узлу родительской диаграммы:

Таблица 1.3. Поля подвала каркаса (слева направо)


Значения полей каркаса задаются в диалоге Diagram Properties (меню Edit/Diagram Properties) - рис. 1.29.

Рис. 1.29. Диалог Diagram Properties


1.2.7. Слияние и расщепление моделей


Возможность слияния и расщепления моделей обеспечивает коллективную работу над проектом. Так, руководитель проекта может создать декомпозицию верхнего уровня и дать задание аналитикам продолжить декомпозицию каждой ветви дерева в виде.отдельных моделей. После окончания работы над отдельными ветвями все подмодели могут быть слиты в единую модель. С другой стороны, отдельная ветвь модели может быть отщеплена для использования в качестве независимой модели, для доработки или архивирования.

BPwin использует для слияния и разветвления моделей стрелки вызова. Для слияния необходимо выполнить следующие условия:

Обе сливаемые модели должны быть открыты в Bpwin.

Имя модели-источника, которое присоединяют к модели-цели, должно совпадать с именем стрелки вызова работы в модели-цели (рис. 1.30).

Стрелка вызова должна исходить из недекомпозируемой работы (работа должна иметь диагональную черту в левом верхнем углу) (рис. 1.31).

Имена контекстной работы подсоединяемой модели-источника и работы на модели-цели, к которой мы подсоединяем модель-источник, должны совпадать (рис. 1.30).

Модель-источник должна иметь по крайней мере одну диаграмму декомпозиции.

Рис. 1.30. Условия слияния моделей


Для слияния моделей нужно щелкнуть правой кнопкой мыши по работе со стрелкой вызова в модели-цели и во всплывающем меню выбрать пункт Merge Model.

Рис. 1.31. Стрелка вызова работы "Сборка изделия" модели-цели


Появляется диалог, в котором следует указать опции слияния модели (рис. 1.32). При слиянии моделей объединяются и словари стрелок и работ. В случае одинаковых определений возможна перезапись определений или принятие определений из модели-источника. То же относится к именам стрелок, хранилищам данных и внешним ссылкам. (Хранилища данных и внешние ссылки - объекты диаграмм потоков данных, DFD, будут рассмотрены ниже.)

Рис. 1.32. Диалог Continue with merge?


После подтверждения слияния (кнопка OK) модель-источник подсоединяется к модели-цели, стрелка вызова исчезает, а работа, от которой отходила стрелка вызова, становится декомпозируемой - к ней подсоединяется диаграмма декомпозиции первого уровня модели-источника. Стрелки, касающиеся работы на диаграмме модели-цели, автоматически не мигрируют в декомпозицию, а отображаются как неразрешенные. Их следует тоннелировать вручную. На рис. 1.33 показано, как выглядят модели в окне Model Explorer после слияния.

В процессе слияния модель-источник остается неизменной и к модели-цели подключается фактически ее копия. Не нужно путать слияние моделей с синхронизацией. Если в дальнейшем модель-источник будет редактироваться, эти изменения автоматически не попадут в соответствующую ветвь модели-цели.

Разделение моделей производится аналогично. Для отщепления ветви от модели следует щелкнуть правой кнопкой мыши по декомпозированной работе (работа не должна иметь диагональной черты в левом верхнем углу) и выбрать во всплывающем меню пункт Split Model. В появившемся диалоге Split Options следует указать имя создаваемой модели. После подтверждения расщепления в старой модели работа станет недекомпозированной (признак - диагональная черта в левом верхнем углу), будет создана стрелка вызова, причем ее имя будет совпадать с именем новой модели, и, наконец, будет создана новая модель, причем имя контекстной работы будет совпадать с именем работы, от которой была "оторвана" декомпозиция.

Рис. 1.33. Вид моделей в Model Explorer после слияния. Выделены модель-источник, и присоединенная ветвь модели-цели



В реальных диаграммах к каждой работе может подходить и от каждой может отходить около десятка стрелок. Если диаграмма содержит 6-8 работ, то она может содержать 30-40 стрелок, причем они могут сливаться, разветвляться и пресекаться. Такие диаграммы могут стать очень плохо читаемыми. В IDEF0 существуют соглашения по рисованию диаграмм, которые призваны облегчить чтение и экспертизу модели. Некоторые из этих правил BPwin поддерживает автоматически, выполнение других следует обеспечить вручную.

Прямоугольники работ должны располагаться по диагонали с левого верхнего в правый нижний угол (порядок доминирования). При создании новой диаграммы декомпозиции BPwin автоматически располагает работы именно в таком порядке. В дальнейшем можно добавить новые работы или изменить расположение существующих, но нарушать диагональное расположение работ по возможности не следует. Порядок доминирования подчеркивает взаимосвязь работ, позволяет минимизировать изгибы и пересечения стрелок.

Следует максимально увеличивать расстояние между входящими или выходящими стрелками на одной грани работы. Если включить опцию Line Drawing: Automatically space arrows на закладке Layout диалога Model Properties (меню Edit/Model Properties), BPwin будет располагать стрелки нужным образом автоматически.

Следует максимально увеличить расстояние между работами, поворотами и пересечениями стрелок.

Если две стрелки проходят параллельно (начинаются из одной и той же грани одной работы и заканчиваются на одной и той же грани другой работы), то по возможности следует их объединить и назвать единым термином.

Обратные связи по входу рисуются "нижней" петлей, обратная связь по управлению - "верхней" (см. рис. 1.15, 1.17). BPwin автоматически рисует обратные связи нужным образом. Его можно "обмануть", но лучше этого не делать.

Циклические обратные связи следует рисовать только в случае крайней необходимости, когда подчеркивают значение повторно используемого объекта. Принято изображать такие связи на диаграмме декомпозиции. BPwip не позволяет создать циклическую обратную связь за один прием. Если все же необходимо изобразить такую связь, следует сначала создать обычную связь по входу, затем разветвить стрелку, направить новую, ветвь обратно ко входу работы-источника и, наконец, удалить старую ветвь стрелки выхода (рис. 1.34).

Рис. 1.34. Пример обратной циклической связи


Следует минимизировать число пересечений, петель и поворотов стрелок. Это ручная и, в случае насыщенных диаграмм, творческая работа (рис. 1.35).

Рис. 1.35. Минимизация пересечений и поворотов стрелок

Если нужно изобразить связь по входу, необходимо избегать "нависания" работ друг над другом. В этом случае BPwin изображает связи по входу в виде петли, что затрудняет чтение диаграмм (рис. 1.36).

Рис. 1.36. Пример правильного (справа) и неправильного (слева) расположения работ при изображении связи по входу


1.2.9. Проведение экспертизы


Цикл автор-читатель. Цикл автор-читатель предназначен для обеспечения обратной связи при построении модели. Он включает определенные формализованные процедуры, предписывающие правила координации деятельности участников создания модели. В работе над моделью принимают участие специалисты разных специальностей - аналитики (авторы), эксперты предметной области (читатели), библиотекари и комитет технического контроля. Обычно библиотекарь выделяется для больших проектов. Цикл автор-читатель содержит следующие этапы:

На очередном этапе декомпозиции аналитик создает диаграмму на основе общих знаний, анализа документации и опроса экспертов. Общие знания не позволяют создать диаграмму достаточно корректно, поэтому она нуждается в уточнении и дополнении.

Все коммуникации при создании модели контролируются библиотекарем. Он ответственен за прохождение папок и архивирование диаграмм модели. После создания диаграмма посылается библиотекарю для помещения в архив.

Автором формируется папка и передается для распространения библиотекарю (одна копия направляется автору). В папку должна входить текущая диаграмма. Кроме того, в папку могут включаться сопутствующие отчеты, в том числе словарь стрелок и работ, диаграмма верхнего уровня, дерево узлов и любая необходимая дополнительная документация. На папке регистрируются входящие данные - дата, автор, данные читателя и т. д., после чего папка направляется эксперту предметной области (читателю).

Читатель рецензирует папку и записывает свои комментарии. Замечания вносятся в диаграмму по определенным правилам. Если читатель решил внести замечание, он должен указать номер замечания, затем внести текст замечания и в каркасе диаграммы в разделе Notes зачеркнуть цифру, соответствующую номеру замечания (рис. 1.37).

Рис. 1.37. Внесение замечаний в диаграмму


После рецензирования папки возвращаются библиотекарю. Библиотекарь должен обеспечивать проведение рецензирования в срок. Затем папки регистрируются и направляются автору.

Автор вносит ответ на замечания и, если он согласен с замечаниями, вносит изменения в модель. На практике зачастую сеанс экспертизы проводится в форме устного собеседования между автором и экспертом. В этом случае особенно важно вносить замечания эксперта и комментарии автора в диаграмму для документирования всех идей, возникших в результате моделирования.

Если это необходимо, проводится дополнительная экспертиза у того же или у другого эксперта.

После прохождения нескольких циклов число замечаний обычно уменьшается и диаграмма становится стабильной. В процессе изменения диаграмма может менять свой статус, который должен быть отражен в каркасе (см. табл. 1.2). Когда автор считает, что диаграмма уже достаточно проработана и достигла уровня "Recommended", он пересылает ее на утверждение в комитет технического контроля, где она проходит окончательную экспертизу. После внесения замечаний и окончательных изменений диаграмма (или набор диаграмм) окончательно утверждается, получает статус "Publication" и может быть распечатана и распространена среди участников проекта.


1.3. Создание отчетов в BPwin


BPwin имеет мощный инструмент генерации. Отчеты по модели вызываются из пункта меню Report. Всего имеется семь типов отчетов:

Model Report. Этот отчет уже упоминался в 1.2.1. Он включает информацию о контексте модели - имя модели, точку зрения, область, цель, имя автора, дату создания и др.

Diagram Report. Отчет по конкретной диаграмме. Включает список объектов (работ, стрелок, хранилищ данных, внешних ссылок и т. д.).

Diagram Object Report. Наиболее полный отчет по модели. Может включать полный список объектов модели (работ, стрелок с указанием их типа и др.) и свойства, определяемые пользователем.

Activity Cost Report. Отчет о результатах стоимостного анализа. Будет рассмотрен ниже.

Arrow Report. Отчет по стрелкам. Может содержать информацию из словаря стрелок, информацию о работе-источнике, работе-назначении стрелки и информацию о разветвлении и слиянии стрелок.

DataUsage Report. Отчет о результатах связывания модели процессов и модели данных. (Будет рассмотрен ниже.)

Model Consistency Report. Отчет, содержащий список синтаксических ошибок модели.

Синтаксические ошибки IDEF0 с точки зрения BPwin разделяются на три типа:

Во-первых, это ошибки, которые BPwin выявить не в состоянии. Например, синтаксис IDEF0 требует, чтобы имя работы было выражено отглагольным существительным или глагольной формой, выражающей действие ("Изготовление изделия", "Обслуживание клиента", "Выписка счета" и т. д.), а имя стрелки также должно быть выражено существительным. BPwin не позволяет анализировать синтаксис естественного языка (английского и русского) и смысл имен объектов и поэтому игнорирует ошибки этого типа. Выявление таких ошибок - ручная работа, которая ложится на плечи аналитиков и должна контролироваться руководителем проекта.

Ошибки второго типа BPwin просто не допускает. Например, каждая грань работы предназначена для определенного типа стрелок. BPwin просто не позволит создать на диаграмме IDEF0 внутреннюю стрелку, выходящую из левой грани работы и входящую в правую грань.

Третий тип ошибок BPwin позволяет допустить, но детектирует их. Полный их список можно получить в отчете Model Consistency Report. Это единственный неопциональный отчет в BPwin. Список ошибок может содержать, например, неименованные работы и стрелки (unnamed arrow, unnamed activity), несвязанные стрелки (unconnected border arrow), неразрешенные стрелки (unresolved (square tunneled) arrow connections), работы, не имеющие по крайней мере одной стрелки выхода и одной стрелки управления (Activity "Сборка блоков" has no Control, Activity "Сборка блоков" has no Output), и т. д. Пример отчета Model Consistency Report приведен на рис. 1.38.

Рис. 1.38. Отчет Model Consistency Report


При выборе пункта меню, который соответствует какому-либо отчету, появляется диалог настройки отчета. Для каждого из семи типов отчетов он выглядит по-своему. Рассмотрим типичный диалог Arrow Report (рис. 1.39).

Рис. 1.39. Диалог Arrow Report


Раскрывающийся список Standart Reports позволяет выбрать один из стандартных отчетов. Стандартный отчет - это запоминаемая комбинация переключателей, флажков и других элементов управления диалога. Для создания собственного стандартного отчета необходимо задать опции отчета, ввести имя отчета в поле списка выбора и щелкнуть по кнопке New. BPwin сохраняет информацию о стандартном отчете в файле BPWINRPT.INI. Все определения этого файла доступны из любой модели. Единственное ограничение - свойства, определяемые пользователем (User-Defined Properties). Они сохраняются в виде указателя и поэтому доступны только из "родной" модели. Стандартный отчет можно изменить (кнопка Update) или удалить(кнопка Delete).

В правом верхнем углу диалога находится группа управляющих элементов для выбора формата отчета. Доступны следующие форматы:

Labeled - отчеты включают метку поля, затем, в следующей строке, печатается содержимое поля;

Fixed Column - каждое поле печатается,в собственной колонке;

Tab-Comma Delimited - каждое поле печатается в собственной колонке. Колонки разделяются знаком табуляции или запятыми;

DDE Table - данные передаются по DDE приложению, например MS Word или Excel;

RPTwin - отчет создается в формате Platinum RPTwin - специализированного генератора отчетов, который входит в поставку BPwin.

Опция Ordering (на отчете по стрелкам отсутствует) сортирует данные по какому-либо значению.

Опция Multi-Valued Format регулирует вывод полей в отчете при группировке данных:

Repeating Group - детальные данные объединяются в одно поле, между значениями вставляется +.

Filled - дублирование данных для каждого заголовка группы;

Header (опция по умолчанию) - печатается заголовок группы, затем -детальная информация.


1.4. Стоимостный анализ (ЛВС) и свойства, определяемые пользователем (UDP)


Как было указано ранее, обычно сначала строится функциональная модель существующей организации работы - AS-IS (как есть). После построения модели AS-IS проводится анализ бизнес-процессов, потоки данных и объектов перенаправляются и улучшаются, в результате строится модель ТО-ВЕ. Как правило, строится несколько моделей ТО-ВЕ, из которых по какому-либо критерию выбирается наилучшая. Проблема состоит в том, что таких критериев много и непросто определить важнейший. Для того чтобы определить качество созданной модели с точки зрения эффективности бизнес-процессов, необходима система метрики, т. е. качество следует оценивать количественно.

BPwin предоставляет аналитику два инструмента для оценки модели -стоимостный анализ, основанный на работах (Activity Based Costing, ABC), и свойства, определяемые пользователем (User Defined Properties, UDP). ABC является широко распространенной методикой, используемой международными корпорациями и государственными организациями (в том числе Департаментом обороны США) для идентификации истинных движителей затрат в организации.

Стоимостный анализ представляет собой соглашение об учете, используемое для сбора затрат, связанных с работами, с целью определить общую стоимость процесса. Стоимостный анализ основан на модели работ, потому что количественная оценка невозможна без детального понимания функциональности предприятия. Обычно ABC применяется для того, чтобы понять происхождение выходных затрат и облегчить выбор нужной модели работ при реорганизации деятельности предприятия (Business Process Reengineering, BPR). С помощью стоимостного анализа можно решить такие задачи, как определение действительной стоимости производства продукта, определение действительной стоимости поддержки клиента, идентификация работ, которые стоят больше всего (те, которые должны быть улучшены в первую очередь), обеспечение менеджеров финансовой мерой предлагаемых изменений т. д.

ABC может проводиться только тогда, когда модель работы последовательная (следует синтаксическим правилам IDEF0), корректная (отражает бизнес), полная (охватывает всю рассматриваемую область) и стабильная (проходит цикл экспертизы без изменений), другими словами, создание модели работы закончено.

ABC включает следующие основные понятия:

объект затрат - причина, по которой работа выполняется, обычно, основной выход работы, стоимость работ есть суммарная стоимость объектов затрат ("Готовое изделие", рис. 1.40).

Рис. 1.40. Иллюстрация терминов ABC


движитель затрат - характеристики входов и управлений работы ("Сырье", "Чертеж", рис. 1.40), которые влияют на то, как выполняется и как долго длится работа;

центры затрат, которые можно трактовать как статьи расхода.

При проведении стоимостного анализа в BPwin сначала задаются единицы измерения времени и денег. Для задания единиц измерения следует вызвать диалог Model Properties (меню Edit/Model Properties), закладка ABC Units (рис. 1.41).

Если в списке выбора отсутствует необходимая валюта (например, рубль), ее можно добавить. Символ валюты по умолчанию берется из настроек Windows. Диапазон измерения времени в списке Unit of measurment достаточен для большинства случаев - от секунд до лет.

Рис. 1.41. Настройка единиц измерения валюты и времени


Затем описываются центры затрат (cost centers). Для внесения центров затрат необходимо вызвать диалог Cost Center Editor (меню Edit/ABC Cost Centers (рис. 1.42).

Каждому центру затрат следует дать подробное описание в окне Definition. Список центров затрат упорядочен. Порядок в списке можно менять при помощи стрелок, расположенных справа от списка. Задание определенной последовательности центров затрат в списке, во-первых, облегчает последующую работу при присвоении стоимости работам, а во-вторых, имеет значение при использовании единых стандартных отчетов в разных моделях. Хотя, как было указано в 1.2.5, BPwin сохраняет информацию о стандартном отчете в файле BPWINRPT.INI, информация о центрах затрат и UDP сохраняется в виде указателей, т. е. хранятся не названия центров затрат, а их номера. Поэтому, если нужно использовать один и тот же стандартный отчет в разных моделях, списки центров затрат должны быть в них одинаковы.

Рис. 1.42. Диалог Cost Center Editor


Для задания стоимости работы (для каждой работы на диаграмме декомпозиции) следует щелкнуть правой кнопкой мыши по работе и на всплывающем меню выбрать Cost Editor (рис. 1.43). В диалоге Activity Cost указывается частота проведения данной работы в рамках общего процесса (окно Frequency) и продолжительность (Duration). Затем следует выбрать в списке один из центров затрат и в окне Cost задать его стоимость. Аналогично назначаются суммы по каждому центру затрат, т. е. задается стоимость каждой работы по каждой статье расхода. Если в процессе назначения стоимости возникает необходимость внесения дополнительных центров затрат, диалог Cost Center Editor вызывается прямо из диалога Activity Cost соответствующей кнопкой.

Рис. 1.43. Задание стоимости работ в диалоге Activity Cost


Общие затраты по работе рассчитываются как сумма по всем центрам затрат. При вычислении затрат вышестоящей (родительской) работы сначала вычисляется произведение затрат дочерней работы на частоту работы (число раз, которое работа выполняется в рамках проведения родительской работы), затем результаты складываются. Если во всех работах модели включен режим Compute from Decompositions, подобные вычисления автоматически проводятся по всей иерархии работ снизу вверх (рис. 1.44).

Рис. 1.44. Вычисление затрат родительской работы


Этот достаточно упрощенный принцип подсчета справедлив, если работы выполняются последовательно. Встроенные возможности BPwin позволяют разрабатывать упрощенные модели стоимости, которые тем не менее оказываются чрезвычайно полезными при предварительной оценке затрат. Если схема выполнения более сложная (например, работы производятся альтернативно), можно отказаться от подсчета и задать итоговые суммы для каждой работы вручную (Override Decompositions). В этом случае результаты расчетов с нижних уровней декомпозиции будут игнорироваться, при расчетах на верхних уровнях будет учитываться сумма, заданная вручную. На любом уровне результаты расчетов сохраняются независимо от выбранного режима, поэтому при выключении опции Override Decompositions расчет снизу вверх производится обычным образом.

Для проведения более тонкого анализа можно воспользоваться специализированным средством стоимостного анализа EasyABC (ABC Technology, Inc.). BPwin имеет двунаправленный интерфейс с EasyABC. Для экспорта данных в EasyABC следует выбрать пункт меню File/Export/Node Tree , задать в диалоге Export Node Tree необходимые настройки и экспортировать дерево узлов в текстовый файл (.txt). Файл экспорта можно импортировать в EasyABC. После проведения необходимых расчетов результирующие данные можно импортировать из EasyABC в BPwin. Для импорта нужно выбрать меню File/Import/Costs и в диалоге Import Activity Costs выбрать необходимые установки.

Результаты стоимостного анализа могут существенно повлиять на очередность выполнения работ. Рассмотрим пример, изображенный на рис. 1.45. Предположим, что для оценки качества изделия необходимо провести три работы:

Внешний осмотр - стоимость 50 руб.;

Пробное включение - стоимость 150 руб.;

Испытание на стенде - стоимость 300 руб.

Предположим также, что с точки зрения технологии очередность проведения работ несущественна, а вероятность выявления брака одинакова (50 %). Пусть необходимо проверить восемь изделий. Если проводить работы в убывающем по стоимости порядке, то стоимость, затраченная на получение готового изделия, составит:

300 руб. (Испытание на стенде)*8 +150 руб. (Пробное включение) *4 +

50 руб. (Внешний осмотр) *2 = 3100 руб.

Если проводить работы в возрастающем по стоимости порядке, то стоимость, затраченная на получение готового изделия составит:

50 руб. (Внешний осмотр) *8 +150 руб. (Пробное включение) *4 + + 300 руб. (Испытание на стенде) *2 = 1600 руб.

Следовательно, с целью минимизации затрат первой должна быть выполнена наиболее дешевая работа, затем - средняя по стоимости и в конце - наиболее дорогая (рис. 1.45).

Рис. 1.45. Фрагмент диаграммы декомпозиции работы "Контроль качества"


Результаты стоимостного анализа наглядно представляются на специальном отчете BPwin - Activity Cost Report (меню Report/Activity Cost Report). Отчет позволяет документировать имя, номер, определение и стоимость работ, как суммарную, так и раздельно по центрам затрат (рис. 1.46).

Рис. 1.46. Диалог настройки отчета по стоимости работ


Результаты отображаются и непосредственно на диаграммах. В левом нижнем углу прямоугольника работы может показываться либо стоимость (по умолчанию), либо продолжительность, либо частота проведения работы. Настройка отображения осуществляется в диалоге Model Properties (меню Edit/Model Properties), закладка Display, ABC Data, ABC Units.

АВС позволяет оценить стоимостные и временные характеристики системы. Если стоимостных показателей недостаточно, имеется возможность внесения собственных метрик - свойств, определенных пользователем (User Defined Properties, UDP). UDP позволяют провести дополнительный анализ, хотя и без суммирующих подсчетов.

Для описания UDP служит диалог User-Defined Property Name Editor (меню Edit/UDP Definition) (рис. 1.47). В верхнем окне диалога вносится имя UDP, в списке выбора Datatype описывается тип свойства. Имеется возможность задания 18 различных типов UDP, в том числе управляющих команд и массивов, объединенных по категориям. Для внесения категории следует задать имя категории в окне New Category/Member и щелкнуть по кнопке Add Category. Для присвоения свойства категории необходимо выбрать UDP из списка, затем категорию из списка категорий и щелкнуть по кнопке Update. Одна категория может объединять несколько свойств, в то же время одно свойство может входить в несколько категорий. Свойство типа List может содержать массив предварительно определенных значений. Для определения области значений UDP типа List следует задать значение свойства в окне New Category/Member и щелкнуть по кнопке Add Member. Значения из списка можно редактировать и удалять.

Рис. 1.47. Диалог описания UDP


Например, категория "Загрязнение окружающей среды" может объединять свойство "загрязнение воды" типа Real Number и свойство "загрязнение воздуха" типа Integer List с предварительно определенной областью значений (1, 2, 3, 4, 5).

Каждой работе можно поставить в соответствие набор UDP. Для этого следует щелкнуть правой кнопкой мыши по работе и выбрать пункт меню UDP Editor. В закладке UDP Values диалога IDEF0 Activity Properties можно задать значения UDP. Свойства типа List отображаются списком выбора, который заполнен предварительно определенными значениями. Свойства типа Command могут иметь в качестве значения командную строку, которая выполняется при нажатии на кнопку!!!. Например, свойство "Спецификации" категории "Дополнительная документация" может иметь значение "C:\MSOffice97\Office\WINWORD.EXE sped.doc".

Кнопка Categories служит для задания фильтра по категориям UDP. По умолчанию в списке показываются свойства всех категорий,

Результат задания проанализировать в отчете Diagram Object Report (меню Report/Diagram Object Report) (рис. 1.48).

Рис. 1.48. Диалог настройки отчета Diagram Object Report


В левом нижнем углу диалога настройки отчета показывается список UDP. С помощью кнопки Activity Categories можно установить фильтр по категориям.


1.5. Дополнение созданной модели процессов диаграммами DFD и Workflow (IDEF3)

1.5.1. Диаграммы потоков данных (Data Flow Diagramming)


Диаграммы потоков данных (Data flow diagramming, DFD) используются для описания документооборота и обработки информации. Подобно IDEF0, DFD представляет модельную систему как сеть связанных между собой работ. Их можно использовать как дополнение к модели IDEF0 для более наглядного отображения текущих операций документооборота в корпоративных системах обработки информации. DFD описывает:

функции обработки информации (работы);

документы (стрелки, arrow), объекты, сотрудников или отделы, которые учавствуют в обработке информации;

таблицы для хранения документов (хранилище данных, data store).

В Bpwin для построения диаграмм потоков данных используется нотация Гейна-Сарсона.

Для того чтобы дополнить модель IDEF0 диаграммой DFD, нужно в процессе декомпозиции в диалоге Activity Box Count “кликнуть” по радио-кнопке DFD. В палитре инструментов на новой диаграмме DFD появляются новые кнопки:

– добавить в диаграмму хранилище данных (Data store). Хранилище данных позволяет описать данные, которые необходимо сохранить в памяти прежде, чем использовать в работах;

Рис. 1.49. Пример диаграммы DFD


В отличие от стрелок IDEF0, которые представляют собой жесткие взаимосвязи, стрелки DFD показывают, как объекты (включая данные) двигаются от одной работы к другой. Это представление потоков совместно с хранилищами данных и внешними сущностями делает модели DFD более похожими на физические характеристики системы - движение объектов (data flow), хранение объектов (data stores), поставка и распространение объектов (external entities) (рис. 1.49).

В отличие от IDEF0, где система рассматривается как взаимосвязанные работы, DFD рассматривает систему как совокупность предметов. Контекстная диаграмма часто включает работы и внешние ссылки. Работы обычно именуются по названию системы, например "Система обработки информации". Включение внешних ссылок в контекстную диаграмму не отменяет требования методологии четко определить цель, область и единую точку зрения на моделируемую систему.

Работы. В DFD работы представляют собой функции системы, преобразующие входы в выходы. Хотя работы изображаются прямоугольниками со скругленными углами, смысл их совпадает со смыслом работ IDEF0 и IDEF3. Так же как работы IDEF3, они имеют входы и выходы, но не поддерживают управления и механизмы, как IDEF0.

Внешние сущности. Внешние сущности изображают входы в систему и/или выходы из системы. Внешние сущности изображаются в виде прямоугольника с тенью и обычно располагаются по краям диаграммы. Одна внешняя сущность может быть использована многократно на одной или нескольких диаграммах. Обычно такой прием используют, чтобы не рисовать слишком длинных и запутанных стрелок.

Стрелки (Потоки данных). Стрелки описывают движение объектов из одной части системы в другую. Поскольку в DFD каждая сторона работы не имеет четкого назначения, как в IDEF0, стрелки могут подходить и выходить из любой грани прямоугольника работы. В DFD также применяются двунаправленные стрелки для описания диалогов типа "команда-ответ" между работами, между работой и внешней сущностью и между внешними сущностями (рис. 1.50).

Рис. 1.50. Внешняя сущность


Хранилище данных. В отличие от стрелок, описывающих объекты в движении, хранилища данных изображают объекты в покое (рис. 1.51).

Рис. 1.51. Хранилище данных


В материальных системах хранилища данных изображаются там, где объекты ожидают обработки, например в очереди. В системах обработки информации хранилища данных являются механизмом, который позволяет сохранить данные для последующих процессов.

Слияние и разветвление стрелок. В DFD стрелки могут сливаться и разветвляться, что позволяет описать декомпозицию стрелок. Каждый новый сегмент сливающейся или разветвляющейся стрелки может иметь собственное имя.

Построение диаграмм DFD. Диаграммы DFD могут быть построены с использованием традиционного структурного анализа, подобно тому как строятся диаграммы IDEF0. Сначала строится физическая модель, отображающая текущее состояние дел. Затем эта модель преобразуется в логическую модель, которая отображает требования к существующей системе. После этого строится модель, отображающая требования к будущей системе. И наконец, строится физическая модель, на основе которой должна быть построена новая система.

Альтернативным подходом является подход, популярный при создании программного обеспечения, называемый событийным разделением (event partitioning), в котором различные диаграммы DFD выстраивают модель системы. Во-первых, логическая модель строится как совокупность работ и документирования того, что они (эти работы) должны делать.

Затем модель окружения (environment model) описывает систему как объект, взаимодействующий с событиями из внешних сущностей. Модель, окружения обычно содержит описание цели системы, одну контекстную диаграмму и список событий. Контекстная диаграмма содержит один прямоугольник работы, изображающий систему в целом, и внешние сущности, с которыми система взаимодействует.

Наконец, модель поведения (behavior model) показывает, как система обрабатывает события. Эта модель состоит из одной диаграммы, в которой каждый прямоугольник изображает каждое событие из модели окружения. Хранилища могут быть добавлены для моделирования данных, которые необходимо запоминать между событиями. Потоки добавляются для связи с другими элементами, и диаграмма проверяется с точки зрения соответствия модели окружения.

Полученные диаграммы могут быть преобразованы с целью более наглядного представления системы, в частности работы на диаграммах могут быть декомпозированы.

Нумерация объектов. В DFD номер каждой работы может включать префикс, номер родительской работы (А) и номер объекта. Номер объекта -это уникальный номер работы на диаграмме. Например, работа может иметь номер А.12.4. Уникальный номер имеют хранилища данных и внешние сущности независимо от их расположения на диаграмме. Каждое хранилище данных имеет префикс D и уникальный номер, например D5. Каждая внешняя сущность имеет префикс Е и уникальный номер, например Е5.


1.5.2. Метод описания процессов IDEF3


Наличие в диаграммах DFD элементов для описания источников, приемников и хранилищ данных позволяет более эффективно и наглядно описать процесс документооборота. Однако для описания логики взаимодействия информационных потоков более подходит IDEF3, называемая также workflow diagramming - методологией моделирования, использующая графическое описание информационных потоков, взаимоотношений между процессами обработки информации и объектов, являющихся частью этих процессов. Диаграммы Workflow могут быть использованы в моделировании бизнес-процессов для анализа завершенности процедур обработки информации. С их помощью можно описывать сценарии действий сотрудников организации, например последовательность обработки заказа или события, которые необходимо обработать за конечное время. Каждый сценарий сопровождается описанием процесса и может быть использован для документирования каждой функции.

IDEF3 - это метод, имеющий основной целью дать возможность аналитикам описать ситуацию, когда процессы выполняются в определенной последовательности, а также описать объекты, участвующие совместно в одном процессе.

Техника описания набора данных IDEF3 является частью структурного анализа. В отличие от некоторых методик описаний процессов IDEF3 не ограничивает аналитика чрезмерно жесткими рамками синтаксиса, что может привести к созданию неполных или противоречивых моделей.

IDEF3 может быть также использован как метод создания процессов. IDEF3 дополняет IDEF0 и содержит все необходимое для построения моделей, которые в дальнейшем могут быть использованы для имитационного анализа.

Каждая работа в IDEF3 описывает какой-либо сценарий бизнес-процесса и может являться составляющей другой работы. Поскольку сценарий описывает цель и рамки модели, важно, чтобы работы именовались отглагольным существительным, обозначающим процесс действия, или фразой, содержащей такое существительное.

Точка зрения на модель должна быть задокументирована. Обычно это точка зрения человека, ответственного за работу в целом. Также необходимо задокументировать цель модели - те вопросы, на которые призвана ответить модель.

Диаграммы. Диаграмма является основной единицей описания в IDEF3. Важно правильно построить диаграммы, поскольку они предназначены для чтения другими людьми (а не только автором).

Единицы работы - Unit of Work (UOW). UOW, также называемые работами (activity), являются центральными компонентами модели. В IDEF3 работы изображаются прямоугольниками с прямыми углами и имеют имя, выраженное отглагольным существительным, обозначающим процесс действия, одиночным или в составе фразы, и номер (идентификатор); другое имя существительное в составе той же фразы обычно отображает основной выход (результат) работы (например, "Изготовление изделия"). Часто имя существительное в имени работы меняется в процессе моделирования, поскольку модель может уточняться и редактироваться. Идентификатор работы присваивается при создании и не меняется никогда. Даже если работа будет удалена, ее идентификатор не будет вновь использоваться для других работ. Обычно номер работы состоит из номера родительской работы и порядкового номера на текущей диаграмме.

Связи. Связи показывают взаимоотношения работ. Все связи в IDEF3 однонаправлены и могут быть направлены куда угодно, но обычно диаграммы IDEF3 стараются построить так, чтобы связи были направлены слева направо. В IDEF3 различают три типа стрелок, изображающих связи, стиль которых устанавливается через меню Edit/Arrow Style:

Старшая (Precedence) - сплошная линия, связывающая единицы работ (UOW). Рисуется слева направо или сверху вниз. Показывает, что работа-источник должна закончиться прежде, чем работа-цель начнется.

Отношения (Relational Link)

- пунктирная линия, использующаяся для изображения связей между единицами работ (UOW) а также между единицами работ и объектами ссылок.

Потоки объектов (Object Flow)

- стрелка с двумя наконечниками, применяется для описания того факта, что объект используется в двух или более единицах работы, например когда объект порождается в одной работе и используется в другой.

Старшая связь и поток объектов. Старшая связь показывает, что работа-источник заканчивается ранее, чем начинается работа-цель. Часто результатом работы-источника становится объект, необходимый для запуска работы-цели. В этом случае стрелку, обозначающую объект, изображают с двойным наконечником. Имя стрелки должно ясно идентифицировать отображаемый объект. Поток объектов имеет ту же семантику, что и старшая стрелка.

Отношение показывает, что стрелка является альтернативой старшей стрелке или потоку объектов в смысле задания последовательности выполнения работ - работа-источник не обязательно должна закончиться, прежде чем работа-цель начнется. Более того, работа-цель может закончиться прежде, чем закончится работа-источник (рис. 1.52).

Рис. 1.52. Временная диаграмма выполнения работ


Перекрестки (Junction). Окончание одной работы может служить сигналом к началу нескольких работ, или же одна работа для своего запуска может ожидать окончания нескольких работ. Перекрестки используются для отображения логики взаимодействия стрелок при слиянии и разветвлении или для отображения множества событий, которые могут или должны быть завершены перед началом следующей работы. Различают перекрестки для слияния (Fan-in Junction) и разветвления (Fan-out Junction) стрелок. Перекресток не может использоваться одновременно для слияния и для разветвления. Для внесения перекрестка служит кнопка - (добавить в диа-1рамму перекресток -Junction) в палитре инструментов. В диалоге Junction Type Editor необходимо указать тип перекрестка.

Смысл каждого типа приведен в табл. 1.4.


Таблица 1.4. Типы перекрестков

Обозначение Наименование Смысл в случае слияния стрелок (Fan-in Junction) Смысл в случае разветвления стрелок (Fan-oat Junction)
Asynchronous AND Все предшествующие процессы должны быть завершены Все следующие процессы должны быть запущены
Synchronous AND Все предшествующие процессы завершены одновременно Все следующие процессы запускаются одновременно
Asynchronous OR Один или несколько предшествующих процессов должны быть завершены Один или несколько следующих процессов должны быть запущены
Synchronous OR Один или несколько предшествующих процессов завершены одновременно Один или несколько следующих процессов запускаются одновременно
XOR Только один предшествующий процесс завершен Только один следующий процесс запускается
(Exclusive OR)

Все перекрестки на диаграмме нумеруются, каждый номер имеет префикс J. Можно редактировать свойства перекрестка при помощи диалога Definition Editor. В отличие от IDEF0 и DFD в IDEF3 стрелки могут сливаться и разветвляться только через перекрестки.

-(добавить в диаграмму объект ссылки - Referent) в палитре инструментов. Объект ссылки изображается в виде прямоугольника, похожего на прямоугольник работы. Имя объекта ссылки задается в диалоге Referent (пункт всплывающего меню Name Editor), в качестве имени можно использовать имя какой-либо стрелки с других диаграмм или имя сущности из модели данных. Объекты ссылки должны быть связаны с единицами работ или перекрестками пунктирными линиями. Официальная спецификация IDEF3 различает три стиля объектов ссылок - безусловные (unconditional), синхронные (synchronous) и асинхронные (asynchronous). BPwin поддерживает только безусловные объекты ссылок. Синхронные и асинхронные объекты ссылок, используемые в диаграммах переходов состояний объектов, не поддерживаются.


При внесении объектов ссылок помимо имени следует указывать тип объекта ссылки. Типы объектов ссылок приведены в табл. 1.5.


Таблица 1.5. Типы объектов ссылок

Тип объекта ссылки Цель описания
OBJECT Описывает участие важного объекта в работе
GOTO Инструмент циклического перехода (в повторяющейся последовательности работ), возможно на текущей диаграмме, но не обязательно. Если все работы цикла присутствуют на текущей диаграмме, цикл может также изображаться стрелкой, возвращающейся на стартовую работу. ; GOTO может ссылаться на перекресток
UOB (Unit of behavior) . Применятся, когда необходимо подчеркнуть множественное использование какой-либо работы, но без цикла. Например, работа "Контроль качества" может быть использована в Процессе "Изготовления изделия" несколько раз, после каждой единичной операции. Обычно этот тип ссылки не используется для моделирования автоматически запускающихся работ
NOTE Используется для документирования важной информации, относящейся к каким-либо графическим объектам на диаграмме. NOTE является альтернативой внесению текстового объекта в диаграмму
ELAB (Elaboration) Используется для усовершенствования графиков или их более детального описания. Обычно употребляется для детального описания разветвления и слияния стрелок на перекрестках

Декомпозиция работ. В IDEF3 декомпозиция используется для детализации работ. Методология IDEF3 позволяет декомпозировать работу многократно, т. е. работа может иметь множество дочерних работ. Это позволяет в одной модели описать альтернативные потоки. Возможность множественной декомпозиции предъявляет дополнительные требования к нумерации работ. Так, номер работы состоит из номера родительской работы, версии декомпозиции и собственного номера работы на текущей диаграмме (рис. 1.54).

Рис. 1.54. Номер единицы работы (VOW)


Рассмотрим процесс декомпозиции диаграмм IDEF3, включающий взаимодействие автора (аналитика) и одного или нескольких экспертов предметной области.

Описание сценария, области и точки зрения. Перед проведением сеанса экспертизы у экспертов предметной области должны быть задокументированы сценарии и рамки модели для того, чтобы эксперт мог понять цели декомпозиции. Кроме того, если точка зрения моделирования отличается от точки зрения эксперта, она должна быть особенно тщательно задокументирована.

Возможно, что эксперт самостоятельно не сможет передать необходимую информацию. В этом случае аналитик должен приготовить список вопросов для проведения интервью.

Определение работ и объектов. Обычно эксперт предметной области передает аналитику текстовое описание сценария. В дополнение к этому может существовать документация, описывающая интересующие процессы. Из всей этой информации аналитик должен составить список кандидатов на работы (отглагольные существительные, обозначающие процесс, одиночные или в составе фразы) и кандидатов на объекты (существительные, обозначающие результат выполнения работы), которые необходимы для перечисленных в списке работ.

В некоторых случаях целесообразно создать графическую модель для представления ее эксперту предметной области. Графическая модель может быть также создана после сеанса сбора информации для того, чтобы детали форматирования диаграммы не смущали участников.

Поскольку разные фрагменты модели IDEF3 могут быть созданы разными группами аналитиков в разное время, IDEF3 поддерживает простую схему нумерации работ в рамках всей модели. Разные аналитики оперируют разными диапазонами номеров, работая при этом независимо. Пример выделения диапазона приведен в табл.1.6.


Таблица 1.6. Диапазоны номеров работ


Последовательность и согласование. Если диаграмма создается после проведения интервью, аналитик должен принять некоторые решения, относящиеся к иерархии диаграмм, например сколько деталей включать в одну диаграмму. Если последовательность и согласование диаграмм неочевидны, может быть проведена еще одна экспертиза для детализации и уточнения информации. Важно различать подразумевающее согласование (согласование, которое подразумевается в отсутствие связей) и ясное согласование (согласование, ясно изложенное в мнении эксперта).

Работы, перекрестки и документирование объектов. IDEF3 позволяет внести информацию в модель различными способами. Например, логика взаимодействия может быть отображена графически в виде комбинации перекрестков. Та же информация может быть отображена в виде объекта ссылки типа ELAB (Elaboration). Это позволяет аналитику вносить информацию в удобном в данный момент времени виде. Важно учитывать, что модели могут быть реорганизованы, например для их представления в более презентабельном виде. Выбор формата для презентации часто имеет важное значение для организации модели, поскольку комбинация перекрестков занимает значительное место на диаграмме и использование иерархии перекрестков затрудняет расположение работ на диаграмме.

В результате дополнения диаграмм IDEF0 диаграммами DFD и IDEF3 может быть создана смешанная модель, которая наилучшим образом описывает все стороны деятельности предприятия (рис. 1.55). Иерархию работ в смешанной модели можно увидеть в окне Model Explorer. Работы в нотации IDEF0 изображаются зеленым цветом, IDEF3 - желтым, DFD - синим.

Рис. 1.55. Представление смешанной модели в окне Model Explorer


1.5.3. Имитационное моделирование


Имитационное моделирование - это метод, позволяющий строить модели, учитывающие время выполнения функций. Полученную модель можно "проиграть" во -времени и получить статистику происходящих процессов так, как это было бы в реальности. В имитационной модели изменения процессов и данных ассоциируются с событиями. "Проигрывание" модели заключается в последовательном переходе от одного события к другому. Обычно имитационные модели строятся для поиска оптимального решения в условиях ограничения по ресурсам, когда другие математические модели оказываются слишком сложными (рис. 1.56).

Рис. 1.56. Пример имитационной модели


Связь между имитационными моделями и моделями процессов заключается в возможности преобразования модели процессов в неполную имитационную модель. Имитационная модель дает больше информации для анализа системы, в свою очередь результаты такого анализа могут стать причиной модификации модели процессов (рис. 1.57).

Рис. 1.57. Фрагмент диаграммы IDEF3, соответствующий имитационной модели с рис. 1.56


Имитационная модель включает следующие основные элементы:

Источники и цели (Bourses и Destinations). Источники - это элементы, от которых в модель поступает информация или объекты. По смыслу они близки к понятиям "внешняя ссылка" на DFD-диаграМмах или "объект ссылки" на диаграммах IDEF3. Скорость поступления данных или объектов от источника обычно задается статистической функцией. Цель - это устройство для приема информации или объектов.

Очереди (Queues). Понятие очереди близко к понятию хранилища данных на DFD-диаграммах - это место, где объекты ожидают обработки. Времена обработки объектов (производительность) в разных работах могут быть разными (например, "Загрузка из бункера", "Наполнение", "Закупорка", см. рис. 1.56, 1.57). В результате перед некоторыми работами могут накапливаться объекты, ожидающие своей очереди. Часто целью имитационного моделирования является минимизация количества объектов в очередях. Тип очереди в имитационной модели может быть конкретизирован. Очередь может быть похожа на стек - пришедшие последними в очередь объекты первыми отправляются на дальнейшую обработку (LIFO: last-in-first-out). Альтернативой стеку может быть последовательная обработка, когда первыми на дальнейшую обработку отправляются объекты, пришедшие первыми (FIFO: first -in-first-out). Могут быть заданы и более сложные алгоритмы обработки очереди.

Оборудование (Facilities). Оборудование - это аналог работ в модели процессов. В имитационной модели может быть задана производительность оборудования.

BPwin не имеет собственных инструментов, позволяющих создавать имитационные модели, однако можно экспортировать модель IDEF3 в специализированное средство создания таких моделей - BPSimulator 3.0 (производитель - Systems Modeling Corporation, http://www.sm.com).

Для экспорта модели в BPSimulator необходимо настроить ODBC-источник и подготовить модель к экспорту. Для подготовки модели необходимо настроить свойства, определяемые пользователем UDP, специально включенные в BPwin для целей экспорта. Соответствующие UDP описаны в файле sinudps.bpl, который находится в директории samples/bpsim и является шаблоном модели, предназначенной для экспорта. Для использования этих свойств необходимо слить словари модели - шаблона sinudps.bpl и текущей модели. Задание соответствующих UDP (диалог IDEF3 Activity Properties, закладка UDP Values, см. рис. 1.58) позволяет автоматически установить значения и свойства объектов имитационной модели в BPSimulator.

Рис. 1.58. Диалог задания свойств, определяемых пользователем для экспорта в BPSimulator


Для экспорта модели IDEF3 в BPSimulator следует выбрать меню File/Export/в BPSimulator. Экспорт осуществляется через файл MS Excel (.xls). Для импорта данных в BPSimulator необходимо открыть новую модель и импортировать соответствующий файл.

Software ) и др. Функциональные возможности инструментальных средств структурного моделирования деловых процессов будут рассмотрены на примере case-средства BPwin.

BPwin поддерживает три методологии моделирования: функциональное моделирование ( IDEF0 ); описание бизнес-процессов (IDEF3); диаграммы потоков данных ( DFD ).

Инструментальная среда BPwin

BPwin имеет достаточно простой и интуитивно понятный интерфейс пользователя. При запуске BPwin по умолчанию появляется основная панель инструментов , палитра инструментов (вид которой зависит от выбранной нотации) и, в левой части, навигатор модели - Model Explorer (рис. 7.1).

При создании новой модели возникает диалог, в котором следует указать, будет ли создана модель заново или она будет открыта из файла либо из репозитория ModelMart, затем внести имя модели и выбрать методологию, в которой будет построена модель (рис. 7.2).

Как было указано выше, BPwin поддерживает три методологии - IDEF0 , IDEF3 и DFD , каждая из которых решает свои специфические задачи. В BPwin возможно построение смешанных моделей, т. е. модель может содержать одновременно диаграммы как IDEF0 , так и IDEF3 и DFD . Состав палитры инструментов изменяется автоматически, когда происходит переключение с одной нотации на другую.


Рис. 7.1.


Рис. 7.2.

Модель в BPwin рассматривается как совокупность работ , каждая из которых оперирует с некоторым набором данных. Работа изображается в виде прямоугольников, данные - в виде стрелок. Если щелкнуть по любому объекту модели левой кнопкой мыши, появляется контекстное меню , каждый пункт которого соответствует редактору какого-либо свойства объекта.

Построение модели IDEF0

На начальных этапах создания ИС необходимо понять, как работает организация, которую собираются автоматизировать. Руководитель хорошо знает работу в целом, но не в состоянии вникнуть в детали работы каждого рядового сотрудника. Рядовой сотрудник хорошо знает, что творится на его рабочем месте, но может не знать, как работают коллеги. Поэтому для описания работы предприятия необходимо построить модель, которая будет адекватна предметной области и содержать в себе знания всех участников бизнес-процессов организации.

Наиболее удобным языком моделирования бизнес-процессов является IDEF0 , где система представляется как совокупность взаимодействующих работ или функций. Такая чисто функциональная ориентация является принципиальной - функции системы анализируются независимо от объектов, которыми они оперируют. Это позволяет более четко смоделировать логику и взаимодействие процессов организации.

Процесс моделирования системы в IDEF0 начинается с создания контекстной диаграммы - диаграммы наиболее абстрактного уровня описания системы в целом, содержащей определение субъекта моделирования, цели и точки зрения на модель.

Под субъектом понимается сама система, при этом необходимо точно установить, что входит в систему, а что лежит за ее пределами, другими словами, определить, что будет в дальнейшем рассматриваться как компоненты системы, а что как внешнее воздействие. На определение субъекта системы будут существенно влиять позиция, с которой рассматривается система, и цель моделирования - вопросы, на которые построенная модель должна дать ответ. Другими словами, в начале необходимо определить область моделирования. Описание области как системы в целом, так и ее компонентов является основой построения модели. Хотя предполагается, что в ходе моделирования область может корректироваться, она должна быть в основном сформулирована изначально, поскольку именно область определяет направление моделирования. При формулировании области необходимо учитывать два компонента - широту и глубину. Широта подразумевает определение границ модели - что будет рассматриваться внутри системы, а что снаружи. Глубина определяет, на каком уровне детализации модель является завершенной. При определении глубины системы необходимо помнить об ограничениях времени - трудоемкость построения модели растет в геометрической прогрессии с увеличением глубины декомпозиции. После определения границ модели предполагается, что новые объекты не должны вноситься в моделируемую систему.

Цель моделирования

Цель моделирования определяется из ответов на следующие вопросы:

  • Почему этот процесс должен быть смоделирован?
  • Что должна показывать модель?
  • Что может получить клиент?

Точка зрения (Viewpoint).

Под точкой зрения понимается перспектива, с которой наблюдалась система при построении модели. Хотя при построении модели учитываются мнения различных людей, все они должны придерживаться единой точки зрения на модель. Точка зрения должна соответствовать цели и границам моделирования. Как правило, выбирается точка зрения человека, ответственного за моделируемую работу в целом.

IDEF0 -модель предполагает наличие четко сформулированной цели, единственного субъекта моделирования и одной точки зрения. Для внесения области, цели и точки зрения в модели IDEF0 в BPwin следует выбрать пункт меню Model/Model Properties, вызывающий диалог Model Properties (рис. 7.3). В закладке Purpose следует внести цель и точку зрения, а в закладку Definition - определение модели и описание области.


Рис. 7.3.

В закладке Status того же диалога можно описать статус модели (черновой вариант, рабочий, окончательный и т. д.), время создания и последнего редактирования (отслеживается в дальнейшем автоматически по системной дате). В закладке Source описываются источники информации для построения модели (например, "Опрос экспертов предметной области и анализ документации"). Закладка General служит для внесения имени проекта и модели, имени и инициалов автора и временных рамок модели - AS-IS и ТО-ВЕ.

BPwin и Erwin. CASE-средства для разработки информационных систем Маклаков Сергей Владимирович

1. Создание модели процессов в BPwin

1. Создание модели процессов в BPwin

1.1. Инструментальная среда BPwin

BPwin имеет достаточно простой и интуитивно понятный интерфейс пользователя, дающий возможность аналитику создавать сложные модели при минимальных усилиях. Ниже будет описан интерфейс версии 2.5.

Рис. 1.1. Интегрированная среда разработки модели BPwin 2.5

При запуске BPwin по умолчанию появляется основная панель инструментов, палитра инструментов (вид которой зависит от выбранной нотации) и, в левой части, навигатор модели - Model Explorer (рис. 1.1).

Функциональность панели инструментов доступна из основного меню Bpwin (табл. 1.1).

Таблица 1.1. Описание элементов управления основной панели инструментов Bpwin2.5

Элемент управления Описание Соответствующий пункт меню
Создать новую модель File/New
Открыть модель File/Open
Сохранить модель File/Save
Напечатать модель File/Print

Выбор масштаба View/Zoom
Масштабирование View/Zoom
Проверка правописания Tools/Spelling
Включение и выключение навигатора модели Model Explorer View/Model Explorer
Включение и выключение дополнительной панели инструментов работы с ModelMart ModelMart

При создании новой модели возникает диалог, в котором следует указать, будет ли создана модель заново, или она будет открыта из файла либо из репозитория ModelMart, внести имя модели и выбрать методологию, в которой будет построена модель (рис. 1.2).

Как было указано выше, BPwin поддерживает три методологии - IDEF0, IDEF3 и DFD, каждая из которых решает свои специфические задачи. В BPwin возможно построение смешанных моделей, т. е. модель может содержать одновременно как диаграммы IDEF0, так и IDEF3 и DFD. Состав палитры инструментов изменяется автоматически, когда происходит переключение с одной нотации на другую, поэтому палитра инструментов будет рассмотрена позже.

Рис. 1.2. Диалог создания модели

Модель в BPwin рассматривается как совокупность работ, каждая из которых оперирует с некоторым набором данных. Работа изображается в виде прямоугольников, данные - в виде стрелок. Если щелкнуть по любому объекту модели левой кнопкой мыши, появляется всплывающее контекстное меню, каждый пункт которого соответствует редактору какого-либо свойства объекта.

Установка цвета и шрифта объектов. Пункты контекстного меню Font Editor и Color Editor вызывают соответствующие диалоги для установки шрифта (в том числе его размера и стиля) и цвета объекта. Кроме того, BPwin позволяет установить шрифт по умолчанию для объектов определенного типа на диаграммах и в отчетах. Для этого следует выбрать меню Tools/Default Fonts, после чего появляется каскадное меню, каждый пункт которого служит для установки шрифтов для определенного типа объектов:

Context Activity - работа на контекстной диаграмме;

Context Arrow - стрелки на контекстной диаграмме;

Decomposition Activity - работы на диаграмме декомпозиции;

Decomposition Arrow - стрелки на диаграмме декомпозиции;

NodeTree Text - текст на диаграмме дерева узлов;

Frame User Text - текст, вносимый пользователем в каркасе диаграмм;

Frame System Text - системный текст в каркасе диаграмм;

Text Blocks - текстовые блоки;

Parent Diagram Text - текст родительской диаграммы;

Parent Diagram Title Text - текст заголовка родительской диаграммы;

Report Text - текст отчетов.

Из книги Модель зрелости процессов разработки программного обеспечения автора Паулк Марк

1.3. Обзор модели зрелости процессов разработки Хотя зачастую инженеры-разработчики и менеджеры хорошо осведомлены о своих проблемах, их взгляды на то, какие усовершенствования являются наиболее важными, могут быть различными. Без организованной стратегии

Из книги Практика и проблематика моделирования бизнес-процессов автора Всяких Е И

ГЛАВА 3. РАБОЧЕЕ ОПРЕДЕЛЕНИЕ МОДЕЛИ ЗРЕЛОСТИ ПРОЦЕССОВ РАЗРАБОТКИ ПО Модель СММ является структурой, представляющей последовательность усовершенствований, которые рекомендуются для организаций-разработчиков, желающих повысить продуктивность своего

Из книги BPwin и Erwin. CASE-средства для разработки информационных систем автора

Из книги Моделирование бизнес-процессов с BPwin 4.0 автора Маклаков Сергей Владимирович

Из книги автора

Из книги автора

1.3. Создание отчетов в BPwin BPwin имеет мощный инструмент генерации. Отчеты по модели вызываются из пункта меню Report. Всего имеется семь типов отчетов:Model Report. Этот отчет уже упоминался в 1.2.1. Он включает информацию о контексте модели - имя модели, точку зрения, область, цель, имя

Из книги автора

1.5. Дополнение созданной модели процессов диаграммами DFD и Workflow (IDEF3) 1.5.1. Диаграммы потоков данных (Data Flow Diagramming) Диаграммы потоков данных (Data flow diagramming, DFD) используются для описания документооборота и обработки информации. Подобно IDEF0, DFD представляет модельную систему как

Из книги автора

4.2. Создание модели данных на основе объектной модели с помощью ERwin Translation Wizard Rational Rose позволяет строить объектную модель, но не может построить качественную физическую модель данных. Для решения этой задачи фирмой PLATINUM technology выпущена утилита ERwin Translation Wizard, позволяющая

Из книги автора

1.4. Дополнение созданной модели процессов организационными диаграммами, диаграммами DFD и Workflow (IDEF3) 1.4.1. Диаграммы потоков данных (Data Flow Diagramming) Диаграммы потоков данных (Data flow diagramming, DFD) используются для описания документооборота и обработки информации. Подобно IDEF0, DFD

Из книги автора

2.1. Создание отчетов в BPwin 2.1.1. Встроенные шаблоны отчетов Существует три способа создания отчетов в BPwin 4.0:с помощью встроенных шаблонов;с помощью Report Template Builder;с помощью RPTwin.Для создания отчетов по функциональной модели можно также использовать генераторы отчетов

Из книги автора

Глава 3. Связывание модели процессов и модели данных 3.1. Модель данных и ее соответствие модели процессов Функциональная модель BPwin является основой для построения модели данных. Действительно, не имея информации о том, как работает предприятие, бессмысленно строить

Из книги автора

3.1. Модель данных и ее соответствие модели процессов Функциональная модель BPwin является основой для построения модели данных. Действительно, не имея информации о том, как работает предприятие, бессмысленно строить модель данных. Для построения модели данных удобно

Из книги автора

Из книги автора

3.3. Создание сущностей и атрибутов BPwin и их экспорт в ERwin Если в процессе связывания стрелок с объектами модели данных окажется, что каких-либо сущностей или атрибутов не хватает, их можно добавить прямо в BPwin, а затем экспортировать в ERwin.Для редактирования сущностей

Из книги автора

Глава 4. Практикум. Создание функциональной модели с помощью BPwin 4.0 4.1. Упражнение 1. Создание контекстной диаграммы Гл. 4 содержит 16 упражнений, предназначенных для самостоятельной работы. Цель упражнений - дать читателю навык создания и редактирования функциональных

Из книги автора

4.14. Упражнение 14. Создание модели ТО-ВЕ (реинжиниринг бизнес-процессов) Модель ТО-ВЕ создается на основе анализа модели AS-IS. Анализ может проводиться как по формальным признакам (отсутствие выходов или управлений у работ, отсутствие обратных связей и т. д.), так и по