Параметры аналоговой входной информации. Динамический диапазон, свободный от гармоник. Аналого-цифровой преобразователь с поразрядным уравновешиванием

  • 30.04.2019

Четырёхканальный аналого-цифровой преобразователь

Аналого-цифровое преобразование электрических сигналов подобно взвешиванию груза на рычажных весах. Итальянский математик Фибоначчи (1170-(1228-1250)) сформулировал задачу наименьшего числа гирь для взвешивания грузов наибольшего диапазона на рычажных весах, которая стала известна под названием «задача о гирях». Решив эту задачу, Фибоначчи пришёл к выводу, что наименьшее число гирь получается при выборе весов гирь в позиционной симметричной троичной системе счисления . Из этого следует, что наиболее оптимальными аналого-цифровыми преобразователями являются аналого-цифровые преобразователи, работающие в позиционной симметричной троичной системе счисления. Из этого следует также вывод, что «электронное взвешивание» намного отстаёт от механического взвешивания, в котором к позиционной симметричной троичной системе счисления пришли ещё в XII веке. Математика «электронного взвешивания» находится ниже уровня математики механического взвешивания XII века. Следует также отметить, что Фибоначчи в своей задаче не учитывал число взвешиваний. При учёте числа взвешиваний (числа итераций при «электронном взвешивании») оказывается, что наименьшее число взвешиваний (итераций) также происходит при выборе позиционной симметричной троичной системы счисления.

Разрешение

Разрешение АЦП - минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП. Обычно измеряется в вольтах, поскольку для большинства АЦП входным сигналом является электрическое напряжение. В случае единичного измерения без учёта шумов разрешение напрямую зависит от разрядности АЦП.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. Измеряется в битах . Например, АЦП, способный выдать 256 дискретных значений (0..255), имеет разрядность 8 бит, поскольку 2 8 = 256 .

Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:

  • Пример 1
    • Диапазон входных значений = от 0 до 10 вольт
    • Разрядность АЦП 12 бит: 2 12 = 4096 уровней квантования
    • Разрешение по напряжению: (10-0)/4096 = 0,00244 вольт = 2,44 мВ
  • Пример 2
    • Диапазон входных значений = от −10 до +10 вольт
    • Разрядность АЦП 14 бит: 2 14 = 16384 уровней квантования
    • Разрешение по напряжению: (10-(-10))/16384 = 20/16384 = 0,00122 вольт = 1,22 мВ

На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (effective number of bits - ENOB), которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумлённого сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение С/Ш входного сигнала должно быть примерно 6 дБ на каждый бит разрядности.

Типы преобразования

Линейные АЦП

Большинство АЦП считаются линейными, хотя аналого-цифровое преобразование по сути является нелинейным процессом (поскольку операция отображения непрерывного пространства в дискретное - операция нелинейная). Термин линейный применительно к АЦП означает, что диапазон входных значений, отображаемый на выходное цифровое значение, связан по линейному закону с этим выходным значением, то есть выходное значение k достигается при диапазоне входных значений от

m (k + b ) m (k + 1 + b ),

где m и b - некоторые константы. Константа b , как правило, имеет значение 0 или −0.5. Если b = 0, АЦП называют квантователь с ненулевой ступенью (mid-rise ), если же b = −0,5, то АЦП называют квантователь с нулём в центре шага квантования (mid-tread ).

Нелинейные АЦП

Важным параметром, описывающим нелинейность, является интегральная нелинейность (INL) и дифференциальная нелинейность (DNL).

Апертурная погрешность (джиттер)

Пусть мы оцифровываем синусоидальный сигнал x (t ) = A sin2πf 0 t . В идеальном случае отсчёты берутся через равные промежутки времени. Однако в реальности время момента взятия отсчёта подвержено флуктуациям из-за дрожания фронта синхросигнала (clock jitter ). Полагая, что неопределённость момента времени взятия отсчёта порядка Δt , получаем, что ошибка, обусловленная этим явлением, может быть оценена как

Легко видеть, что ошибка относительно невелика на низких частотах, однако на больших частотах она может существенно возрасти.

Эффект апертурной погрешности может быть проигнорирован, если её величина сравнительно невелика по сравнению с ошибкой квантования. Таким образом, можно установить следующие требования к дрожанию фронта сигнала синхронизации:

где q - разрядность АЦП.

Разрядность АЦП Максимальная частота входного сигнала
44,1 кГц 192 кГц 1 МГц 10 МГц 100 МГц
8 28,2 нс 6,48 нс 1,24 нс 124 пс 12,4 пс
10 7,05 нс 1,62 нс 311 пс 31,1 пс 3,11 пс
12 1,76 нс 405 пс 77,7 пс 7,77 пс 777 фс
14 441 пс 101 пс 19,4 пс 1,94 пс 194 фс
16 110 пс 25,3 пс 4,86 пс 486 фс 48,6 фс
18 27,5 пс 6,32 пс 1,21 пс 121 фс 12,1 фс
24 430 фс 98,8 фс 19,0 фс 1,9 фс 190 ас

Из этой таблицы можно сделать вывод о целесообразности применения АЦП определённой разрядности с учётом ограничений, накладываемых дрожанием фронта синхронизации (clock jitter ). Например, бессмысленно использовать прецизионный 24-битный АЦП для записи звука, если система распределения синхросигнала не в состоянии обеспечить ультрамалой неопределённости.

Частота дискретизации

Аналоговый сигнал является непрерывной функцией времени , в АЦП он преобразуется в последовательность цифровых значений. Следовательно, необходимо определить частоту выборки цифровых значений из аналогового сигнала. Частота, с которой производятся цифровые значения, получила название частота дискретизации АЦП.

Непрерывно меняющийся сигнал с ограниченной спектральной полосой подвергается оцифровке (то есть значения сигнала измеряются через интервал времени T - период дискретизации) и исходный сигнал может быть точно восстановлен из дискретных во времени значений путём интерполяции . Точность восстановления ограничена ошибкой квантования. Однако в соответствии с теоремой Котельникова-Шеннона точное восстановление возможно только если частота дискретизации выше, чем удвоенная максимальная частота в спектре сигнала.

Поскольку реальные АЦП не могут произвести аналого-цифровое преобразование мгновенно, входное аналоговое значение должно удерживаться постоянным по крайней мере от начала до конца процесса преобразования (этот интервал времени называют время преобразования ). Эта задача решается путём использования специальной схемы на входе АЦП - устройства выборки-хранения - УВХ . УВХ, как правило, хранит входное напряжение в конденсаторе , который соединён со входом через аналоговый ключ: при замыкании ключа происходит выборка входного сигнала (конденсатор заряжается до входного напряжения), при размыкании - хранение. Многие АЦП, выполненные в виде интегральных микросхем содержат встроенное УВХ.

Наложение спектров (алиасинг)

Все АЦП работают путём выборки входных значений через фиксированные интервалы времени. Следовательно, выходные значения являются неполной картиной того, что подаётся на вход. Глядя на выходные значения, нет никакой возможности установить, как себя вёл входной сигнал между выборками. Если известно, что входной сигнал меняется достаточно медленно относительно частоты дискретизации, то можно предположить, что промежуточные значения между выборками находятся где-то между значениями этих выборок. Если же входной сигнал меняется быстро, то никаких предположений о промежуточных значениях входного сигнала сделать нельзя, а следовательно, невозможно однозначно восстановить форму исходного сигнала.

Если последовательность цифровых значений, выдаваемая АЦП, где-либо преобразуется обратно в аналоговую форму цифро-аналоговым преобразователем , желательно, чтобы полученный аналоговый сигнал был максимально точной копией исходного сигнала. Если входной сигнал меняется быстрее , чем делаются его отсчёты, то точное восстановление сигнала невозможно, и на выходе ЦАП будет присутствовать ложный сигнал. Ложные частотные компоненты сигнала (отсутствующие в спектре исходного сигнала) получили название alias (ложная частота, побочная низкочастотная составляющая). Частота ложных компонент зависит от разницы между частотой сигнала и частотой дискретизации. Например, синусоидальный сигнал с частотой 2 кГц, дискретизованный с частотой 1.5 кГц был бы воспроизведён как синусоида с частотой 500 Гц. Эта проблема получила название наложение частот (aliasing ).

Для предотвращения наложения спектров сигнал, подаваемый на вход АЦП, должен быть пропущен через фильтр низких частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Этот фильтр получил название anti-aliasing (антиалиасинговый) фильтр, его применение чрезвычайно важно при построении реальных АЦП.

Хотя наложение спектров в большинстве случаев является нежелательным эффектом, его можно использовать во благо. Например, благодаря этому эффекту можно обойтись без преобразования частоты вниз при оцифровке узкополосного высокочастотного сигнала (смотри смеситель). Для этого, однако, входные аналоговые каскады АЦП должны иметь значительно более высокие параметры, чем это требуется для стандартного использования АЦП на основной (видео или низшей) гармонике.

Подмешивание псевдослучайного сигнала (dither)

Некоторые характеристики АЦП могут быть улучшены путём использования методики подмешивания псевдослучайного сигнала (англ. dither ). Она заключается в добавлении к входному аналоговому сигналу случайного шума (белый шум) небольшой амплитуды. Амплитуда шума, как правило, выбирается на уровне половины МЗР. Эффект от такого добавления заключается в том, что состояние МЗР случайным образом переходит между состояниями 0 и 1 при очень малом входном сигнале (без добавления шума МЗР был бы в состоянии 0 или 1 долговременно). Для сигнала с подмешанным шумом вместо простого округления сигнала до ближайшего разряда происходит случайное округление вверх или вниз, причём среднее время, в течение которого сигнал округлён к тому или иному уровню зависит от того, насколько сигнал близок к этому уровню. Таким образом, оцифрованный сигнал содержит информацию об амплитуде сигнала с разрешающей способностью лучше, чем МЗР, то есть происходит увеличение эффективной разрядности АЦП. Негативной стороной методики является увеличение шума в выходном сигнале. Фактически, ошибка квантования размазывается по нескольким соседним отсчётам. Такой подход является более желательным, чем простое округление до ближайшего дискретного уровня. В результате использования методики подмешивания псевдослучайного сигнала мы имеем более точное воспроизведение сигнала во времени. Малые изменения сигнала могут быть восстановлены из псевдослучайных скачков МЗР путём фильтрации. Кроме того, если шум детерминирован (амплитуда добавляемого шума точно известна в любой момент времени), то его можно вычесть из оцифрованного сигнала, предварительно увеличив его разрядность, тем самым почти полностью избавиться от добавленного шума.

Звуковые сигналы очень малых амплитуд, оцифрованные без псевдослучайного сигнала, воспринимаются на слух очень искажёнными и неприятными. При подмешивании псевдослучайного сигнала истинный уровень сигнала представлен средним значением нескольких последовательных отсчётов.

Для большинства АЦП разрядность составляет от 6 до 24 бит , частота дискретизации до 1 МГц. Мега- и гигагерцовые АЦП также доступны (февраль 2002). Мегагерцовые АЦП требуются в цифровых видеокамерах , устройствах видеозахвата и цифровых TV-тюнерах для оцифровки полного видеосигнала. Коммерческие АЦП обычно имеют выходную ошибку от ±0,5 до ±1,5 МЗР.

Один из факторов увеличивающих стоимость микросхем - это количество выводов , поскольку они вынуждают делать корпус микросхемы больше, и каждый вывод должен быть присоединён к кристаллу. Для уменьшения количества выводов часто АЦП, работающие на низких частотах дискретизации, имеют последовательный интерфейс . Применение АЦП с последовательным интерфейсом зачастую позволяет увеличить плотность монтажа и создать плату с меньшей площадью.

Часто микросхемы АЦП имеют несколько аналоговых входов, подключённых внутри микросхемы к единственному АЦП через аналоговый мультиплексор . Различные модели АЦП могут включать в себя устройства выборки-хранения, инструментальные усилители или высоковольтный дифференциальный вход и другие подобные цепи.

Применение АЦП в звукозаписи

АЦП встроены в большую часть современной звукозаписывающей аппаратуры, поскольку обработка звука делается, как правило, на компьютерах; даже при использовании аналоговой записи АЦП необходим для перевода сигнала в PCM -поток, который будет записан на компакт-диск .

Современные АЦП, используемые в звукозаписи, могут работать на частотах дискретизации до 192 кГц . Многие люди, занятые в этой области, считают, что данный показатель избыточен и используется из чисто маркетинговых соображений (об этом свидетельствует теорема Котельникова-Шеннона). Можно сказать, что звуковой аналоговый сигнал не содержит столько информации, сколько может быть сохранено в цифровом сигнале при такой высокой частоте дискретизации, и зачастую для Hi-Fi (класс аппаратуры) аудиотехники используется частота дискретизации 44.1 кГц (стандартная для CD) или 48 кГц (типична для представления звука в компьютерах). Однако широкая полоса упрощает и удешевляет реализацию антиалиасинговых фильтров, позволяя делать их с меньшим числом звеньев или с меньшей крутизной в полосе заграждения, что положительно сказывается на фазовой характеристике фильтра в полосе пропускания.

Аналого-цифровые преобразователи для звукозаписи имеют широкий диапазон цен - от $100 до $10 000 и выше за двухканальный АЦП.

АЦП для звукозаписи, используемые на ЭВМ , бывают внутренние и внешние. Также существует бесплатный программный комплекс PulseAudio для Linux, позволяющий использовать вспомогательную(-ые) ЭВМ как внешние ЦАП/АЦП для основной ЭВМ с гарантированным временем запаздывания.

Другие применения

Аналого-цифровое преобразование используется везде, где требуется обрабатывать, хранить или передавать сигнал в цифровой форме.

  • Быстрые видео АЦП используются, например, в TV-тюнерах .
  • Медленные встроенные 8, 10, 12 или 16-битные АЦП часто входят в состав микроконтроллеров .
  • Очень быстрые АЦП необходимы в цифровых осциллографах .
  • Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика .
  • АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора .
  • Так же сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС

Примечания

См. также

Ссылки

  • Вольфганг Райс. Устройство и принципы действия аналого-цифровых преобразователей различных типов WBC GmbH Журнал «Компоненты и технологии» № 3 2005
  • Аналого-цифровые преобразователи, теория и принципы работы с сайта Рынок Микроэлектроники

Любой АЦП является сложным электрон­ным устройством, которое может быть выполнено в виде одной интегральной микросхемы или содержать большое количество различных электронных компо­нентов. В связи с этим характеристики АЦП зависят не только от его построения, но и от характеристик элементов, которые входят в его состав. Большинство АЦП оценивают по их основным метрологическим показателям, которые можно разделить на две группы: статические и динамические.

К статическим характеристикам АЦП относят: абсолютные значения и поляр­ности входных сигналов, входное сопротивление, значения и полярности выход­ных сигналов, выходное сопротивление, значения напряжений и токов источников питания, количество двоичных или десятичных разрядов выходного кода, погрешности преобразования постоянного напряжения и др.

К динамическим па­раметрам АЦП относят: время преобразования, максимальную частоту дискрети­зации, апертурное время, динамическую погрешность и др.

Рассмотрим некоторые из этих параметров более подробно. Основной харак­теристикой АЦП является его разрешающая способность , которую принято опре­делять величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Разрешающую способность можно выражать в процентах, в количе­стве разрядов или в относительных единицах.

Например, 10-разрядный АЦП име­ет разрешающую способность (1024) -1 » 10 -3 = 0,1 %. Если напряжение шкалы для такого АЦП равно 10 В, то абсолютное значение разрешающей способности будет около 10 мВ.

Реальное значение разрешающей способности отличается от расчетного из-за погрешностей АЦП. Точность АЦП определяется значениями абсолютной погрешности, дифференциальной и интегральной нелинейности. Абсолютную по­грешность АЦП определяют в конечной точке характеристики преобразования, поэтому ее обычно называют погрешностью полной шкалы и измеряют в едини­цах младшего разряда.

Дифференциальную нелинейность (DNL) определяют через идентичность двух соседних приращений сигнала, т. е. как разность напряжений двух соседних квантов: DNL = hi-h i +1 . Определение дифференциальной нелинейности показано на рис. 2.3 а.



Интегральная нелинейность АЦП (INL) характеризует идентичность прираще­ний во всем диапазоне входного сигнала. Обычно ее определяют, как показано на рис. 2.3 б, по максимальному отклонению сглаженной характеристики преобра­зования от идеальной прямой линии, т. е. INL = u i " – u i .

Время преобразования Т пр обычно определяют как интервал времени от начала преобразования до появления на выходе АЦП устойчивого кода входного сигна­ла. Для одних типов АЦП это время постоянное и не зависит от значения входно­го сигнала, для других ацп это время зависит от значения входного сигнала. Если АЦП работает без устройства выборки и хранения, то время преобразова­ния является апертурным временем.

Максимальная частота дискретизации - его частота, с которой возможно преобразование входного сигнала, при условии, что выбранный параметр (например, абсолютная погрешность) не выходит за заданные пределы. Иногда максимальную частоту преобразования принимают равной обратной величине времени преобразования. Однако это пригодно не для всех типов АЦП.

Рис. 2.3. Определение дифференциальной нелинейности (а)

и интегральной нелинейности (б)

Принципы построения АЦП

Все типы используемых АЦП можно разделить по признаку измеряемого значения напряжения на две группы: АЦП мгновенных значений напряжения и АЦП средних значений напряжения (интегрирующие АЦП). Рассмотрим вначале АЦП, которые позволяют определять код мгновен­ного значения напряжения, а затем рассмотрим интегрирующие АЦП и особенно­сти их использования.

АЦП мгновенных значений можно разделить на следующие основные виды: пос­ледовательного счета, последовательного приближения, параллельные, параллель­но-последовательные и с промежуточным преобразованием в интервал времени.

Структурная схема АЦП последовательного счета приведена на рис. 2.4а. Она содержит компаратор, при помощи которого выполняется сравнение входно­го напряжения с напряжением обратной связи. На прямой вход компаратора поступает входной сигнал u вх , а на инвертирующий - напряжение u 5 обратной связи. Работа преобразователя начинается с приходом импульса «ПУСК» от схе­мы управления (на рисунке она не показана), который замыкает ключ S. Через замкнутый ключ S импульсы u 1 от генератора тактовых импульсов поступают на счетчик, который управляет работой цифро-аналогового преобразователя (ЦАП). В результате последовательного увеличения выходного кода счетчика происхо­дит последовательное ступенчатое увеличение выходного напряжения u 5 ЦАП. Питание ЦАП выполняется от источника опорного напряжения u 4 .

Когда выходное напряжение ЦАП сравняется с входным.напряжением, про­изойдет переключение компаратора и по его выходному сигналу «СТОП» ра­зомкнется ключ S. В результате импульсы от генератора перестанут поступать на вход счетчика. Выходной код, соответствующий равенству u вх = u 5 снимается с выходного регистра счетчика.

Рис. 2.4. Структурная схема АЦП последовательного счета (а)

и графики процесса преобразования (б)

Графики, иллюстрирующие процесс преобразования напряжения в цифровой код, приведены на рис. 2.4 б. Из этих графиков видно, что время преобразования переменное и зависит от уровня входного сигнала. При числе двоичных разрядов счетчика, равном n , и периоде следования счетных импульсов Т максимальное время преобразования можно определить по формуле:

Т пр = (2 n - 1)T. (2.4)

Так, например, при n = 10 разрядов и T = 1мкс (т.е. при тактовой частоте 1 МГц) максимальное время преобразования равно

Т пр = (2 10 - 1) = 1024мкс » 1 мс .

что обеспечивает максимальную частоту преобразования около 1 кГц.

Уравнение преобразования АЦП последовательного счета можно записать в виде:

kDU = u вх,

где 0 < k < n - число ступеней до момента сравнения, DU = h - значение одной ступени, т. е. шаг квантования.

Структурная схема АЦП последовательного приближения приведена на рис. 2.5 а . По сравнению со схемой АЦП последовательного счета в ней сделано одно существенное изменение - вместо счетчика введен регистр последовательно­го приближения (РПП). Это изменило алгоритм уравновешивания и сократило время преобразования.

В основе работы АЦП с РПП лежит принцип дихотомии, т. е. последователь­ного сравнения преобразуемого напряжения u вх с 1/2, 1/4, 1/8 и т. д. возможного максимального его значения U m . Это позволяет для n -разрядного АЦП выполнить весь процесс преобразования за п последовательных шагов приближения (ите­раций) вместо (2 n -1) при использовании последовательного счета, и получить существенный выигрыш в быстродействии. График процесса преобразования АЦП с РПП показан на рис. 2.5 б.

Рис. 2.5. Структурная схема АЦП последовательного приближения (а),

графики процесса преобразования (б) и диаграмма переходов

для трехразрядного АЦП (в)

В качестве примера на рис. 2.5 в показана диаграмма переходов для трехраз­рядного АЦП последовательного приближения. Поскольку на каждом шаге про­изводится определение значения одного разряда, начиная со старшего, то такой АЦП часто называют АЦП поразрядного уравновешивания. При первом сравне­нии определяется - больше или меньше напряжение u вх, чем Um/2. На следующем шаге определяется, в какой четверти диапазона находится u вх . Каждый последую­щий шаг вдвое сужает область возможного результата.

При каждом шаге сравнения компаратор формирует импульсы, соответствую­щие состоянию «больше-меньше» (1 или 0), управляющие регистром последова­тельных приближений.

Структурная схема параллельного АЦП приведена на рис. 2.6. Преобразова­тель осуществляет одновременное квантование входного сигнала u вх с помощью набора компараторов, включенных параллельно источнику сигнала. Пороговые уровни компараторов установлены с помощью резистивного делителя в соответ­ствии с используемой шкалой квантования. При подаче на входы компараторов сигнала u вх на их выходах получим квантованный сигнал, представленный в уни­тарном коде.

Рис. 2.6. Структурная схема параллельного АЦП

Для преобразования унитарного кода в двоичный (или двоично-десятичный) используют кодирующий преобразователь. При работе в двоичном коде все рези­сторы делителя имеют одинаковые сопротивления R. Время преобразования тако­го преобразователя составляет один такт, т. е. Т пр = Т . Параллельные преобразова­тели являются в настоящее время самыми быстрыми и могут работать с частотой дискретизации свыше 100 МГц.

Делитель опорного напряжения представляет собой набор низкоомных резисторов с сопротивлением около 1 Ом. По выводу «Коррекция» возможно про­ведение коррекции напряжения смещения нулевого уровня на входе, а по выводу U оп2 - абсолютной погрешности преобразования в конечной точке шкалы. Номи­нальные значения опорных напряжений имеют значения: U оп1 = - 0,075 ... 0 B, и U оп2 = -2,1 ... -1,9 В. Типовая задержка срабатывания компараторов около 7 нс.

Структурная схема последовательно-параллельного АЦП приведена на рис. 2.7. Такой АЦП работает в несколько тактов. В первом такте АЦП преобразует стар­шие разряды входного напряжения u вх в цифровой код (на схеме это разряды 2 3 ... 2 5). Затем во втором такте эти разряды преобразуются с помощью ЦАП в напряжение, которое вычитается из входного сигнала в вычитающем устройстве ВУ. В третьем такте АЦП 2 преобразует полученную разность в код младших разрядов входного напряжения u вх .

Такие преобразователи характеризуется меньшим быстродействием по срав­нению с параллельными, но имеют меньшее число компараторов. Так, например, для 6-ти разрядного параллельного АЦП необходимо 64 компаратора, а для пос­ледовательно-параллельного АЦП - всего 16.

Количество каскадов в таких АЦП может быть увеличено, поэтому они часто называются многокаскадными или конвейерными. Выходной код таких АЦП представляет собой сумму кодов N = N 1 + N 2 + N 3 +..., вырабатываемых отдельными каскадами.

Рис. 2.7. Структурная схема параллельно-последовательного АЦП

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Назначение и классификация аналого-цифровых преобразователей.

2. Основные характеристики АЦП.

3. Основные принципы построения АЦП.

4. Схема АЦП последовательного счета.

5. Схема параллельного АЦП.

6. Схема параллельно-последовательного АЦП.

7. Схема АЦП последовательных приближений.


3 ВИДЫ ДВОИЧНЫХ КОДОВ

Лекция №3

«Аналого-цифровое и цифро-аналоговое преобразование».

В микропроцессорных системах роль импульсного элемента выполняет аналого-цифровой преобразователь (АЦП), а роль экстраполятора – цифро-аналоговый преобразователь (ЦАП).

Аналого-цифровое преобразование заключается в преобразовании информации, содержащейся в аналоговом сигнале, в цифровой код. Цифро-аналоговое преобразование призвано выполнять обратную задачу, т.е. преобразовывать число, представленное в виде цифрового кода, в эквивалентный аналоговый сигнал.

АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления для преобразования аналоговых сигналов обратных связей в коды, воспринимаемые цифровой частью системы. Т.о. АЦП выполняют несколько функций, таких как: временная дискретизация, квантование по уровню, кодирование. Обобщенная структурная схема АЦП представлена на рис.3.1.


На вход АЦП подается сигнал в виде тока или напряжения, который в процессе преобразования квантуется по уровню. Идеальная статическая характеристика 3-разрядного АЦП приведена на рис.3.2.


Входные сигналы могут принимать любые значения в диапазоне от – U max до U max , а выходные соответствуют восьми (2 3) дискретным уровням. Величина входного напряжения, при которой происходит переход от одного зачения выходного кода АЦП к другому соседнему значению, называется напряжением межкодового перехода . Разность между двумя смежными значениями межкодовых переходов называется шагом квантования или единицей младшего значащего разряда (МЗР) .Начальной точкой характеристики преобразования называется точка, определяемая значением входного сигнала, определяемого как

(3.1),

где U 0,1 – напряжение первого межкодового перехода, U LSB – шаг квантования (LSB – Least Significant Bit ). преобразования соответствует входному напряжению, определяемому соотношением

(3.2).

Область значений входного напряжения АЦП, ограниченная значениями U 0,1 и U N-1,N называется диапазоном входного напряжения .

(3.3).

Диапазон входного напряжения и величину младшего разряда N -разрядного АЦП и ЦАП связывает соотношение

(3.4).

Напряжение

(3.5)

называется напряжением полной шкалы (FSR – Full Scale Range ). Как правило, этот параметропределяется уровнем выходного сигнала источника опорного напряжения, подключенного к АЦП. Величина шага квантования или единицы младшего разряда т.о. равна

(3.6),

а величина единицы старшего значащего разряда

(3.7).

Как видно из рис.3.2, в процессе преобразования возникает ошибка, не превышающая по величине половины величины младшего разряда U LSB /2.

Существуют различные методы аналого-цифрового преобразования, различающиеся между собой по точности и быстродействию. В большинстве случаев эти характеристики антогонистичны друг другу. В настоящее время большое распространение получили такие типы преобразователей как АЦП последовательных приближений (поразрядного уравновешивания), интегрирующие АЦП, параллельные (Flash ) АЦП, «сигма-дельта» АЦП и др.

Структурная схема АЦП последовательных приближений представлена на рис.3.3.



Основными элементами устройства являются компаратор (К), цифро-аналоговый преобразователь (ЦАП) и схема логического управления. Принцип преобразования основан на последовательном сравнении уровня входного сигнала с уровнями сигналов соответствующих различным комбинациям выходного кода и формировании результирующего кода по результатам сравнений. Очередность сравниваемых кодов удовлетворяет правилу половинного деления. В начале преобразования входной код ЦАП устанавливается в состояние, в котором все разряды кроме старшего равны 0, а старший равен 1. При этой комбинации на выходе ЦАП формируется напряжение, равное половине диапазона входного напряжения. Это напряжение сравнивается со входным напряжением на компараторе. Если входной сигнал больше сигнала, поступающего с ЦАП, то старший разряд выходного кода устанавливается в 1, в противном случае он сбрасывается в 0. На следующем такте частично сформированный таким образом код снова поступает на вход ЦАП, в нем устанавливается в единицу следующий разряд и сравнение повторяется. Процесс продолжается до сравнения младшего бита. Т.о. для формирования N -разрядного выходного кода необходимо N одинаковых элементарных тактов сравнения. Это означает, что при прочих равных условиях быстродействие такого АЦП уменьшается с ростом его разрядности. Внутренние элементы АЦП последовательных приближений (ЦАП и компаратор) должны обладать точностными показателями лучше величины половины младшего разряда АЦП.

Структурная схема параллельного (Flash ) АЦП представлена на рис.3.4.



В этом случае входное напряжение подается для сравнения на одноименные входы сразу N -1 компараторов. На противоположные входы компараторов подаются сигналы с высокоточного делителя напряжения, который подключен к источнику опорного напряжения. При этом напряжения с выходов делителя равномерно распределены вдоль всего диапазона изменения входного сигнала. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору с активизированным выходным сигналом. Т.о. для обеспечения N -разрядного преобразования необходимо 2 N резисторов делителя и 2 N -1 компаратор. Это один из самых быстрых способов преобразования. Однако, при большой разрядности он требует больших аппаратных затрат. Точность всех резисторов делителя и компараторов снова должна быть лучше половины величины младшего разряда.

Структурная схема АЦП двойного интегрирования представлена на рис.3.5.



Основными элементами системы являются аналоговый коммутатор, состоящий из ключей SW 1, SW 2, SW 3, интегратор И, компаратор К и счетчик С. Процесс преобразования состоит из трех фаз (рис.3.6).



На первой фазе замкнут ключ SW 1, а остальные ключи разомкнуты. Через замкнутый ключ SW 1 входное напряжение подается на интегратор, который в течение фиксированного интервала времени интегрирует входной сигнал. По истечение этого интервала времени уровень выходного сигнала интегратора пропорционален значению входного сигнала. На втором этапе преобразования ключ SW 1 размыкается, а ключ SW 2 замыкается, и на вход интегратора подается сигнал с источника опорного напряжения. Конденсатор интегратора разряжается от напряжения, накопленного в первом интервале преобразования с постоянной скоростью, пропорциональной опорному напряжению. Этот этап длится до тех пор, пока выходное напряжение интегратора не упадет до нуля, о чем свидетельствует выходной сигнал компаратора, сравнивающего сигнал интегратора с нулем. Длительность второго этапа пропорциональна входному напряжению преобразователя. В течение всего второго этапа на счетчик помтупают высокочастотные импульсы с калиброванной частотой. Т.о. по истечению второго этапа цифровые показания счетчика пропорциональны входному напряжению. С помощью данного метода можно добиться очень хорошей точности не предъявляя высоких требований к точности и стабильности компонентов. В часности, стабильность емкости интегратора может быть не высокой, поскольку циклы заряда и разряда происходят со скоростью, обратно пропорциональной емкости. Болле того, ошибки дрейфа и смещения компарптора компенсируются благодаря тому, что каждый этап преобразования начинается и заканчивается на одном и том же напряжении. Для повышения точности используется третий этап преобразования, когда на вход интегратора через ключ SW 3 подается нулевой сигнал. Поскольку на этом этапе используется тот же интегратор и компаратор, то вычитание выходного значения ошибки при нуле из результата последующего измерения позволяет компенсировать ошибки, связанные с измерениями вблизи нуля. Жесткие требования не предъявляются даже к частоте тактовых импульсов, поступающих на счетчик, т.к. фиксированный интервал времени на первом этапе преобразования формируется из тех же самых импульсов. Жесткие требования предъявляются только к току разряда, т.е. к источнику опорного напряжения. Недостатком такого способа преобразования является невысокое быстродействие.

АЦП характеризуютя рядом параметров, позволяющих реализовать выбор конкретного устройства исходя из требований, предъявляемых к системе. Все параметры АЦП можно разделить на две группы: статические и динамические. Первые определяют точностные характеристики устройства при работе с неизменяющимся либо медленно изменяющимся входным сигналом, а вторые характеризуют быстродействие устройства как сохранение точности при увеличении частоты входного сигнала.

Уровню квантования, лежащему в окрестностях нуля входного сигнала соответствуют напряжения межкодовых переходов –0.5 U LSB и 0.5 U LSB (первый имеет место только в случае биполярного входного сигнала). Однако, в реальных устройствах, напряжения данных межкодовых переходов могут отличаться от этих идеальных значений. Отклонение реальных уровней этих напряжениймежкодовых переходов от их идеальных значений называется ошибкой биполярного смещения нуля (Bipolar Zero Error ) и ошибкой униполярного смещения нуля (Zero Offset Error ) соответственно. При биполярных диапазонах преобразования обычно используют ошибку смещения нуля, а при униполярных – ошибку униполярного смещения. Эта ошибка приводит к параллельному смещению реальной характеристики преобразования относительно идеальной характеристики вдорль оси абсцисс (рис.3.7).


Отклонение уровня входного сигнала соответствующего последнему межкодовому переходу от своего идеального значения U FSR -1.5 U LSB , называется ошибкой полной шкалы (Full Scale Error ).

Коэффициентом преобразования АЦП называется тангенс угла наклона прямой, проведенной через начальную и конечную точки реальной характеристики преобразования. Разность между действительным и идеальным значением коэффициента преобразования называется ошибкой коэффициента преобразования (Gain Error ) (рис.3.7).Она включает ошибки на концах шкалы, но не включает ошибки нуля шкалы. Для униполярного диапазона она определяется как разность между ошибкой полной шкалы и ошибкой униполярного смещения нуля, а для биполярного диапазона – как разность между ошибкой полной шкалы и ошибкой биполярного смещения нуля. По сути дела в любом случае это отклонение идеального расстояния между последним и первым межкодовыми переходами (равного U FSR -2 U LSB ) от его реального значения.

Ошибки смещения нуля и коэффициента преобразования можно скомпенсировать подстройкой предварительного усилителя АЦП. Для этого необходимо иметь вольтметр с точностью не хуже 0.1 U LSB . Для независимости этих двух ошибок сначала корректируют ошибку смещения нуля, а затем, ошибку коэффициента преобразования. Для коррекции ошибки смещения нуля АЦП необходимо:

1. Установить входное напряжение точно на уровне 0.5 U LSB ;

2. Подстраивать смещение предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 00…01.

Для коррекции ошибки коэффициента преобразования необходимо:

1. Установить входное напряжение точно на уровне U FSR -1.5 U LSB ;

2. Подстраивать коэффициент усиления предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 11…1.

Из-за не идеальности элементов схемы АЦП ступеньки в различных точках характеристики АЦП отличаются друг от друга по величине и не равны U LSB (рис.3.8).


Отклонение расстояния между серединами двух соседних реальных шагов квантования от идеального значения шага квантования U LSB называется дифференциальной нелинейностью (DNL – Differential Nonlinearity). Если DNL больше или равна U LSB , то у АЦП могут появиться так называемые “пропущенные коды” (рис.3.3). Это влечет локальное резкое изменение коэффициента передачи АЦП, что в замкнутых системах управления может привести к потере устойчивости.

Для тех приложений, где важно поддерживать выходной сигнал с заданной точностью, важно на солько точно выходные коды АЦП соответствуют напряжениям межкодовых переходов. Максимальное отклонение центра шага квантования на реальной характеристике АЦП от линеаризованной характеристики называется интегральной нелинейностью (INL – Integral Nonlinearity) или относительной точностью (Relative Accuracy) АЦП (рис.3.9).


Линеаризованная характеристика проводится через крайние точки реальной характеристики преобразования, после того, как они были откалиброваны, т.е. устранены ошибки смещения нуля и коэффициента преобразования.

Ошибки дифференциальной и интегральной нелинейности скомпенсировать простыми средствами практически невозможно.

Разрешающей способностью АЦП (Resolution ) называется величина, обратная максимальному числу кодовых комбинаций на выходе АЦП

(3.8).

Этот параметр определяет какой минимальный уровень входного сигнала (относительно сигнала полной амплитуды) способен воспринимать АЦП.

Точность и разрешающая способность – две независимые характеристики. Разрешающая способность играет определяющую роль тогда, когда важно обеспечить заданный динамический диапазон входного сигнала. Точность является определяющей, когда требуется поддерживать регулируемую величину на заданном уровне с фиксированной точностью.

Динамическим диапазоном АЦП (DR - Dinamic Range ) называется отношение максимального воспринимаемого уровня входного напряжения к минимальному, выраженное в дБ

(3.9).

Этот параметр определяет максимальное количество информации, которое способен передавать АЦП. Так, для 12-разрядного АЦП DR =72 дБ.

Характеристики реальных АЦП отличаются от характеристик идеальных устройств из-за неидеальности элементов реального устройства. Рассмотрим некоторые параметры, характеризующие реальные АЦП.

Отношением сигнал-шум (SNR – Signal to Noise Ratio ) называется отношение среднеквадратического значения входного синусоидального сигнала к среднеквадратическому значению шума, который определяется как сумма всех остальных спектральных компонент вплоть до половины частоты дискретизации, без учета постоянной составляющей. Для идеального N -разрядного АЦП, который генерирует лишь шум квантования SNR , выражаемый в децибелах, можно определить как


(3.10),

где N – разрядность АЦП. Так, для 12-разрядного идеального АЦП SNR =74 дБ. Это значение больше значения динамического диапазона такого же АЦП т.к. минимальный уровень воспринимаемого сигнала должен быть больше уровня шума. В данной формуле учитывается только шум квантования и не учитываются другие источники шума, существующие в реальных АЦП. Поэтому, значения SNR для реальных АЦП как правило ниже идеального. Типичным значением SNR для реального 12-разрядного АЦП является 68-70 дБ.

Если входной сигнал имеет размах меньше U FSR , то в последнюю формулу нужно внести корректировку

(3.11),

где К ОС – ослабление входного сигнала, выраженное в дБ. Так, если входной сигнал 12-разрядного АЦП имеет амплитуду в 10 раз меньше половины напряжения полной шкалы, то К ОС =-20 дБ и SNR =74 дБ – 20 дБ=54 дБ.

Значение реального SNR может быть использовано для определения эффективного количества разрядов АЦП (ENOB – Effective Number of Bits ). Оно определяется по формуле

(3.12).

Этот показатель может характеризовать действительную решающую способность реального АЦП, Так, 12-разрядный АЦП, у которого SNR =68 дБ для сигнала с К ОС =-20 дБ является на самом деле 7-разрядным (ENOB =7.68). Значение ENOB сильно зависит от частоты входного сигнала, т.е. эффективная разрядность АЦП падает с увеличением частоты.

Суммарный коэффициент гармоник (THD – Total Harmonic Distortion ) – это отношение суммы среднеквадратических значений всех высших гармоник к среднеквадратическому значению основной гармоники

(3.13),

где n обычно ограничивают на уровне 6 или 9. Этот параметр характеризует уровень гармонических искажений выходного сигнала АЦП по сравнения с входным. THD возрастает с частотой входного сигнала.

Полоса частот полной мощности (FPBW – Full Power Bandwidth ) – это максимальная частота входного сигнала с размахом, равным полной шкале, при которой амплитуда восстановленной основной составляющей уменьшается не более чем на 3 дБ. С ростом частоты входного сигнала аналоговые цепи АЦП перестают успевать отрабатывать его изменения с заданной точностью, что приводит к уменьшению коэффициента преобразования АЦП на высоких частотах.

Время установления (Settling Time ) – это время, необходимое АЦП для достижения номинальной точности после того, как на ее вход был подан ступенчатый сигнал с амплитудой, равной полному диапазонувходного сигнала. Этот параметр ограничен из-за конечного быстродействия различных узлов АЦП.

Вследствие различного рода погрешностей характеристика реального АЦП является нелинейной. Если на вход устройства с нелинейностями подать сигнал, спектр которого состоит из двух гармоник f a и f b , то в спектре выходного сигнала такого устройства кроме основных гармоник будут присутствовать интермодуляционные субгармоники с частотами , где m , n =1,2,3,… Субгармоники второго порядка – это f a + f b , f a - f b , субгармоники третьего порядка – это 2 f a + f b , 2 f a - f b , f a +2 f b , f a -2 f b . Если входные синусоиды имеют близкие частоты, расположенные вблизи верхнего края полосы пропускания, то субгармоники второго порядка далеко отстоят от входных синусоид и располагаются в области нижних частот, тогда как субгармоники третьего порядка имеют частоты, близкие к входным частотам.

Коэффициент интермодуляционных искажений (Intermodulatin Distortion ) – это отношение суммы среднеквадратических значений интермодуляционных субгармоник определенного порядка к сумме среднеквадратических значений основных гармоник, выраженное в дБ

(3.14).

Любой способ аналого-цифрового преобразования требует некоторого конечного времени для его выполнения. Под временем преобразования АЦП (Conversion Time ) понимается интервал времени от момента поступления аналогового сигнала на вход АЦП до момента появления соответствующего выходного кода. Если входной сигнал АЦП изменяется во времени, то конечное время преобразования АЦП приводит к появлению т.н. аппертурной погрешности (рис.3.10).



Сигнал начала преобразования поступает в момент t 0 , а выходной код появляется в момент t 1 . За это время входной сигнал успел измениться на величину D U . Возникает неопределенность: какому уровню значения входного сигнала в диапазоне U 0 – U 0 + D U соответствует данный выходной код. Для сохранения точности преобразования на уровне единицы младшего разряда необходимо чтобы за время преобразования изменение значения сигнала на входе АЦП составило бы не более величины единицы младшего разряда

(3.15).

Изменение уровня сигнала за время преобразования можно приблизительно вычислить как

(3.16),

где U in – входное напряжение АЦП, T c – время преобразования. Подставляя (3.16) в (3.15) получим

(3.17).

Если на входе действует синусоидальный сигнал с частотой f

(3.18),

то его производная будет равна

(3.19).

Она принимает максимальное значение когда косинус равен 1. Подставляя с учетом этого (3.9) в (3.7) получим

, или

(3.20)

Конечное время преобразования АЦП приводит к требованию ограничения скорости изменения входного сигнала. Для того, чтобы уменьшить апертурную погрешность и т.о. ослабить ограничение на скорость изменения входного сигнала АЦП на входе преобразователя устанавливается т.н. «устройство выборки-хранения» (УВХ) (Track / Hold Unit ). Упрощенная схема УВХ представлена на рис.3.11.



Это устройство имеет два режима работы: режим выборки и режим фиксации. Режим выборки соответствует замкнутому состоянию ключа SW . В этом режиме выходное напряжение УВХ повторяет его входное напряжение. Режим фиксации включается по команде размыкающей ключ SW . При этом связь между входом и выходом УВХ прерывается, а выходной сигнал поддерживается на постоянном уровне, соответствующем уровню входного сигнала на момент поступления команды фиксации за счет заряда, накопленного на конденсаторе. Т.о., если подать команду фиксации непосредственно перед началом преобразования АЦП, то выходной сигнал УВХ будет поддерживаться на неизменном уровне в течение всего времени преобразования. После окончания преобразования УВХ снова переводится в режим выборки. Работа реального УВХ несколько отличается от идеального случая, который был описан (рис.3.12).



(3.21),

где f – частота входного сигнала, t A – величина апертурной неопределенности.

В реальных УВХ выходной сигнал не может оставаться абсолютно неизменным в течение конечного времени преобразования. Конденсатор будет постепенно разряжаться маленьким входным током выходного буфера. Для сохранения требуемой точности необходимо чтобы за время преобразования заряд конденсатора не изменился больше чем на 0.5 U LSB .

Цифро-аналоговые преобразователи устанавливаются обычно на выходе микропроцессорной системы для преобразования ее выходных кодов в аналоговый сигнал, подаваемый на непрерывный объект регулирования. Идеальная статическая характеристика 3-разрядного ЦАП представлена на рис.3.13.


Начальная точка характеристики определяетсякак точка, соответствующая первому (нулевому) входному коду U 00…0 . Конечная точка характеристики определяетсякак точка, соответствующая последнему входному коду U 11…1 . Определения диапазона выходного напряжения, единицы младшего разряда квантования, ошибки смещения нуля, ошибки коэффициента преобразования аналогичны соответствующим характеристикам АЦП.

С точки зрения структурной организации у ЦАП наблюдается гораздо меньшее разнообразие вариантов построения преобразователя. Основной структурой ЦАП является т.н. “цепная R -2 R схема” (рис.3.14).



Легко показать, что входной ток схемы равен I in = U REF / R , а токи последовательных звеньев цепи соответственно I in /2, I in /4, I in /8 и т.д. Для преобразования входного цифрового кода в выходной ток достаточно собрать все токи плечей, соответствующих единицам во входном коде, в выходной точке преобразователя (рис.3.15).



Если к выходной точке преобразователя подключить операционный усилитель, то выходное напряжение можно определить как

(3.22),

где K – входной цифровой код, N – разрядность ЦАП.

Все существующие ЦАП делятся на две больших группы: ЦАП с выходом по току и ЦАП с выходом по напряжению. Различие между ними заключается в отсутствии или наличии у микросхемы ЦАП оконечного каскада на операционном усилителе. ЦАП с выходом по напряжению являются более завершенными устройствами и требуют меньше дополнительных элементов для своей работы. Однако, оконечный каскад наряду с параметрами лесничной схемы определяет динамические и точностные параметры ЦАП. Выполнить точный быстродействующий операционный усилитель на одном кристалле с ЦАП часто бывает затруднительно. Поэтому большинство быстродействующих ЦАП имеют выход по току.

Дифференциальная нелинейность для ЦАП определяется как отклонение расстояния между двумя соседними уровнями выходного аналогового сигнала от идеального значения U LSB . Большое значение дифференциальной нелинейности может привести к тому, что ЦАП станет немонотонным. Это означает, что увеличение цифрового кода будет приводить к уменьшению выходного сигнала на каком нибудь участке характеристики (рис.3.16). Это может приводить к нежелательной генерации в системе.


Интегральная нелинейность для ЦАП определяется как наибольшее отклонение уровня аналогового выходного сигнала от прямой линии, проведенной через точки, соответствующие первому и последнему коду, после того, как они отрегулированы.

Время установления ЦАП определяется как время, за которое выходной сигал ЦАП установится на заданном уровне с погрешностью не более 0.5 U LSB после того, как входной код изменился со значения 00…0 до значения 11…1. Если ЦАП имеет входные регистры, то определенная часть времени установления обусловлена фиксированной задержкой прохождения цифровых сигналов, и лишь оставшаяся часть – инерционностью самой схемы ЦАП. Поэтому время установления измеряют обычно не от момента поступления нового кода на вход ЦАП, а от момента начала изменения выходного сигнала, соответствующего новому коду, до момента установления выходного сигнала с точностью 0.5U LSB (рис.3.17) .



В этом случае время установления определяет максимальную частоту стробирования ЦАП

(3.23),

где t S – время установления.

Входные цифровые цепи ЦАП имеют конечное быстродействие. В добавок, скорость распространения сигналов, соответствующих различным разрядом входного кода, неодинакова вследствие разброса параметров элементов и схемных особенностей. В результате этого плечи лестничной схемы ЦАП при поступлении нового кода переключаются не синхронно, а с некоторой задержкой один относительно другого. Это приводит к тому, что в диаграмме выходного напряжения ЦАП, при переходе от одного установившегося значения к другому наблюдаются выбросы различной амплитуды и направленности (рис.3.18).




Согласно алгоритму работы, ЦАП представляет из себя экстраполятор нулевого порядка, частотная характеристика которого может быть представлена выражением

(3.24),

где w s – частота дискретизации. Амплитудно-частотная характеристика ЦАП представлена на рис.3.20.



Как видно, на частоте 0.5 w s восстанавливаемый сигнал ослабляется на 3.92 дБ по сравнению с низкочастотными составляющими сигнала. Таким образом, имеет место небольшое искажение спектра восстанавливаемого сигнала. В большинстве случаев это небольшое искажение не сказывается значительно на параметрах системы. Однако, в тех случаях, когда необходима повышенная линейность спектральных характеристик системы (например в системах обработки звука), для выравнивания результирующего спектра на выходе ЦАП необходимо ставить специальный восстанавливающий фильтр с частотной характеристикой типа x / sin (x ).

Аналого-цифровые преобразователи предназначены для преобразования аналогового сигнала (обычно напряжения) в цифровую форму (последовательность цифровых значений напряжения, измеренных с равными промежутками времени). Одним из важнейших параметров аналого-цифровых преобразователей является разрядность его выходных данных. Именно этот параметр обеспечивает отношение сигнал/шум преобразования и в конечном итоге динамический диапазон цифрового сигнала. Разрядность АЦП стараются увеличивать для увеличения отношения сигнал/шум. Отношение сигнал/шум аналого-цифрового преобразователя можно определить по следующей формуле:

SN = N × 6 + 3,5 (дБ)

где N — количество двоичных разрядов на выходе АЦП.

Не менее важным параметром АЦП является время получения на его выходе следующего отсчета цифрового сигнала. Получить одновременно высокую скорость преобразования и большую разрядность является очень сложной задачей, для решения которой было разработано большое количество видов аналого-цифровых преобразователей. Рассмотрим их основные характеристики и области применения.

Наиболее скоростным видом АЦП являются . В этих видах АЦП требуется передавать большие потоки данных, поэтому они передаются в параллельном виде. Это приводит к тому, что параллельные АЦП обладают большим количеством внешних выводов. В результате габариты микросхем параллельных АЦП достаточно велики. Еще одной особенностью параллельных АЦП является значительный ток потребления. Перечисленные недостатки данного вида АЦП являются платой за высокую скорость преобразования аналогового сигнала в цифровую форму его представления. Скорость преобразования в параллельных АЦП достигает 500 миллионов отсчетов в секунду (500 MSPS). По теореме Котельникова максимальная частота входного сигнала может достигать 250 МГц. В качестве примера можно назвать микросхему AD6641-500 фирмы Analog Devices или микросхему ISLA214P50 фирмы Intersil.

Для достижения еще более высоких скоростей преобразования используют параллельное соединение несколько параллельных АЦП, работающих по очереди. При этом для того, чтобы обеспечить передачу данных к обрабатывающей микросхеме приходится использовать несколько параллельных шин (по одной на каждый АЦП). В качестве примера подобного вида аналого-цифровых преобразователей можно назвать микросхему АЦП MAX109 фирмы Maxim, обеспечивающую скорость преобразования до 2,2 GSPS.

Немного более экономичным видом АЦП являются . В этих видах АЦП в процессе аналого-цифрового преобразования участвуют цифро-аналоговые преобразователи. Высокая скорость подачи на выход отсчетов аналогового сигнала реализуется за счет конвейерной обработки. В результате для последовательно-параллельных FWG скорость преобразования и скорость выдачи на выход очередного цифрового отсчета не совпадают. В качестве примера можно назвать микросхемы AD6645 и AD9430 фирмы Analog Devices.

Самым распространенным видом АЦП в настоящее время являются . Несмотря на то, что в данных видах аналого-цифровых преобразователей невозможна конвейерная обработка данных, а значит время преобразования и период выдачи данных на выходе АЦП совпадают, данный вид АЦП обладает достаточным быстродействием для работы в широком диапазоне задач.

В настоящее время дискретизация сигнала в устройствах выборки и хранения (УВХ) и преобразование напряжения в двоичные числа (цифровые отсчеты сигнала) производятся в одной микросхеме. Типовая схема включения АЦП с параллельным выходом приведена на рисунке 1.


Рисунок 1. Схема включения параллельного АЦП ADC0804

В этой схеме для начала аналого-цифрового преобразования микропроцессор или программируемая логическая схема должны подать сигнал начала преобразования (в данной схеме это сигнал WR). После завершения преобразования микросхема АЦП выдает сигнал готовности данных INTR и микропроцессор может считать двоичный код, соответствующий входному напряжению. При преобразовании сигнала по теореме Котельникова частота дискретизации f д поступает на вход WR и ее стабильность обеспечивается микропроцессором.

Следует отметить, что при обработке низкочастотных сигналов часто требуется выполнять одновременно и аналого-цифровое преобразование и цифро-аналоговое преобразование. В ряде случаев требуется в одной микросхеме объединять несколько аналоговых каналов, например, стереообработка звука. Кроме того, в данных видах микросхем в их состав включаются низкочастотные или полосовые фильтры, операционные усилители, что позволяет подавать на их вход сигнал непосредственно с выхода микрофона, а с выхода — на телефон. Подобный вид микросхем АЦП/ЦАП получил особое название — кодеки.

Литература:

  1. Analod-Digital Conversion, Walt Kester editor, Analog Devises, 2004. — 1138 p.
  2. Mixed-Signal and DSP Design Techniques ISBN_0750676116, Walt Kester editor, Analog Devises, 2004. — 424 p.
  3. High Speed System Application, Walt Kester editor, Analog Devises, 2006. — 360 p.

Вместе со статьей "Виды аналого-цифровых преобразователей (АЦП)" читают:

Аналого-цифровые преобразователи (АЦП) - это устройства, предназначенные для преобразования аналоговых сигналов в цифровые. Для такого преобразования необходимо осуществить квантование аналогового сигнала, т. е. мгновенные значения аналогового сигнала ограничить определенными уровнями, называемыми уровнями квантования.

Характеристика идеального квантования имеет вид, приведенный на рис. 3.92.

Квантование представляет собой округление аналоговой величины до ближайшего уровня квантования, т. е. максимальная погрешность квантования равна ±0,5h (h - шаг квантования).

К основным характеристикам АЦП относят число разрядов, время преобразования, нелинейность и др. Число разрядов - количество разрядов кода, связанного с аналоговой величиной, которое может вырабатывать АЦП. Часто говорят о разрешающей способности АЦП, которую определяют величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Так, 10-разрядный АЦП имеет разрешающую способность (2 10 = 1024) −1 , т. е. при шкале АЦП, соответствующей 10В, абсолютное значение шага квантования не превышает 10мВ. Время преобразования t пp - интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.

Характерными методами преобразования являются следующие: параллельного преобразования аналоговой величины и последовательного преобразования.

АЦП с параллельным преобразованием входного аналогового сигнала

По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.

Принцип действия АЦП (рис. 3.93)


При U вх = 0, поскольку для всех ОУ разность напряжений (U + − U −) < 0 (U + , U − - напряжения относительно общей точки соответственно неинвертирующего и инвертирующего входа), напряжения на выходе всех ОУ равны −Е пит а на выходах кодирующего преобразователя (КП) Z 0 , Z 1 , Z 2 устанавливаются нули. Если U вх > 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U + − U −) > 0 и лишь на его выходе появляется напряжение +Е пит, что приводит к появлению на выходах КП следующих сигналов: Z 0 = 1, Z 2 = Z l = 0. Если U вх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Е пит, что приводит к появлению на выходах КП кода 010 и т. д.

Посмотрите интересное видео о работе АЦП:

АЦП с последовательным преобразованием входного сигнала

Это АЦП последовательного счета, который называют АЦП со следящей связью (рис. 3.94).
В АЦП рассматриваемого типа используется ЦАП и реверсивный счетчик, сигнал с которого обеспечивает изменение напряжения на выходе ЦАП. Настройка схемы такова, что обеспечивается примерное равенство напряжений на входе U вх и на выходе ЦАП −U. Если входное напряжение U вх больше напряжения U на выходе ЦАП, то счетчик переводится в режим прямого счета и код на его выходе увеличивается, обеспечивая увеличение напряжения на выходе ЦАП. В момент равенства U вх и U счет прекращается и с выхода реверсивного счетчика снимается код, соответствующий входному напряжению.

Метод последовательного преобразования реализуется и в АЦП время - импульсного преобразования (АЦП с генератором линейно изменяющегося напряжения (ГЛИН)).

Принцип действия рассматриваемого АЦП рис. 3.95) основан на подсчете числа импульсов в отрезке времени, в течение которого линейно изменяющееся напряжение (ЛИН), увеличиваясь от нулевого значения, достигает уровня входного напряжения U вх. Использованы следующие обозначения: СС - схема сравнения, ГИ - генератор импульсов, Кл - электронный ключ, Сч - счетчик импульсов.

Отмеченный во временной диаграмме момент времени t 1 соответствует началу измерения входного напряжения, а момент времени t 2 соответствует равенству входного напряжения и напряжения ГЛИН. Погрешность измерения определяется шагом квантования времени. Ключ Кл подключает к счетчику генератор импульсов от момента начала измерения до момента равенства U вх и U глин. Через U Сч обозначено напряжение на входе счетчика.

Код на выходе счетчика пропорционален входному напряжению. Одним из недостатков этой схемы является невысокое быстродействие.


АЦП с двойным интегрированием

Такой АЦП реализует метод последовательного преобразования входного сигнала (рис. 3.96). Использованы следующие обозначения: СУ - система управления, ГИ - генератор импульсов, Сч - счетчик импульсов. Принцип действия АЦП состоит в определении отношения двух отрезков времени, в течение одного из которых выполняется интегрирование входного напряжения U вх интегратором на основе ОУ (напряжение U и на выходе интегратора изменяется от нуля до максимальной по модулю величины), а в течение следующего - интегрирование опорного напряжения U оп (U и меняется от максимальной по модулю величины до нуля) (рис. 3.97).

Пусть время t 1 интегрирования входного сигнала постоянно, тогда чем больше второй отрезок времени t 2 (отрезок времени, в течение которого интегрируется опорное напряжение), тем больше входное напряжение. Ключ К З предназначен для установки интегратора в исходное нулевое состояние. В первый из указанных отрезков времени ключ К 1 замкнут, ключ К 2 разомкнут, а во второй, отрезок времени их состояние является обратным по отношению к указанному. Одновременно с замыканием ключа К 2 импульсы с генератора импульсов ГИ начинают поступать через схему управления СУ на счетчик Сч.

Поступление этих импульсов заканчивается тогда, когда напряжение на выходе интегратора оказывается равным нулю.

Напряжение на выходе интегратора по истечении отрезка времени t 1 определяется выражением

U и (t 1) = − (1/RC) · t1 ∫ 0 U вх dt= − (U вх · t 1) / (R·C)

Используя аналогичное выражение для отрезка времени t 2 , получим

t 2 = − (R·C/U оп) ·U и (t 1)

Подставив сюда выражение для U и (t 1), получим t 2 =(U вх / U оп)·t 1 откуда U вх = U oa · t 2 /t 1

Код на выходе счетчика определяет величину входного напряжения.

Одним из основных преимуществ АЦП рассматриваемого типа является высокая помехозащищенность. Случайные выбросы входного напряжения, имеющие место в течение короткого времени, практически не оказывают влияния на погрешность преобразования. Недостаток АЦП - малое быстродействие.

Наиболее распространенными являются АЦП серий микросхем 572, 1107, 1138 и др. (табл. 3.3)
Из таблицы видно, что наилучшим быстродействием обладает АЦП параллельного преобразования, а наихудшим - АЦП последовательного преобразования.

Предлагаем посмотреть ещё одно достойное видео о работе и устройстве АЦП: