Транзисторы в технологии кмоп. Логические уровни кмоп микросхем

  • 25.05.2019

Логические элементы КМОП

Эквивалентные схемы элементов, представленных выше, можно получить, используя только PMOS-транзисторы. Однако наибольший интерес представляет совместное применение PMOS и NMOS-транзисторов. Такая технология наиболее популярна сегодня и называется CMOS-технологией. Она обеспечивает максимальное быстродействие работы элементов при низком энергопотреблении по сравнению со всеми другими технологиями.

В NMOS-цепях логические функции реализовались комбинацией соединений NMOS-транзисторов, объединенных с токоограничивающим элементом.

Т.к. все элементы, построенные на NMOS-транзисторах реализуют отрицательные функции (НЕ, ИЛИ-НЕ, И-НЕ), то их можно условно представить так, как показано на блок-схеме рисунка 1.9.

Рисунок 1.9 - Структура NMOS-схемы

При этом все транзисторные цепи объединены в блок PDN (Pull-down Network) – блок отрицательной логики. Для реализации прямых логических функций необходимо соединение двух отрицательных элементов, что снижает быстродействие всего элемента в целом. Концепция CMOS-цепей основана на реализации прямых функций (И, ИЛИ) на PMOS-транзисторах таким образом, что блоки прямой логики (PUN – Pull-up Network) и блоки отрицательной логики (PDN - Pull-down Network) являются дополнениями друг друга. Тогда логическая схема, реализующая типичный логический элемент, будет иметь вид, представленный на рисунке 1.10.

Рисунок 1.10 - Структура CMOS-схемы

Для любой комбинации входных сигналов PDN устанавливает уровень логического нуля на выходе V f , или PUN устанавливает на этом выходе уровень логической единицы. PDN и PUN имеют равное количество транзисторов, которые размещены так, что эти два блока работают параллельно. Там, где PDN включает NMOS-транзисторы, соединенные последовательно, PUN строится на PMOS-транзисторах, соединенных параллельно, и наоборот.

Самый простой пример CMOS-схемы - инвертор, показан на рисунке 1.11.

Рисунок 1.11 - Реализация CMOS-инвертора

Когда сигнал V x =0V, транзистор T2 закрыт, а транзистор T1 открыт. Следовательно, V f =5V, и так как T2 закрыт, ток через транзисторы не течет. Когда V x =5V, то T2 открыт, а T1 закрыт. Таким образом, V f =0V, и тока в цепи по прежнему не будет, т.к. транзистор T1 закрыт. Это свойство справедливо для всех CMOS-цепей – логические элементы практически не потребляют ток в статическом режиме. Ток в таких цепях будет протекать только во время переключения элементов (вот почему, с ростом частоты работы устройств, построенных по этой технологии, возрастает и энергопотребление). Вследствие этого, CMOS-схемы стали наиболее популярной технологией при реализации цифровых логических устройств.

Рисунок 1.12 представляет принципиальную электрическую схему логического элемента И-НЕ CMOS. Реализация этого элемента подобна NMOS-схеме, представленной на рисунке 1.5 за исключением того, что токоограничивающий резистор был заменен блоком PUN, состоящим из двух PMOS-транзисторов, соединенных параллельно. Таблица истинности на рисунке показывает состояние каждого из этих четырех транзисторов для каждой логической комбинации вводов x 1 и x 2 . Легко проверить, что данная схема реализует логическую функцию И-НЕ. В статическом состоянии отсутствует путь для протекания тока от V DD к Gnd.

Рисунок 1.12 - CMOS-реализация логического элемента И-НЕ

Схема на рисунке 1.12 может быть получена исходя из логического выражения, которое определяет логическую функцию И-НЕ, . Это выражение определяет состояния, при которых f = 1; следовательно, оно определяет поведение блока PUN. Так как этот блок состоит из PMOS-транзисторов, которые открываются при подаче на их входы логического нуля, входная переменная x i открывает транзистор, если x i =0. По правилу де Моргана мы имеем:

Таким образом f = 1 , когда либо вход x 1 , либо вход x 2 имеют значение логического нуля, что означает что PUN должен иметь два PMOS-транзистора, соединенных параллельно. Блок PDN должен дополнять функцию f, которая имеет вид:

f = x 1 x 2

Функция f = 1 , когда оба входа x 1 и x 2 равны 1, поэтому блок PDN должен иметь два NMOS-транзистора, соединенных последовательно.

Схема для CMOS-реализации элемента ИЛИ-НЕ может быть получена из логического выражения.


Рис. 16.10.

Принципиальное отличие КМОП-схем от nМОП-технологии заключается в отсутствии в схеме активных сопротивлений. К каждому входу схемы подключена пара транзисторов с различным типом канала. Транзисторы с каналом p-типа подключены подложкой к источнику питания, поэтому образование канала в них будет происходить при достаточной большой разности потенциалов между подложкой и затвором, причем потенциал на затворе должен быть отрицательным относительно подложки. Такое состояние обеспечивается подачей на затвор потенциала земли (т.е. логического 0 ). Транзисторы с каналом n-типа подключены подложкой к земле, поэтому образование канала в них будет происходить при подаче на затвор потенциала источника питания (т.е. логической 1 ). Одновременная подача на такие пары транзисторов с разным типом каналов логического нуля или логической единицы приводит к тому, что один транзистор пары обязательно будет открыт, а другой закрыт. Таким образом, создаются условия к подключению выхода либо к источнику п итания, либо к земле.

Так, в простейшем случае, для схемы инвертора (рис. 16.10) при А=0 транзистора VT1 будет открыт, а VT2 закрыт. Следовательно, выход схемы F будет подключен через канал VT1 к источнику питания, что соответствует состоянию логической единицы: F=1 . При А=1 транзистор VT1 будет закрыт (на затворе и подложке одинаковые потенциалы), а VT2 открыт. Следовательно, выход схемы F будет подключен через канал транзистора VT2 к земле. Это соответствует состоянию логического нуля: F=0 .

Логическое сложение (рис. 16.11) осуществляется за счет последовательного соединения p-каналов транзисторов VT1 и VT2. При подаче хотя бы одной единицы единого канала у данных транзисторов не образуется. В то же время благодаря параллельному соединению VT3 и VT4 осуществляется открытие соответствующего транзистора в нижней части схемы, обеспечивающее подключение выхода F к земле. Получается F=0 при подаче хотя бы одной логической 1 – это правило ИЛИ-НЕ.


Рис. 16.11.

Функция И-НЕ осуществляется за счет параллельного соединения VT1 и VT2 в верхней части схемы и последовательного соединения VT3 и VT4 в нижней части (рис. 16.12). При подаче хотя бы на один вход нуля единый канал на VT3 и VT4 не образуется, выход будет отключен от земли. В то же время хотя бы один транзистор в верхней части схемы (на затвор которого подан логический ноль) будет обеспечивать подключение выхода F к источнику питания: F=1 при подаче хотя одного нуля – правило И-НЕ.


Рис. 16.12.

Краткие итоги

В зависимости от элементной базы, различают различные технологии производства ИМС. Основными являются ТТЛ на биполярных транзисторах и nМОП и КМОП на полевых транзисторах .

Ключевые термины

nМОП-технология полевых транзисторов с индуцированным каналом n-типа.

Буфер на 3 состояния – выходная часть схемы ТТЛ, обеспечивающая возможность перехода в третье, высокоимпедансное состояние.

КМОП-технология - технология производства ИМС на базе полевых транзисторов с каналами обоих типов электропроводности.

Открытый коллектор – вариант реализации буферной части элементов ТТЛ без резистора в цепи нагрузки, который выносится за пределы схемы.

Схемы с активной нагрузкой – схемы ТТЛ, в которых состояние буферной цепи определяется состоянием не одного, а двух транзисторов.

Транзисторно-транзисторная логика – технология производства ИМС на базе биполярных транзисторов.

Принятые сокращения

КМОП – комплементарный, металл, оксид, полупроводник

Набор для практики

Упражнения к лекции 16

Упражнение 1

Вариант 1 к упражнению 1 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по nМОП-технологии.

Вариант 2 к упражнению 1 .Нарисовать схему 3-входового элемента И-НЕ по nМОП-технологии.

Вариант 3 к упражнению 1 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по nМОП-технологии.

Упражнение 2

Вариант 1 к упражнению 2 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по КМОП-технологии.

Вариант 2 к упражнению 2 .Нарисовать схему 3-входового элемента И-НЕ по КМОП-технологии.

Вариант 3 к упражнению 2 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по КМОП-технологии.

Упражнение 3

Вариант 1 к упражнению 3 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 3 .Нарисовать схему 3-входового элемента И-НЕ по ТТЛ-технологии.

Вариант 3 к упражнению 3 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Упражнение 4

Вариант 1 к упражнению 4 .Нарисовать схему 3-входового элемента ИЛИ по nМОП-технологии.

Вариант 2 к упражнению 4 .Нарисовать схему 3-входового элемента И по nМОП-технологии.

Вариант 3 к упражнению 4 .Нарисовать схему 4-входового элемента ИЛИ по nМОП-технологии.

Упражнение 5

Вариант 1 к упражнению 5 .Нарисовать схему 3-входового элемента ИЛИ по КМОП-технологии.

Вариант 2 к упражнению 5 .Нарисовать схему 3-входового элемента И по КМОП-технологии.

Вариант 3 к упражнению 5 .Нарисовать схему 4-входового элемента ИЛИ по КМОП-технологии.

Упражнение 6

Вариант 1 к упражнению 6 .Нарисовать схему 3-входового элемента ИЛИ по ТТЛ-технологии.

Вариант 2 к упражнению 6 .Нарисовать схему 3-входового элемента И по ТТЛ-технологии.

Вариант 3 к упражнению 6 .Нарисовать схему 4-входового элемента ИЛИ по ТТЛ-технологии.

Упражнение 7

Вариант 1 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по КМОП-технологии.

Вариант 3 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по nМОП-технологии.

Упражнение 8

Вариант 1 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ-НЕ с буфером на 3 состояния.

Вариант 2 к упражнению 8 .Нарисовать схему 3-входового элемента И-НЕ с открытым коллектором.

Вариант 3 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ с буфером на 3 состояния.

Для конкретной серии микросхем характерно использование типового электронного узла — базового логического элемента. Этот элемент является основой построения самых разнообразных цифровых электронных устройств.

Ниже рассмотрим особенности базовых логических элементов различных логик.

Элементы транзисторно-транзисторной логики

Характерной особенностью ТТЛ является использование многоэмиттерных транзисторов. Эти транзисторы сконструированы таким образом, что отдельные эмиттеры не оказывают влияния друг на друга. Каждому эмиттеру соответствует свой p-n-переход. В первом приближении многоэмиттерный может моделироваться схемой на диодах (см. пунктир на рис. 3.27).

Упрощенная схема ТТЛ-элемента приведена на рис. 3.27. При мысленной замене многоэмиттерного транзистора диодами получаем элемент диодно-транзисторной логики «И-НЕ». Из анализа схемы можно сделать вывод, что если на один из входов или на оба входа подать низкий уровень напряжения, то базы транзистора Т 2 будет равен нулю, и на коллекторе транзистора Т 2 будет высокий уровень напряжения. Если на оба входа подать высокий уровень , то через базу Т 2 транзистора будет протекать большой базовый и на коллекторе транзистора Т 2 будет низкий уровень , т. е. данный элемент реализует функцию И-НЕ:

u вых = u 1 · u 2 . Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 3.28).

Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и Т 2 закрыт, а следовательно, закрыт и транзистор Т 4 , т. е. на выходе будет высокий уровень . Если на обоих входах одновременно действует высокий уровень напряжения, то Т 2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т 4 и запиранию транзистора Т 3 , т. е. реализуется функция И-НЕ.

Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами Шоттки (транзисторы Шоттки).

Базовый логический элемент ТТЛШ (на примере серии К555)

В качестве базового элемента серии микросхем К555 использован элемент И-НЕ. На рис. 3.29, а изображена схема этого элемента, а условное графическое обозначение приведено на рис. 3.29, б .

Такой эквивалентен рассмотренной выше паре из обычного транзистора и диода Шоттки. ТранзисторVT 4 — обычный биполярный транзистор.

Если оба входных напряжения u вх1 и u вх2 имеют высокий уровень, то диодыVD 3 и VD 4 закрыты, транзисторы VT 1 ,VT 5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется низкого уровня, то транзисторы VT 1 и VT 5 закрыты, а транзисторы VT 3 и VT 4 открыты, и на входе имеет место напряжение низкого уровня. Полезно отметить, что транзисторы VT 3 и VT 4 образуют так называемый составной (схему Дарлингтона).

Микросхемы ТТЛШ

Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

● питания +5 В;

выходное напряжение низкого уровня — не более 0,4 В;

● выходное высокого уровня — не менее 2,5 В;

● помехоустойчивость — не менее 0,3 В;

● среднее время задержки распространения сигнала — 20 нс;

● максимальная рабочая частота — 25 МГц.

Микросхемы ТТЛШ обычно совместимы по логическим уровням, помехоустойчивости и питания с микросхемами ТТЛ. Время задержки распространения сигнала элементов ТТЛШ в среднем в два раза меньше по сравнению с аналогичными элементами ТТЛ.

Особенности других логик

Основой базового логического элемента ЭСЛ является токовый ключ. Схема токового ключа (рис. 3.30) подобна схеме дифференциального усилителя.

Необходимо обратить внимание на то, что микросхемы ЭСЛ питаются отрицательным напряжением (к примеру, −4,5 В для серии К1500). На базу транзистора VT 2 подано отрицательное постоянное опорное напряжение U оп. Изменение входного u вх1 приводит к перераспределению постоянного тока i э0 , заданного сопротивлением R э между транзисторами, что имеет следствием изменение напряжений на их коллекторах. Транзисторы не входят в режим насыщения, и это является одной из причин высокого быстродействия элементов ЭСЛ.

Микросхемы серий 100, 500 имеют следующие параметры:

● питания −5,2 В;

● потребляемая мощность — 100 мВт;

● коэффициент разветвления по выходу — 15;

● задержка распространения сигнала — 2,9 нс.

В микросхемах n-МОП и p-МОП используются ключи соответственно на МОП-транзисторах с n-каналом и динамической нагрузкой (рассмотрены выше) и на МОП-транзисторах с p-каналом.

В качестве примера рассмотрим элемент логики n-МОП, реализующий функцию ИЛИ-НЕ (рис. 3.31).

Он состоит из нагрузочного транзистора Т 3 и двух управляющих транзисторов Т 1 и Т 2 . Если оба транзистора Т 1 и Т 2 закрыты, то на выходе устанавливается высокий уровень . Если одно или оба напряжения u 1 и u 2 имеют высокий уровень, то открывается один или оба транзистора Т 1 и Т 2 и на выходе устанавливается низкий уровень , т. е. реализуется функция u вых = u 1 + u 2.

Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП — логические элементы (КМДП или КМОП-логика). В микросхемах КМОП используются комплементарные ключи на МОП-транзисторах. Они отличаются высокой помехоустойчивостью. Логика КМОП является очень перспективной. Рассмотренный ранее комплементарный ключ фактически является элементом НЕ (инвертором).

КМОП — логический элемент

Рассмотрим КМОП — логический элемент, реализующий функцию ИЛИ-НЕ (рис. 3.32).

Если входные напряжения имеют низкие уровни (u 1 и u 2 меньше порогового напряжения n-МОП-транзистора U зи.порог. n), то транзисторы Т 1 и Т 2 закрыты, транзисторы Т 3 и Т 4 открыты и выходное напряжение имеет высокий уровень. Если одно или оба входных u 1 и u 2 имеют высокий уровень, превышающий U зи.порог. n , то открывается один или оба транзистора Т 1 и Т 2 , а между истоком и затвором одного или обоих транзисторов Т 3 и Т 4 устанавливается низкое напряжение, что приводит к запиранию одного или обоих транзисторов Т 3 и Т 4 , а следовательно, на выходе устанавливается низкое . Таким образом, этот элемент реализует функцию u вых = u 1 +u 2 и потребляет мощность от источника питания лишь в короткие промежутки времени, когда происходит его переключение.

Интегральная инжекционная логика (ИИЛ или И 2 Л) построена на использовании биполярных транзисторов и применении оригинальных схемотехнических и технологических решений. Для нее характерно очень экономичное использование площади кристалла полупроводника. Элементы И 2 Л могут быть реализованы только в интегральном исполнении и не имеют аналогов в дискретной схемотехнике. Структура такого элемента и его эквивалентная схема приведены на рис. 3.33, из которого видно, что транзистор T 1 (p-n-p) расположен горизонтально, а многоколлекторный Т 2 (n-p n) расположен вертикально. T 1 выполняет роль инжектора, обеспечивающего поступление дырок из эмиттера транзистора T 1 (при подаче на него положительного через ограничивающий резистор) в базу транзистора Т 2 . Если u 1 соответствует логическому «0», то инжекционный не протекает по базе многоколлекторного транзистора Т 2 и токи в цепях коллекторов транзистора Т 2 не протекают, т. е. на выходах транзистора Т 2 устанавливаются логические «1». При напряжении u 1 соответствующем логической «1», инжекционный протекает по базе транзистора Т 2 и на выходах транзистора Т 2 — логические нули.

Рассмотрим реализацию элемента ИЛИ-НЕ на основе элемента, представленного на рис. 3.34 (для упрощения другие коллекторы многоколлекторных транзисторов Т 3 и Т 4 на рисунке не показаны). Когда на один или оба входа подается логический сигнал «1», то u вых соответствует логическому нулю. Если на обоих входах логические сигналы «0», то напряжение u вых соответствует логической единице.

Логика на основе полупроводника из арсенида галлия GaAs характеризуется наиболее высоким быстродействием, что является следствием высокой подвижности электронов (в 3…6 раз больше по сравнению с кремнием). Микросхемы на основе GaAs могут работать на частотах порядка 10 ГГц и более.

Лекция. Изготовление процессоров

Микропроцессор - это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником - тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов , соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. Так формируются внутренние шины. В результате микропроцессор выполняет множество функций – от математических и логических операций до управления работой других микросхем и всего компьютера.

Один из главных параметров работы микпроцессора – частота работы кристалла, определяющая количество операций за единицу времени, частота работы системной шины, объем внутренней кэш-памяти SRAM. По частоте работы кристалла маркируют процессор. Частота работы кристалла определяется частотой переключений транзисторов из закрытого состояния в открытое. Возможность транзистора переключаться быстрее определяется технологией производства кремниевых пластин, из которых делаются чипы. Размерность технологического процесса определяет размеры транзистора (его толщину и длину затвора).

Как делают микросхемы

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник - это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная .



Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная - к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы - основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом - при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Говоря о процессорах Intel, часто используют такие специфические понятия, как 0,13-микронный технологический процесс, а в последнее время - 90-нанометровый технологический процесс. К примеру, принято говорить, что новый процессор Intel Pentium 4 с ядром Northwood выполнен по 0,13-микронной технологии, а будущее поколение процессоров будет основано на 90-нанометровом технологическом процессе. В чем же разница между этими технологическими процессами и как она отражается на возможностях самих процессоров?

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток . Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится.

Рис. 1. Принцип работы КМОП-транзистора

Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток - говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов.

Вот изображение поперечного сечения процессора:

Сверху находится защитная металлическая крышка, которая помимо защитной функции, так же выполняет роль теплораспределителя – именно ее мы обильно мажем термопастой, когда устанавливаем кулер. Под теплораспределителем находится тот самый кусочек кремния, который выполняет все пользовательские задачи. Еще ниже – специальная подложка, которая нужна для разводки контактов (и увеличения площади «ножек»), чтобы процессор можно было установить в сокет материнской платы.

Сам чип состоит из кремния, на котором находится до 9 слоев металлизации (из меди) – именно столько уровней нужно, чтобы по определенному закону можно было соединить транзисторы, находящиеся на поверхности кремния (так как сделать все это на одном уровне просто невозможно). По сути, эти слои выполняют роль соединительных проводов, только в гораздо меньшем масштабе; чтобы «провода» не закорачивали друг друга, их разделяют слоем оксида (с низкой диэлектрической проницаемостью).

Остановимся более подробно на процессе изготовления микросхем, первый этап которого - получение кремниевых подложек.

Шаг 1. Выращивание болванок

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

Шаг 3. Нанесение фоторезистива

Шаг 4. Литография

Шаг 5. Травление

Шаг 6. Диффузия (ионная имплантация)

Шаг 7. Напыление и осаждение

Шаг 8. Заключительный этап

Перспективные технологии

Логические КМОП (КМДП) инверторы

Микросхемы на комплементарных МОП транзисторах (КМОП-микросхемы) строятся на основе МОП транзисторов с n- и p-каналами. Один и тот же входной потенциал открывает транзистор с n-каналом и закрывает транзистор с p-каналом. При формировании логической единицы открыт верхний транзистор, а нижний закрыт. В результате ток через КМОП схему не протекает. При формировании логического нуля открыт нижний транзистор, а верхний закрыт. И в этом случае ток от источника питания через микросхему не протекает. Простейший логический элемент — это инвертор. инвертора, выполненного на комплементарных МОП транзисторах, приведена на рисунке 1.


Рисунок 1. Принципиальная схема инвертора, выполненного на комплементарных МОП транзисторах (КМОП-инвертор)

В результате этой особенности КМОП-микросхем, они обладают преимуществом перед рассмотренными ранее видами — потребляют ток в зависимости от поданной на вход тактовой частоты. Примерный график зависимости потребления тока КМОП-микросхемы в зависимости от частоты ее переключения приведен на рисунке 2


Рисунок 2. Зависимоть тока потребления КМОП микросхемы от частоты

Логические КМОП (КМДП) элементы "И"

Схема логического элемента "И-НЕ" на КМОП микросхемах практически совпадает с упрощенной схемой "И" на ключах с электронным управлением, которую мы рассматривали ранее. Отличие заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Принципиальная схема логического элемента "2И-НЕ " , выполненного на комплементарных МОП транзисторах (КМОП), приведена на рисунке 3.


Рисунок 3. Принципиальная схема логического элемента "2И-НЕ" , выполненного на комплементарных МОП транзисторах (КМОП)

В этой схеме можно было бы применить в верхнем плече обыкновенный , однако при формировании низкого уровня сигнала схема постоянно потребляла бы ток. Вместо этого, в качестве нагрузки используются p-МОП транзисторы. Эти транзисторы образуют активную нагрузку. Если на выходе требуется сформировать высокий потенциал, то транзисторы открываются, а если низкий — то закрываются.

В приведённой на рисунке 2 схеме логического КМОП-элемента "И", ток от источника питания на выход КМОП-микросхемы будет поступать через один из транзисторов, если хотя бы на одном из входов (или на обоих сразу) будет присутствовать низкий потенциал (уровень логического нуля). Если же на обоих входах логического КМОП-элемента "И" будет присутствовать уровень логической единицы, то оба p-МОП транзистора будут закрыты и на выходе КМОП микросхемы сформируется низкий потенциал. В этой схеме, так же как и в схеме, приведенной на рисунке 1, если транзисторы верхнего плеча будут открыты, то транзисторы нижнего плеча будут закрыты, поэтому в статическом состоянии ток КМОП-микросхемой от источника питания потребляться не будет.

Условно-графическое изображение КМОП логического элемента "2И-НЕ" показано на рисунке 4, а таблица истинности приведена в таблице 1. В таблице 1 входы обозначены как x 1 и x 2, а выход — F .


Рисунок 4. Условно-графическое изображение логического элемента "2И-НЕ"

Таблица 1. Таблица истинности КМОП-микросхемы, выполняющей "2И-НЕ"

x1 x2 F
0 0 1
0 1 1
1 0 1
1 1 0
"ИЛИ" , выполненный на КМОП транзисторах, представляет собой параллельное соединение ключей с электронным управлением. Отличие от упрощенной схемы "2ИЛИ", рассмотренной ранее, заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Вместо резистора в качестве нагрузки используются p-МОП транзисторы. Принципиальная схема логического элемента "2ИЛИ-НЕ" , выполненного на комплементарных МОП-транзисторах приведена на рисунке 5.
Рисунок 5. Принципиальная схема логического элемента "ИЛИ-НЕ", выполненного на комплементарных МОП транзисторах

В схеме КМОП логического элемента "2ИЛИ-НЕ" в качестве нагрузки используются последовательно включенные p-МОП транзисторы. В ней ток от источника питания на выход КМОП микросхемы будет поступать только если все транзисторы в верхнем плече будут открыты, т.е. если сразу на всех входах будет присутствовать низкий потенциал (). Если же хотя бы на одном из входов будет присутствовать уровень логической единицы, то верхнее плечо двухтактного каскада, собранного на КМОП транзисторах, будет закрыто и ток от источника питания поступать на выход КМОП-микросхемы не будет.

Таблица истинности логического элемента "2ИЛИ-НЕ" , реализуемая КМОП микросхемой, приведена в таблице 2, а условно-графическое обозначение этих элементов приведено на рисунке 6.


Рисунок 6. элемента "2ИЛИ-НЕ"

Таблица 2. Таблица истинности МОП микросхемы, выполняющей логическую функцию "2ИЛИ-НЕ"

x1 x2 F
0 0 1
0 1 0
1 0 0
1 1 0

В настоящее время именно КМОП-микросхемы получили наибольшее развитие. Причём наблюдается постоянная тенденция к снижению напряжения питания данных микросхем. Первые серии КМОП-микросхем, такие как К1561 (иностранный аналог C4000В) обладали достаточно широким диапазоном изменения напряжения питания (3..18В). При этом при понижении напряжения питания у конкретной микросхемы понижается её предельная частота работы. В дальнейшем, по мере совершенствования технологии производства, появились улучшенные КМОП-микросхемы с лучшими частотными свойствами и меньшим напряжением питания, например, SN74HC.

Особенности применения КМОП-микросхем

Первой и основной особенностью КМОП-микросхем является большое входное сопротивление этих микросхем. В результате на ее вход может наводиться любое напряжение, в том числе и равное половине напряжения питания, и храниться на нём достаточно долго. При подаче на вход КМОП-элемента половины питания открываются транзисторы как в верхнем, так и в нижнем плече выходного каскада, в результате микросхема начинает потреблять недопустимо большой ток и может выйти из строя . Вывод: входы цифровых КМОП-микросхем ни в коем случае нельзя оставлять неподключенными!

Второй особенностью КМОП-микросхем является то, что они могут работать при отключенном питании. Однако работают они чаще всего неправильно. Эта особенность связана с конструкцией входного каскада. Полная принципиальная схема КМОП-инвертора приведена на рисунке 7.


Рисунок 7. Полная принципиальная схема КМОП-инвертора

Диоды VD1 и VD2 были введены для защиты входного каскада от пробоя статическим электричеством. В то же самое время при подаче на вход КМОП-микросхемы высокого потенциала он через диод VD1 попадёт на шину питания микросхемы, и так как она потребляет достаточно малый ток, то КМОП микросхема начнёт работать. Однако в ряде случаев этого тока может не хватить для питания микросхем. В результате КМОП микросхема может работать неправильно. Вывод: при неправильной работе КМОП микросхемы тщательно проверьте питание микросхемы , особенно выводы корпуса. При плохо пропаянном выводе отрицательного питания его потенциал будет отличаться от потенциала общего провода схемы.

Четвёртая особенность КМОП-микросхем &mdash это протекание импульсного тока по цепи питания при ее переключении из нулевого состояния в единичное и наоборот. В результате при переходе с ТТЛ микросхем на КМОП микрохемы-аналоги резко увеличивается уровень помех. В ряде случаев это важно, и приходится отказываться от применения КМОП микросхем в пользу или BICMOS микросхем.

Логические уровни КМОП-микросхем

Логические уровни КМОП-микросхем существенно отличаются от . При отсутствии тока нагрузки напряжение на выходе КМОП-микросхемы совпадает с напряжением питания (логический уровень единицы) или с потенциалом общего провода (логический уровень нуля). При увеличении тока нагрузки напряжение логической единицы может уменьшается до 2,8В (U п =15В) от напряжения питания. Допустимый уровень напряжения на выходе цифровой КМОП микросхемы (серия микросхем К561) при пятивольтовом питании показан на рисунке 8.


Рисунок 8. Уровни логических сигналов на выходе цифровых КМОП-микросхем

Как уже говорилось ранее, напряжение на входе цифровой микросхемы по сравнению с выходом обычно допускается в больших пределах. Для КМОП-микросхем договорились о 30% запасе. Границы уровней логического нуля и единицы для КМОП-микросхем при пятивольтовом питании приведены на рисунке 9.


Рисунок 9. Уровни логических сигналов на входе цифровых КМОП-микросхем

При уменьшении напряжения питания границы логического нуля и логической единицы можно определить точно так же (разделить напряжение питания на 3).

Семейства КМОП-микросхем

Первые КМОП-микросхемы не имели защитных диодов на входе, поэтому их монтаж представлял значительные трудности. Это семейство микросхем серии К172. Следующее улучшенное семейство КМОП микросхем серии К176 получило эти защитные диоды. Оно достаточно распространено и в настоящее время. Серия К1561 завершает развитие первого поколения КМОП микросхем. В этом семействе было достигнуто быстродействие на уровне 90 нс и диапазон изменения напряжения питания 3 ... 15В. Так как в настоящее время распространена иностранная аппаратура, то приведу иностранный аналог этих КМОП микросхем — C4000В.

Дальнейшим развитием КМОП-микросхем стала серия SN74HC. Эти микросхемы отечественного аналога не имеют. Они обладают быстродействием 27 нс и могут работать в диапазоне напряжений 2 ... 6 В. Они совпадают по цоколёвке и функциональному ряду с , но не совместимы с ними по логическим уровням, поэтому одновременно были разработаны КМОП микросхемы серии SN74HCT (отечественный аналог — К1564), совместимые с ТТЛ микросхемами и по логическим уровням.

В это время наметился переход на трёхвольтовое питание. Для него были разработаны КМОП-микросхемы SN74ALVC с временем задержки сигнала 5,5 нс и диапазоном питания 1,65 ... 3,6 В. Эти же микросхемы способны работать и при 2,5 вольтовом питании. Время задержки сигнала при этом увеличивается до 9 нс.

Наиболее перспективным семейством КМОП-микросхем в настоящее время считается семейство SN74AUC с временем задержки сигнала 1,9 нс и диапазоном питания 0,8 ... 2,7 В.