Сетевые компоненты систем. Сетевые компоненты. Среды передачи данных. Платы сетевого адаптера

  • 29.07.2019

Архитектура открытых информационных систем . Современная тенденция развития информационных систем, в составе которых или ресурсы которых могут использовать системы управления, состоит по сути в том, что структура системы должна удовлетворять следующим требованиям, обеспечивающим ее живучесть, способность к развитию и совершенствованию:

Система должна обладать открытой архитектурой;

Система должна быть распределённой.

Только с развитием микропроцессорной техники и сетевых технологий стало возможно и экономически оправданно строить системы автоматики, действительно удовлетворяющие этим требованиям. Стало целœесообразным выделять в общей структуре системы отдельные локальные задачи, решение которых поручать локальным контроллерам. Сеть же позволяет контроллерам в качестве аргументов для вычисления управляющего вектора использовать переменные других контроллеров, обеспечивая связанность системы управления в целом. Такая архитектура существенно увеличивает производительность, надежность и масштабируемость систем. Международная организация по стандартизации (ISO) в 1984 ᴦ. сформулировала модель взаимодействия открытых систем (OSI), выделив семь уровней такого взаимодействия.

Эталонная модель взаимодействия открытых систем декларирует не только взаимодействие, но и архитектуру таких систем. Всякая открытая система является иерархически построенной, и внутренняя архитектура системы подобна глобальной архитектуре, в которую входит множество подсистем. Это означает, что программное обеспечение для систем любого уровня создаётся на общих принципах и является достаточно универсальным. Предполагается, что непосредственная связь между физически различными системами или подсистемами осуществляется на физическом уровне. В идеальном случае каждый из уровней должен взаимодействовать непосредственно лишь с двумя прилежащими к нему уровнями.

Уровни модели взаимодействия открытых систем (снизу вверх) означают следующее:

1. Физический уровень (нижний). Отвечает за физическую среду передачи: кабели, разъемы, согласование линий связи, электрическое преобразование сигналов.

2. Канальный уровень. Основная задача - логическое управление линией передачи, управление доступом к сети, обнаружение ошибок передачи и их исправления.

3. Сетевой уровень. Отвечает за адресацию пакетов данных, связывает физические сетевые адреса и логические имена, осуществляет выбор маршрута доставки данных.

4. Транспортный уровень. Здесь осуществляется создание пакетов данных и доставка этих пакетов. При крайне важно сти используются процедуры восстановления потерянных данных.

5. Сеансовый уровень. Сеанс связи означает, что между абонентами сети установлено логическое соединœение, определœены логические имена, контролируются права доступа.

6. Представительский уровень. На этом уровне происходит преобразование рабочей информации в логическую и физическую форму, пригодную для передачи в сети (сжатие, шифрование, преобразование форматов данных и пр.).

7. Прикладной уровень (уровень приложений). Уровень программ пользователя. Верхний уровень, непосредственно взаимодействующий с пользователœем.

Структура уровней такова, что замена аппаратной части сказывается лишь на уровнях 1 и 2, вышестоящие уровни этой замены не должны заметить.

Локальные управляющие вычислительные сети . Для передачи информации в системах автоматики всё шире используются не традиционные каналы связи (многожильные кабели, телœефонные каналы и т.п.), а локальные сети. Существенная разница при этом заключается не столько в виде физической среды передачи информации, сколько в гораздо более сложных и эффективных способах кодирования и сжатия информации. К сожалению, современные решения для построения локальных и глобальных информационных сетей не всœегда оказываются приемлемыми в силу негарантированного времени доставки информации, что малопригодно для систем реального времени, и сложности аппаратных решений, особенно для скоростных сетей.

В системах автоматики часто используют сегменты обычных локальных и глобальных сетей. Большинство локальных сетей имеет выход в глобальную сеть, но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телœефонные разговоры, электронные письма и т.д. Задача передачи полноцветных динамических изображений предъявляет самые высокие требования к быстродействию сети. Чаще всœего локальные сети используются для совместного использования таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это лишь часть возможностей локальных сетей. К примеру, они позволяют осуществлять обмен информацией между компьютерами разных типов. Абонентами (узлами) сети бывают не только компьютеры, но и другие устройства (принтеры, плоттеры, сканеры). Локальные сети дают возможность организовать систему параллельных вычислений на всœех компьютерах сети, что позволяет многократно ускорить решение сложных математических задач. С их помощью можно также управлять работой сложной технологической системы или исследовательской установки с нескольких компьютеров одновременно.

Упомянем о таких важнейших понятиях теории сетей, как сервер и клиент. Сервером принято называть абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует ресурсы других абонентов. Серверов в сети должна быть несколько, и не обязательно сервер - самый мощный компьютер.
Размещено на реф.рф
Выделœенный сервер - это сервер, занимающийся только сетевыми задачами. Невыделœенный сервер может заниматься помимо обслуживания сети и другими задачами. Клиентом (рабочей станцией) принято называть абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает. В принципе, каждый компьютер должна быть одновременно как клиентом, так и сервером. Под сервером и клиентом часто понимают не сами компьютеры, а работающие на них программные приложения.

Топологии локальных сетей . Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети принято понимать физическое расположение компьютеров сети друг относительно друга и способ их соединœения линиями связи. Топология определяет требования к оборудованию, тип используемого кабеля, методы управления обменом, надежность работы, возможности расширения сети. На разных уровнях сетевой архитектуры различают также:

Физическую топологию, схему расположения компьютеров и прокладки кабелœей.

Логическую топологию, структуру логических связей и способов передачи сигналов.

Информационную топологию, пути распространения информации по сети.

Существует три базовых топологии сети:

‣‣‣ шина (bus), при которой всœе компьютеры параллельно подключаются к одной линии связи и информация от каждого компьютера одновременно передается всœем остальным компьютерам.

‣‣‣ звезда (star), при которой к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует свою отдельную линию связи.

‣‣‣ кольцо (ring), при которой каждый компьютер передает информацию всœегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего в цепочке компьютера, и эта цепочка замкнута в ʼʼкольцоʼʼ.

На практике используют и любые комбинации базовых топологий, но большинство сетей ориентированы именно на эти три.

Топология ʼʼшинаʼʼ (или ʼʼобщая шинаʼʼ) предполагает идентичность сетевого оборудования компьютеров и равноправие всœех абонентов. При таком соединœении линия связи единственная и в шинœе реализуется режим полудуплексного (half duplex) обмена в обоих направлениях, но по очереди. Какой-либо центральный абонент, через которого передается вся информация, отсутствует, что увеличивает ее надежность (при отказе центра перестает функционировать вся система).

Так как разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого абонента͵ аппаратура сетевого адаптера получается сложнее, чем при других топологиях. Шинœе не страшны отказы отдельных компьютеров. На концах шины крайне важно предусматривать включение согласующих устройств - терминаторов, для исключения отражений от концов линии. Отказ сетевого оборудования в шинœе трудно локализовать, так как всœе адаптеры включены параллельно. При прохождении по ʼʼшинœеʼʼ информационные сигналы ослабляются, что накладывает ограничения на суммарную длину линий связи. Каждый абонент может получать из сети сигналы разного уровня исходя из расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования. Для увеличения длины сети используют сегментирование шины, с соединœением сегментов через специальные восстановители сигналов - репитеры.

Топология ʼʼзвездаʼʼ - это топология с явно выделœенным центром, к которому подключаются всœе остальные абоненты. Обмен информацией идет через центральный компьютер, как правило, самый мощный в сети. Никакие конфликты в сети в принципе невозможны. Выход из строя периферийного компьютера не отражается на функционировании сети, но любой отказ центрального компьютера делает сеть неработоспособной.

В звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. К каждому периферийному абоненту может подходить как один кабель (передача в обоих направлениях), так и два кабеля (с передачей в одном направлении). Проблема затухания сигналов в линии связи решается проще, каждый приемник получает сигнал одного уровня.

Недостаток топологии ʼʼзвездаʼʼ - ограничение количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. Иногда в звезде предусматривается возможность подключения вместо периферийного абонента еще одного центрального абонента͵ в результате получается топология из нескольких соединœенных между собой звезд.

Большое достоинство звезды состоит в том, что всœе точки подключения собраны в одном месте, что позволяет легко контролировать работу сети, а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения.

Существует топология, называемая пассивной звездой, которая только внешне похожа на звезду. В центре сети с данной топологией помещается не компьютер, а концентратор (hub), выполняющий ту же функцию, что и репитер.
Размещено на реф.рф
Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Фактически мы имеем дело с шинной топологией, так как информация от каждого компьютера одновременно передается ко всœем остальным компьютерам, а центрального абонента не существует.

Топология ʼʼкольцоʼʼ - это топология, в которой каждый компьютер соединœен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера. Четко выделœенного центра в сети нет, однако часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Наличие управляющего абонента снижает надежность сети.

Максимальное количество абонентов в кольце должна быть до тысячи и больше. Кольцевая топология обычно является самой устойчивой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками передаваемой по сети информации. В ней, как правило, нет конфликтов. Так как сигнал в кольце проходит через всœе компьютеры, выход из строя хотя бы одного из них или его сетевого оборудования нарушает работу всœей сети. В этой топологии обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве. В то же время крупное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всœей сети в целом (порой до нескольких десятков километров).

Иногда топология ʼʼкольцоʼʼ выполняется на базе двух кольцевых линий связи, передающих информацию в противоположных направлениях, что позволяет увеличить скорость передачи информации, а при повреждении одного из кабелœей работать с одним кабелœем.

литература

1. Мирошник И.В. Теория автоматического управления. Линœейные системы: Учебное пособие для вузов. - СПб.: Питер, 2005. - 336 с.

10. Туманов М.П. Технические средства автоматизации и управления: Учебное пособие. – М.: МГИЭМ, 2005, 71 с. URL: http://rs16tl.rapidshare.com/files/21651582/2889232/ Tehnicheskie_sredstva_avtomatizatsii_i_upravleniya.rar

11. Михайлов В.С. Теория управления. – К.: Выща школа, 1988.

12. Зайцев Г.Ф. Теория автоматического управления и регулирования. – К.: Выща школа, 1989.

О замеченных опечатках, ошибках и предложениях по дополнению: [email protected].

Локальная вычислительная сеть состоит из следующих компонентов - сервер, файл-сервер, клиент, рабочие станции, сетевая плата͵ среда для передачи сигналов, периферийное оборудование, сетевая операционная система, прикладные программные приложения.

5.1. Сервер или Файл- сервер

Это центральный компьютер, имеющий большую дисковую память. На сервере располагаются данные, предназначенные для совместного использования пользователями, имеющими права доступа к этим данным.

Рис.5.1.Сервер.

5.2. Клиент сети.

Клиентом сети принято называть любой пользователь сети. Это может быть рабочая станция, подключенная к серверу. Это может быть задача, при решении которой используются ресурсы, размещенные на сервере. Клиентом сети принято называть и пользователь, работающий на компьютере, подключенном к сети. Это бывают и аппаратные средства.

5.3. Рабочие станции .

Рабочие станции - множество компьютеров, подключенных к центральной машинœе (файловому серверу).

5.4. Сетевая плата или плата сетевого адаптера (СА) .

В каждый компьютер, который мы собираемся подключить к локальной сети, следует установить дополнительную сетевую плату - контроллер .

Рис.5.2. Сетевой адаптер.

Ее назначение, как и любого другого контроллера, заключается в преобразовании сигналов, идущих из сети, в сигналы, поступающие на блоки компьютера, а также в выполнении обратной операции . Сетевая плата вставляется в свободный слот на материнской плате, а к ее гнезду, находящемуся на задней стенке системного блока, подключается коаксиальный кабель. Серверу необходима сетевая плата повышенной производительности, ᴛ.ᴇ. ее производительность должна быть больше производительности сетевых плат для локальных рабочих мест.

Плата СА выполняет:

― подготовку данных, поступающих от компьютера, к передаче по сетевому кабелю;

― передачу данных другому компьютеру;

― управление потоком данных между компьютером и кабельной системой;

― прием данных из кабеля и перевод их в форму, понятную центральному процессору компьютера.

Плата должна также указать свое местонахождение или сетевой адрес, чтобы ее могли отличить от других плат сети. Сетевые адреса определœены комитетом IEEE (Institute of Electrical and Electronics Engineers, Inc .), который закрепляет за каждым производителœем плат СА некоторый интервал адресов. Производители зашивают эти адреса в микросхемы, в связи с этим компьютер имеет свой уникальный номер, ᴛ.ᴇ. адрес в сети.

Перед тем, как послать данные по сети, плата СА проводит электронный диалог с принимающей платой, в результате которого они устанавливают:

― максимальный размер блока передаваемых данных;

― объем данных, пересылаемых без подтверждения о получении;

― интервал между передачами блоков данных;

― скорость передачи

― объем данных, который может принять плата без переполнения буфера.

Скорость передачи должна быть общей для двух плат, так как одна из них может обладать более высокой скоростью.


  • - Сетевые компоненты

    Каналы связи и топологии сети Для организации обмена данными между системами автоматизации в сети PROFINET могут использоваться электрические (витые пары), оптические и беспроводные каналы связи Ethernet. В зависимости от вида используемых каналов для построения сети может... [читать подробенее]


  • - Сетевые компоненты

    На сегодня подавляющая часть компьютерных сетей использует для соединения кабели. Это среда передачи сигналов между компьютерами. В большинстве сетей применяются три основные группы кабелей: коаксиальный кабель; витая пара (twisted pair), неэкранированная (unshielded) и...

  • В операционной системе WindowsXP любой способ связи компьютеров между собой (йапрямую, через;кж;шьную сеть, через Интернет) описывается термином сетевое not ,<лючение. Для создания и настройки подключений используется с медиальная папка Сетевые подключения (Пуск > Настройка > Сетевые подключения). Любое подключение можно настроить на выполнение всех необходимых сетевых операций.

    Каковы основные категории сетевых подключений?

    Все виды сетевых подключений можно i)азделить на исходящие и входящие. В исходящих подключениях компьютер гам инициирует процесс установки связи, во входящих он получает защни: извне и дает свое согласие на то, чтобы установить связь. Исходящие подключения различаются методом связи, который полностью настраивается в рамках конкретного подключения. От любой программы, пользующейся подключением, все внутренние подробности скрыты.

    Какие типы сетевых подключений бывают?

    Операционная система Windows XP учитывает пять основных типов сетевых подключений.

    Подключение удаленного доступа используется для временного подсоединения к другой сети. К этому типу относятся все подключения, использующие модем.

    Подключение по локальной сети - это постоянно действующее:tf? подключение. Именно оно используется в рамках локальной %! 1 сети. Некоторые типы подключения к Интернету (ADSL, кабельный модем) тоже относятся к этой категории.

    Подключение виртуальной частной сети используется для бе- ,$&. зопасной передачи данных через открытую среду. Все данные шифруются. Чаще всего такое подключение представляет собой разновидность подключения удаленного доступа.

    Прямое подключение позволяет установить соединение между двумя компьютерами без использования специальных сетевых аппаратных средств. Недостаток этого метода обычно состоит в ограниченной пропускной способности такого подключения, а также в том, что в такой связи участвуют только два компьютера.

    Входящее подключение может относиться к любому из перечнеленных выше типов, кроме подключения по локальной сети. Оно позволяет компьютеру отвечать на запросы извне.

    Какое оборудование необходимо для организации сетевогоподключения?

    В зависимости от конфигурации системы и типов предполагаемых подключений может понадобиться следующее оборудование.

    Сетевой адаптер для подключения к локальной сети;

    Модем (и доступ к аналоговой, телефонной линии);

    Устройство ADSL или кабельный модем, для подключения которых часто также необходим сетевой адаптер. Дополнительно необходимы различные типы соединительных кабелей. Сетевые подключения и сетевые компоненты

    Как создать новое подключение?

    Если в компьютере установлен сетевой адаптер, операционная система Windows XP автоматически обнаруживает его и создает подключение по локальной сети. Более того, при каждом включении компьютера операционная система проверяет наличие досту г-а к сети и немедленно подключается к ней. Другие типы сетевых подключений необходимо создавать вручную. Для этого откройте папку Сетевые подключения (Пуск* Настройка > Сетевые подключения) и дайте команду Файл > Новое подключение. Можно также воспользоваться ссылкой Создание нов< < ~о подключения в области задач. При этом запустится Мастер новых подключений, который позволяет задать необходимые параметры подключения.

    Как изменить настройку подключения?

    Чтобы изменить настройку ранее создан ного подключения, откройте папку Сетевые подключения (Пуск? Настройка > Сетевые подключения). Щелкните на значке нужного подключения пра-юй кнопкой мыши и выберите в открывшемся контекстном меню nyeiK Свойства. Откроется диалоговое окно свойств выбранного подключение. Основные настройки доступны на вкладке Общие.

    Какие основные элементы настройки доступны для подключения?

    На сетевых компьютерах, работающих под управлением Windows XP, возможна настройка пяти отдельных программных сетевых компонентов. Это собственно сетевой адаптер (поле Подключение через на вкладке Общие диалогового окна свойств подключен им), а также сетевой клиент, сетевая служба, планировщик и сетевой протокол. Они перечислены в списке Отмеченные компоненты используются этим подключением. Чтобы изменить настройку компонента, выберите его F с (иске и щелкните на кнопке Свойства. Если эта кнопка неактивна, зн.ач;ST выбранный компонент не имеет настраиваемых параметров. В разных i \ i дкл ючениях могут использоваться разные сетевые компоненты, например, из-за того, что компьютер одновременно входит в состав нескольких ceitiii.

    Что такое протокол?

    Сетевой протокол представляет собой набор правил, используемый компьютером при взаимодействии с другим устройством через сеть. Чтобы такое взаимодействие действительно оказалось возможным, разные компьютеры сети должны использовать один и тот же протокол. Таким образом, выбор протокола осуществляется при создании сети.

    Какие виды протоколов используются в типичных сетях?

    Одноранговая локальная сеть под управлением Windows XP опирается на протокол TCP/IP, который применяется и при подключении к Интернету. В предыдущих версиях Windows в локальной сети применялся протокол NetBEUI (в Windows XP его поддержка прекращена). Локальная сеть под управлением сервера Novell NetWare использует протокол 1PX/SPX. Другие протоколы, скорее всего, вам не понадобятся. При настройке сети не следует устанавливать те протоколы, которые не будут использоваться, так как это увеличивает нагрузку на компьютер и снижает эффективность работы,

    Как настроить сетевой протокол?

    Изменение настройки сетевого протокола относится только к конкретному подключению. Чтобы выполнить такую настройку, откройте папку Сетевые подключения (ПусО Настройка» Сетевые подключения). Щелкните на значке нужного подключения правой кнопкой мыши и выберите в открывшемся контекстном меню пункт Свойства. Выберите в списке Отмеченные компоненты используются этим подключением настраиваемый протокол и щелкните на кнопке Свойства. Диалоговое окно свойств протокола содержит ряд вкладок, количество и состав которых зависит от используемого протокола и типа подключения.

    Что такое сетевой адаптер?

    Сетевой адаптер (сетевая плата) - это аппаратное средство, обеспечивающее физическое подключение компьютера к сети. Это либо специальная плата расширения, содержащая гнездо для подключения сетевых кабелей, либо отдельное устройство, подключаемое через порт USB. У современных компьютеров сетевой адаптер нередко интегрируется прямо в материнскую плату. Для использования сетевого адаптера требуется установка соответствующих драйверов.

    Как установить сетевой адаптер?

    Если сетевой адаптер удовлетворяет стандарту plug-and-play, то установка драйверов производится автоматически. Кроме того, установку сетевого адаптера можно провести так же, как любого другого устройства, то есть с помощью мастера Установка оборудования,

    Как настроить сетевой адаптер?

    Доступ к средствам настройки сетевой;, адаптера возможен двумя способами. Во-первых, можно использовагь Диспетчер устройств (Пуск > Настройка > Панель управления > Система > Оборудование > Диспетчер устройств). Во-вторых, открыв папку Сетевые подключения (Пуск > Настройка * Сетевые подключения), можно щелкнут;. правой кнопкой мыши на значке подключения, использующего этот адап rep, и выбрать в контекстном меню пункт Свойства. На вкладке Общие щелкните на кнопке Настроить. Специальные возможности настройки сетевого адаптера обычно представлены на вкладке Дополнительно.

    Что такое сетевой клиент?

    Сетевой клиент - это специальное up траммное обеспечение, обеспечивающее доступ к сети и работу с ней, С< ^евые клиенты предназначены для использования определенного сетевого протокола и должны быть привязаны к нему.

    Как выбирается сетевой клиент?

    Сетевой клиент, который должен бьп i. установлен, определяется в соответствии с используемым сетевым про соколом. Протокол TCP/IP использует Клиент для сетей Microsoft. Если сеть основана на использовании протокола IPX/SPX, нужен Клиент для сетей NetWare.

    Как настроить сетевой клиент?

    Для настройки сетевого клиента нядо открыть диалоговое окно свойств соответствующего подключения (Пуск * Настройка * Сетевые подключения * Свойства) и выбрать вкладку Общие, Ь списке используемых сетевых компонентов выберите настраиваемый клиент и щелкните на кнопке Свойства. Возможности изменения настроек к. шента минимальны. Если сетевой клиент вообще не допускает настроек кнопка Свойства будет пригашена.

    Что такое сетевая служба?

    Сетевая служба представляет собой:етевую подсистему, предназначенную для выполнения конкретной зад;. ти. Например, в одноранговой сети Windows совместный доступ к файлам и принтерам обеспечивается альной службой. В Интернете работа электронной почты, передача файлов и многие другие возможности также обеспечиваются особыми службами. Различным образом организованные локальные сети могут обеспечивать и другие виды служб.

    Как настроить сетевую службу?

    Для настройки сетевой службы надо открыть диалоговое окно свойств соответствующего подключения (Пуск > Настройка? Сетевые подключения > Свойства) и выбрать вкладку Общие. В списке используемых сетевых компонентов выберите настраиваемую службу и щелкните на кнопке Свойства. Набор настроек, доступных в диалоговом окне свойств службы, зависит от конкретной службы.

    Как добавить дополнительный программный сетевой компонент?

    Добавлять дополнительные сетевые компоненты без необходимости не следует. Как правило, операционная система Windows вполне успешно справляется ео стоящими перед ней задачами, автоматически добавляя сетевые компоненты, если в них возникает нужда. Но эту операцию можно выполнить и вручную. Откройте диалоговое окно свойств подключения (Пуск * Настройка > Сетевые подключения > Свойства) и выберите вкладку Общие. Щелкните на кнопке Установить. В диалоговом окне Выбор типа сетевого компонента выберите нужный тип (Клиент, Служба или Протокол) и щелкните на кнопке Добавить. Далее можно выбрать нужный компонент из числа предложенных операционной системой или воспользоваться отдельным дистрибутивным носителем (кнопка Установить с диска).

    Как удалить сетевой компонент?

    Для удаления сетевого компонента откройте диалоговое окно свойств подключения (Пуск > Настройка > Сетевые подключения > Свойства) и выберите вкладку Общие. Выберите в списке компонент, который необходимо удалить, и щелкните на кнопке Удалить. При удалении указанного компонента автоматически удаляются и компоненты, работа которых основывается на нем. Как и в случае установки сетевых компонентов, прибегать к этой операции следует только в крайнем случае - обычно операционная система сама делает все что НУЖНО. Кроме того, имейте в виду, что удаление компонента распространяется на все подключения, в которых он используется. После выдачи команды на удаление операционная система напомнит об этом и попросит подтвердить выданную команду.

    Как соединить компьютеры напрямую?

    При прямом кабельном соединении должны быть связаны однотипные порты компьютеров (последовательный с последовательным или параллельный с параллельным). Возможна также беспроводное соединение, использующее инфракрасные порты компьютера. При соединении последовательных портов используется так называемый нуль-модемный кабель (обеспечивающий правильное сочетании исходящих и входящих сигналов). Для соединения параллельных порто» также необходим специальный кабель. Прямое соединение через параллельные порты работает заметно быстрее, так как в этом случае даннь.е передаются не побитно, а сразу целыми байтами.

    Как настраиваются подключения при прямом соединении компьютеров?

    При прямом соединении компьютеров < айн из компьютеров является ведущим, а другой ведомым. Ведущий компьютер инициирует соединение, в то время как ведомый принимает запрос и отвечает на него. Такое соединение обеспечивает ведущему компьютеру доступ к ресурсам ведомого компьютера.

    Как настроить компьютер для работы в режиме прямого соединения?

    Открыв папку Сетевые подключения, дайте команду Файл V Новое подключение. В окне мастера новых подключений щелкните на кнопке Далее. Затем установите переключатель Установить прямое подключение к другому компьютеру и щелкните на кнопке Далее. Установите переключатель Подключаться напрямую к другому комгыстеру и щелкните на кнопке Далее. На следующем этапе работы мастера нужно установить переключатель Ведущий компьютер или Ведомый KOMI " эютер в зависимости от роли, которую будет играть данная система прг прямом соединении. Щелкните на кнопке Далее. Для ведущего компьют ера на последующих этапах работы Мастера надо указать имя компьютер; i к которому производится подключение, и порт, который будет использс оатъся для связи. Для ведомого компьютера можно указать пользователей которым разрешается подключение.

    Как установить прямое соединение между компьютерами?

    После того как на ведущем и ведомом компьютерах созданы прямые подключения, можно установить связь между ними. У ведомого компьютера значок прямого подключения имеет подпись Входящие подключения. На ведущем компьютере надо дважды щелкнуть на значке прямого подключения. Откроется диалоговое окно Подключение, в котором надо указать имя пользователя и пароль для подключения к ведомому компьютеру. Операционная система Windows XP дает возможность включить режим сохранения пароля. После щелчка на кнопке Подключение процесс установки соединения продолжается автоматически.

    Для чего используется удаленный доступ к сети?

    Удаленный доступ к сети позволяет подключить к сети удаленный компьютер через телефонную линию. На период действия соединения удаленный компьютер (как правило, переносной) получает такие же права, как компьютер, постоянно подключенный к данной сети. В настоящее время эта возможность используется, главным образом, для подключения отдельных (домашних) компьютеров к Интернету через локальную сеть поставщика услуг Интернета. Эта возможность также может применяться для подключения сотрудников организации к корпоративной сети, когда они находятся не на рабочем месте.

    4) Среды передачи данных

    Наиболее распространенной средой передачи данных между компьютерами являются три основные группы кабелей:

    коаксиальный кабель;

    витая пара (неэкранированная и экранированная);

    оптоволоконный кабель.

    Коаксиальный кабель – недорогой, легкий, гибкий, удобный, безопасный и простой в установке. Существует два типа коаксиальных кабелей: тонкий (спецификация 10 Base2) и толстый (спецификация 10 Base5). Тонкий – гибкий, диаметр 0,64 см (0,25"). Прост в применении и подходит практически для любого типа сети.

    Витая пара – это два перевитых изолированных медных провода. Несколько витых пар проводов часто помещают в одну защитную оболочку. Переплетение проводов позволяет избавиться от электрических помех, наводимых соседними проводами и другими внешними источниками. Преимущества витой пары – дешевизна, простота при подключении. Недостатки – нельзя использовать при передаче данных на большие расстояния с высокой скоростью.

    В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде световых импульсов. Это надежный способ передачи, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные. Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях. Расстояние - многие километры. Существенным недостатком этой технологии является дороговизна и сложность в установке и подключении.

    Для передачи по кабелю кодированных сигналов используют две технологии – немодулированную и модулированную передачу.

    Немодулированные системы передают данные в виде цифровых сигналов, которые представляют собой дискретные электрические или световые импульсы.

    Модулированные системы передают данные в виде аналогового сигнала (электрического или светового), занимающего некоторую полосу частот.

    Беспроводная среда не означает полное отсутствие проводов в сети. Беспроводная среда обеспечивает временное подключение к существующей кабельной сети, гарантирует определенный уровень мобильности и уменьшает ограничения на протяженность сети.

    Существуют следующие типы беспроводных сетей: ЛВС, расширенные ЛВС и мобильные сети (переносные компьютеры). Основные различия между ними – параметры передачи.

    Работа беспроводных ЛВС основана на четырех способах передачи данных: инфракрасном излучении, лазере, радиопередаче в узком диапазоне (одночастотной передаче), радиопередаче в рассеянном спектре.



    5) Платы сетевого адаптера

    Платы сетевого адаптера (СА) выступают в качестве физического интерфейса или соединителя между компьютером и сетевым кабелем.

    Плата СА выполняет:

    подготовку данных, поступающих от компьютера, к передаче по сетевому кабелю;

    передачу данных другому компьютеру;

    управление потоком данных между компьютером и кабельной системой;

    прием данных из кабеля и перевод их в форму, понятную компьютеру.

    Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить следующие задачи:

    распознавание данных;

    разбиение данных на управляемые блоки;

    добавление информации к каждому блоку о местонахождении данных и получателе;

    добавление информации для синхронизации и проверки ошибок;

    перемещение данных в сеть и отправка их по заданному адресу.

    Последовательность этих задач строго регламентирована, чтобы передавать данные между сетевыми адаптерами разных производителей, при их выполнении строго выполняются определенные правила – протоколы. Существует два главных набора стандартных протоколов: эталонная модель OSI и ее модификация Project 802.

    6) Сетевое оборудование

    Кроме минимально необходимого оборудования: среды передачи и плат сетевого адаптера, при построении сетей может использоваться дополнительно оборудование, состав которого определяется конкретной топологией сети.

    Терминаторы – это резисторы номиналом 50 Ом, которые производят затухание сигнала на концах сегмента сети.

    Концентраторы (Hub) – это центральные устройства кабельной системы или сети физической топологии «звезда», которые при получении пакета на один из своих портов пересылает его на все остальные.

    Повторители (Repeater) - устройства сети, усиливает и заново формирует форму входящего аналогового сигнала сети на расстояние другого сегмента.



    Коммутаторы (Switch) - управляемые программным обеспечением центральные устройства кабельной системы, сокращающие сетевой трафик за счет того, что пришедший пакет анализируется для выяснения адреса его получателя и соответственно передается только ему.

    Маршрутизаторы (Router) – стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую, а также фильтровать широковещательные сообщения.

    Мосты (Bridge) – устройства сети, которое соединяют два отдельных сегмента, ограниченных своей физической длиной, и передают трафик между ними.

    Шлюзы (Gateway) – программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет различать протоколы или системы адресации.

    Мультиплексоры – это устройства центрального офиса, которое поддерживают несколько сотен цифровых абонентских линий.

    Межсетевые экраны (firewall, брандмауэры) – это сетевые устройства, реализующие контроль за поступающей в сеть и выходящей из нее информацией и обеспечивающие защиту локальной сети посредством фильтрации информации.

    Ядро ОС

    Ядро сетевой операционной системы (командный интерпретатор) обеспечивает функционирование пользовательского интерфейса. Среди функций ядра можно отметить:

      Управление выполнением процессов посредством их создания, завершения или приостановки и организации взаимодействия между ними.

      Планирование очередности предоставления выполняющимся процессам времени центрального процессора (диспетчеризация). Процессы работают с центральным процессором в режиме разделения времени: центральный процессор выполняет процесс, по завершении отсчитываемого ядром кванта времени процесс приостанавливается и ядро активизирует выполнение другого процесса. Позднее ядро запускает приостановленный процесс.

      Выделение выполняемому процессу оперативной памяти. Ядро операционной системы дает процессам возможность совместно использовать участки адресного пространства на определенных условиях, защищая при этом адресное пространство, выделенное процессу, от вмешательства извне. Если системе требуется свободная память, ядро освобождает память, временно выгружая процесс на внешние запоминающие устройства, которые называют устройствами выгрузки. Если ядро выгружает процессы на устройства выгрузки целиком, такая реализация системы UNIX называется системой со свопингом (подкачкой); если же на устройство выгрузки выводятся страницы памяти, такая система называется системой с замещением страниц.

      Выделение внешней памяти с целью обеспечения эффективного хранения информации и выборка данных пользователя. Именно в процессе реализации этой функции создается файловая система. Ядро выделяет внешнюю память под пользовательские файлы, мобилизует неиспользуемую память, структурирует файловую систему в форме, доступной для понимания, и защищает пользовательские файлы от несанкционированного доступа.

      Управление доступом процессов к периферийным устройствам, таким как терминалы, ленточные устройства, дисководы и сетевое оборудование.

      Ядро реализует ряд необходимых функций по обеспечению выполнения процессов пользовательского уровня, за исключением функций, которые могут быть реализованы на самом пользовательском уровне.

    Характеристика основных сетевых операционных систем

    Операционная система NetWare фирмы Novell ориентированна на локальную сеть ПЭВМ, совместимых с IBM PC. Эта сетевая операционная система, ядро которой загружается на файловый сервер, является самостоятельной операционной системой. На рабочих станциях загружаются модули сетевой операционной системы, которые обеспечивают взаимодействия с ее ядром и обмен сообщениями с другими рабочими станциями. При этом на рабочих станциях могут быть использованы различные базовые операционные системы. Сетевая операционная система обеспечивает работу сети любой структуры: моноканальной, кольцевой, звездообразной и т.д. В настоящее время используют несколько версий сетевой операционной системы NetWare Novell. Сеть Novell NetWare 2.2 предназначена для организации небольшой сети на базе файл-сервера с процессором 80286. Для создания крупных и надежно работающих сетей больше подходит сеть Novell NetWare 3.11 или 3.12, работающая на процессорах 80386 и выше. Версия 3.11/3.12 в отличие от 2.2 работает с выделенным файл-сервером и количество рабочих станций, подключенных к одному серверу, может достигать 250. Сеть Novell NetWare 4.1 предназначена для создания крупных сетей, состоящих из многих сегментов и содержащих несколько серверов. Количество рабочих станций в данной версии может достигать 1000.

    Достоинства системы:

      хорошо продуманные и мощные службы файлов и печати;

      наличие средств оперативного сжатия информации на дисках;

      мощные средства администрирования больших многопользовательских, многосерверных сетей Novell;

      возможность создания сетей с повышенной отказоустойчивостью (пакет NetWare SFT III);

      большое количество прикладных программ, разработанных независимыми поставщиками;

      удобная иерархическая структура распределенного каталога.

    Недостатки системы:

      необходимость приобретения отдельного пакета NetWareSMPдля организации многопроцессорной обработки;

      отсутствие простых инструментальных средств разработки приложений;

      слабая защита памяти при работе приложений сервера, что затрудняет отладку программ и может привести к краху системы во время ее функционирования.

    Функции ОС NetWare

      поддержка коллективного использования файлов,

      обеспечение доступа к сетевым принтерам,

      предоставление средств для работы с электронной почтой,

      поддержка работы СУБД различных типов,

      обеспечение доступа к файловому серверу со стороны рабочих станций, функционирующих под управлением различных операционных систем,

      предложение средств, позволяющих объединять удаленные сегменты сети,

      обеспечение "прозрачности" доступа локальных и удаленных пользователей к ресурсам сети,

      предложение средств для надежного хранения данных,

      обеспечение защиты ресурсов сети от несанкционированного доступа,

      поддержка динамически расширяемых многосегментных томов на нескольких дисках файлового сервера,

      предоставление средств управления ресурсами корпоративных сетей: единый каталог сетевых ресурсов NDS в NetWare 4.1,

      обеспечение передачи и обработки данных с использованием разных протоколов: SPX/IPX, TCP/IP, NetBIOS, AppleTalk,

      поддержка работы суперсерверов в симметричном режиме функционирования (ОС NetWare 4.1 SMP).

    Windows 95/98

    Windows 95/98 - сетевая операционная система локальной одноранговой сети (число компьютеров не превышает 10). Windows 95 является 32-разрядной многозадачной и многопоточной системой с приоритетами. Операционная система предоставляет разнообразные средства для распределенной обработки данных. Она создает среду для объектно-ориентированной архитектуры, выполняет разнообразные функции, связанные с определением и изменением конфигурации внешних устройств и программного обеспечения, работающих в сети. Обеспечивается защита от отказов и безопасность данных. Windows 95 работает с любыми типами данных: текстами, звуком и изображением используется удобный упрощенный интерфейс пользователя, позволяющий работать с трехмерной графикой. Windows 95 имеет модуль, являющийся универсальным почтовым ящиком, предназначенным для хранения сообщений электронной почты, речевой почты и факсимильной связи. Обмен сообщениями внутри рабочей группы осуществляется при помощи Microsoft Mail. В рабочей группе следует выделить одну машину, оборудованную факс-модемом, в качестве почтовой.

    Microsoft Windows NT WS/Server 4.0

    Microsoft Windows NT WS / Server 4.0 является уникальной и мощной операционной системой.

    При ее разработке преследовались следующие цели:

      надежность,

      производительность,

      переносимость,

      совместимость,

      масштабируемость,

      безопасность.

    Windows NT идеально приспособлена для работы в качестве рабочей станции и сетевого сервера, где требуется повышенная устойчивость и высокая производительность. Windows NT является синтезом как предыдущих версий Windows, так и других операционных систем. Она может быть адаптирована под различные типы аппаратного обеспечения без полной переработки. Важной особенностью операционной системы является ее способность работать с существующими приложениями.

    Достоинства системы:

      наличие унифицированного графического интерфейса;

      простота и удобство использования и администрирования;

      надежность служб файлов и печати;

      развитый интерфейс API(ApplicationProgramInterface) прикладного программирования, облегчающий процесс разработки прикладных программ;

      возможность реализации одно- и многопроцессорной (до 32 процессоров) обработки в одном пакете;

      поддержка различных архитектур процессоров (Intel,Alpha,MIPSи др.).

    Недостатки системы:

      слабая гибкость службы каталогов (доменная модель) по сравнению с аналогичными службами СОС NetWareиBanyanVINES6.0;

      сложность системы защиты при управлении доступом внутри доменов и между ними.

    Windows 2000

    Windows2000 поставляется в трех вариантах

      Windows 2000 Professional (по - старому - workstation). Высокопроизводительное рабочее место

    1. Windows 2000 Advanced Server (по - старому - Enterprise Server)

    Особенности Windows 2000:

    В Windows 2000 Professional расширен спектр поддерживаемых устройств, обеспечивает поддержку средств управления энергопотреблением для мобильных систем и обладает улучшенным пользовательским интерфейсом, благодаря которому она является самой простой в использовании из всех когда-либо выпущенных версий Windows.

    В систему добавлены новые “мастера”: “мастер аппаратуры”, позволяющий наиболее простым способом подключать новые устройства в систему, “мастер сетевых соединений”, способствующий более быстрому конфигурированию модемов и сетевых соединений, “мастер принтера”, помогающий быстро подключить принтер.

    Появилась поддержка “горячей” смены компонентов. Данную функцию по достоинству оценят владельцы ноутбуков, которые вынуждены перезагружать свои машины при подключении новых устройств.

    В Windows 2000 используется новая файловая система, носящая название NTFS5. Основная отличительная черта данной файловой системы – автоматическое “фоновое” шифрование данных.

    В новой системе сокращено число необходимых перезагрузок после установки новых свойств в СЕМЬ раз, это значит, что пользователю не придется перезагружаться для того, чтобы система “восприняла” новые параметры.

    Добавлена новая служба быстрого поиска данных, которая позволит находить необходимые файлы с высокой скоростью, за счет индексации данных

    Установлена новая политика безопасности. Такой подход делает систему очень устойчивой к различным сбоям.

    Улучшена поддержка сетей. С точки зрения пользователя теперь можно будет, не вдаваясь в детали, получить доступ к сетевым ресурсам не привлекая к этому вечно занятого системного администратора

    В Windows 2000 появилась новая возможность – создание сценария установки, что позволит установить систему на диски разных машин, пользуясь единым сценарием.