Каковы функции отдельных частей генератора на транзисторе. Т. Автоколебания. Часы как автоколебательная система

  • 29.10.2019

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

Тема урока : "Генератор на транзисторе. Автоколебания"

План – конспект урока по физике, подготовила Мызникова Елена Викторовна, учитель физики МБОУ гимназия №64 , 11 класс.

Тип урока: Урок изложения нового материала.

Цели урока :

Образовательные:

    Сформировать понятие автоколебаний, рассмотреть принцип действия генератора незатухающих колебаний на транзисторе.

    Продолжить формирование знаний по физическим основам получения переменного тока.

Развивающие:

    Развивать практические умения учащихся: умение анализировать, обобщать, выделять главную мысль из рассказа учителя и делать выводы.

    Развивать умение применять полученные знания в новых условиях.

Воспитывающие:

    Расширить мировоззрение учащихся об истории исследования по проблемам вынужденных колебаний, вкладе ученых в становление теории автоколебаний.

    Отрабатывать навыки учебного труда по ведению конспекта материала.

Оборудование : компьютер, рабочие листы для учащихся, тест.

Демонстрации : презентация по теме, катушк а индуктивности (на 120 В) от универсального трансформатора и батареи конденсаторов Бк-58 , батарея напряжением 4,5В, комплект универсального трансформатора , электронный осциллограф ОЭШ.

Структура урока:

1. Организационный момент, актуализация знаний, необходимых для усвоения нового материала

2. Сообщение темы и цели урока, мотивация учебной деятельности (через создание проблемной ситуации и выявление личного опыта учащихся по теме урока)

3. Изучение нового материала, демонстрационный эксперимент.

4. Проверка понимания учащимися изученного материала и его первичное закрепление.

5. Рефлексия домашнее задание.

План – конспект:

Структура урока,

время этапа

Обучающиеся дают ответы на вопросы. 1.Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной электропроводностью металлов и хороших диэлектриков 2. Транзистор - усилитель электрических колебаний.3.Состоит из трёх областей, крайние из которых обладают дырочной проводимостью, а средняя - электронной: эмиттер, коллектор, база.

4. База - электроны, коллектор и эмиттер- дырки. 5. Одна из областей триода, например левая, содержит обычно в сотни раз большее количество примеси р-типа, чем количество n-примеси в n-области. Поэтому прямой ток через р-n-переход будет состоять почти исключительно из дырок, движущихся слева направо. Попав в n-область триода, дырки, совершающие тепловое движение, диффундируют по направлению к n-р-переходу, но частично успевают претерпеть рекомбинацию со свободными элек тронами n-области. Но если n-об ласть узка и свободных электронов в ней не слишком много, то большинство дырок достигнет второго перехода и, попав в него, переместится его полем в правую р-область.

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Сегодня на уроке нам предстоит решить проблему: нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре для того, чтобы они были незатухающими. Как это можно сделать? Основываясь на своих знаниях, предложите способы решения данной проблемы. На это отводится 2 минуты. Работа в парах. Учитель корректирует и рецензирует результаты. (После выполнения задания учитель обобщает предложенные результаты, обсуждая и комментируя каждый вариант)

Вывод: Можно использовать автоколебания. Формулируется тема и цель урока (для учащихся).

Накануне первой мировой войны Россия в научном отношении значительно отставала от передовых капиталистических стран. В частности, в России не было радиотехнической промышленности. Всё оборудование для радиосвязи приходилось ввозить из-за границы, а после революции этот источник был практически закрыт. В этих условиях советские ученые Крылов, Мандельштам, Папалекси, Андронов провели столь глубокие исследования по проблемам вынужденных колебаний, что намного опередили своих западных коллег, так что мировой научный центр по этим проблемам переместился в СССР.

Широко применимы так называемые автоколебания - незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени. Частота и амплитуда автоколебаний определяются свойствами самой системы и не зависят от внешнего воздействия. К примеру, под стальной гирей, висящей на пружине, располагается электромагнит. Если будут попеременно включать и выключать ток, то гиря начнет совершать вынужденные колебания. Попробуйте объяснить, что будет происходить дальше.

Дальше можно сделать так, чтобы гиря, колеблющаяся вверх-вниз, сама замыкала и размыкала цепь. Средний провод зажат прищепкой так, что касается гири, пока она вверху. Ток, проходя через пружину, гирю, средний провод и катушку, намагничивает ее сердечник. Гиря сделана из стали, поэтому она притягивается к сердечнику, то есть движется вниз. Вскоре она отсоединяется от среднего провода, ток прекращается, и магнитное поле исчезает. Под действием пружины гиря поднимется вверх и снова замыкает цепь.

Таким образом, будут проходить автоколебания.

Приведем примеры автоколебаний:
    незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; колебания скрипичной струны под воздействием равномерно движущегося смычка; колебание воздушного столба в трубе органа, при равномерной подаче воздуха в неё; вращательные колебания латунной часовой шестерёнки со стальной осью, подвешенной к магниту и закрученной голоса людей, животных и птиц образуются благодаря автоколебаниям, возникающим при прохождении воздуха через голосовые связки.

Вопросы учащимся:

Вспомните то общее, что присуще таким колебательным системам, как пружинный и нитяной маятники, колебательный контур.

Примером механической автоколебательной системы являются маятниковые часы, модель которых изображена на слайде. В 1657 году голландский физик Христиан Гюйгенс предложил использовать изохронность колебаний маятника для создания равномерного движения стрелки на часах. Устройство, предложенное Гюйгенсом, в его главных чертах сохранилось до настоящего времени: маятник, поднятый груз, анкер и ходовое колесо. Обращаю внимание учащихся на то, что в основном маятник движется свободно, получая за период два толчка. Колебания возникают и поддерживаются самой колебательной системой, то есть являются автоколебаниями .


В них могут возникать свободные колебания, эти колебания всегда являются затухающими, в идеализированных системах они являются незатухающими, гармоническими. В этом случае их частота определяется свойствами самой системы, а амплитуда зависит от начальных условий.

Учащимся предлагают самим определить, какой вид колебаний имеет здесь место, назвать основные части этой колебательной системы: маятник (колебательная система), поднятая гиря (источник энергии), храповое колесо с анкерной вилкой (клапан, регулирующий поступление энергии от источника в систему).

Объяснение принципа работы генератора на транзисторе. В момент подключения источника постоянного тока через коллекторную цепь транзистора проходит ток, заряжающий конденсатор колебательного контура. В контуре возникнут свободные электромагнитные колебания. Так как катушка колебательного контура индуктивно связана с катушкой обратной связи, то ее изменяющееся магнитное поле вызовет в катушке обратной связи переменную ЭДС такой же частоты, как и колебания в контуре. Эта ЭДС, будучи приложена к участку база – эмиттер, вызовет пульсацию тока в цепи коллектора. Так как частота этих пульсаций равна частоте электромагнитных колебаний в контуре, то они подзаряжают конденсатор контура и тем самым поддерживают постоянной амплитуду колебаний в контуре.

Показать колебательный контур, состоящий из катушки индуктивности (на 120 В) от универсального трансформатора и батареи конденсаторов Бк-58. В качестве источника энергии служит батарея напряжением 4,5 В, роль «клапана» играет транзистор, в качестве обратной связи используют катушку от универсального трансформатора (на 12 В), концы которой соединяют с базой и эмиттером транзистора. Колебательный контур включен в цепь коллектора. Катушку контура и катушку обратной связи размещают на общем магнитопроводе из того же комплекта универсального трансформатора. Напряжение с контура подают на электронный осциллограф ОЭШ.

Изменить электроемкость батареи и наблюдают изменение частоты колебаний генератора. Изменить индуктивность катушки (например, медленно поднимая ее по магнитопроводу), наблюдают тот же эффект.

Амплитуда колебаний также зависит от самой системы. Можно продемонстрировать эту зависимость, включив последовательно в цепь контура переменное сопротивление: амплитуда колебаний генератора уменьшится.

Объяснить, что при замыкании ключа через транзистор от источника энергии проходит импульс тока, которым заряжается конденсатор контура. В контуре при разрядке конденсатора возникают свободные затухающие колебания.

Роль катушки обратной связи иллюстрируют на опыте: поменяв местами провода, идущие к катушке обратной связи, убеждаются в отсутствии, колебаний в контуре генератора. Восстановив прежнюю схему, можно увидеть, что генератор вновь работает. Делают вывод: пульсирующий ток в коллекторной цепи увеличивает или уменьшает силу тока в контуре в зависимости от того, в какие моменты открывается транзистор (а транзистор открывается и закрывается той переменной ЭДС, которая наводится в катушке обратной связи). Соответственно пульсации коллекторного тока либо совпадают с изменением тока в контуре (и тем самым усиливают его), либо оказываются противоположными (и ослабляют (гасят) ток в этом контуре). Поэтому генерация колебаний возможна только при определенном подключении катушки обратной связи.

Поднимая катушку обратной связи по магнитопроводу, наблюдать на осциллограмме уменьшение амплитуды колебаний. Это объясняют тем, что связь катушки становится слабее с контуром и тем самым уменьшается наводимая в ней ЭДС. Если связь станет еще слабее, колебания в контуре затухнут, так как при слабой обратной связи энергия, поступающая в контур за период, оказывается меньше потерь энергии в контуре.

Выделяют элементы установки и выясняют их роль в работе генератора.

Делают вывод: частота колебаний генератора зависит от параметров самой колебательной системы

Предложить школьникам разобраться в энергетических превращениях в демонстрируемой автоколебательной системе: чтобы колебания в контуре были незатухающими, источник напряжения должен периодически к нему подключаться, возмещая потери энергии в этом контуре. Это достигается тем, что контур индуктивно связан с участком «эмиттер - база» через катушку обратной связи

Завершаем изучение темы рассмотрением вопроса о применении автоколебательных систем. Примеры автоколебаний в природе и технике
    Поток воздуха, скорость которого больше некоторой критической величины, вызывает колебания - полоскание флага на ветру колебания листьев растений под действием равномерного потока воздуха; образование турбулентных потоков на перекатах и порогах рек; голоса людей, животных и птиц образуются благодаря автоколебаниям, возникающим при прохождении воздуха через голосовые связки; действие регулярных гейзеров и пр. На автоколебаниях основан принцип действия большого количества всевозможных технических устройств и приспособлений, в том числе: работа всевозможных часов как механических, так и электрических; звучание всех духовых и струнно-смычковых музыкальных инструментов; действие всевозможных генераторов электрических и электромагнитных колебаний, применяемых в электротехнике, радиотехнике и электронике; работа поршневых паровых машин и двигателей внутреннего сгорания некоторые системы автоматического регулирования работают в режиме автоколебаний, когда регулируемая величина колеблется в окрестности требуемого значения, то превышая его, то опускаясь ниже него, в допустимом для целей регулирования диапазоне (например, система терморегулирования бытового холодильника).
Итак, 1. Что такое автоколебательная система? 2. В чем отличие автоколебаний от вынужденных и свободных колебаний? 3. Какова роль транзистора в генерации автоколебаний?
4. Как осуществляется обратная связь в генераторе на транзисторе?

5. Укажите основные элементы автоколебательной системы.

6. Приведите примеры автоколебательных систем, не рассмотренных на уроке.

Выполнение проверочного теста

    Какие из перечисленных колебаний относятся к автоколебаниям? 1. Колебания маятника в часах. 2. Колебания груза на пружине. 3. Биение сердца. 4. Колебания в генераторе высокой частоты. 5. Колебания струны гитары.

А. Только 1; 4. Б. Только 1; 3; 4. В. Только 1; 4.

    На рисунках 1 и 2 даны электрические схемы. В какой из них могут наблюдаться автоколебания?

А. Рисунок 1. Б. Рисунок 2. В. В предложенных схемах автоколебания осуществляться не могут.


А. Только от емкости конденсатора. Б. От напряжения батареи, емкости конденсатора и индуктивности катушки. В. Только от емкости конденсатора и индуктивности катушки.

    Каково назначение катушки связи?

А. Устанавливает обратную связь между колебательным контуром и источником тока. Б. Устанавливает обратную связь между транзистором и источником тока. В. Устанавливает обратную связь между колебательным контуром и транзистором.

    Каково назначение транзистора в генераторе высокой частоты?

А. Регулирует частоту в колебательном контуре. Б. Регулирует поступление энергии от источника тока в колебательном контуре. В. Вырабатывает энергию.

    Какая запись правильно характеризует соотношение тока в транзисторе?

А. I Э = I Б + I К . Б. I Э = I К - I Б . В. I Б - I к + I э .

    Какой потенциал относительно эмиттера должен быть на базе для поступления энергии от источника напряжения в колебательный контур? (На пластине конденсатора, соединенной с коллектором, положительный заряд.)

А. Отрицательный. Б. Положительный. В. Поступление энергии не зависит от.потенциала на базе.

    Один конец катушки обратной связи соединен с базой, второй - с:

А. Коллектором. Б. Катушкой колебательного контура. В. Эмиттером .

    Амплитуда установившихся колебании:

А. Зависит только от начальных условий. Б. Не зависит от параметров автоколебательной системы. В. Не зависит от начальных условий и определяется параметрами автоколебательной системы.


А. 4. Б. 1. В. 2. Г. 3.

На этом мы заканчиваем изучение механических и электрических колебаний. Замечательна тождественность общего характера процессов различной природы, тождественность математических уравнений, которые их описывают. Эта тождественность, как мы видели, существенно облегчает изучение колебаний. Мы ознакомились с наиболее сложным видом колебаний - автоколебаниями. В автоколебательных системах вырабатываются незатухающие колебания различных частот. Без таких систем не было бы ни современной радиосвязи, ни телевидения, ни ЭВМ. Для создания нового необходимо изучить особенности имеющегося материала. Только пытливость и активный поиск двигают науку вперёд. Дерзайте, творите, фантазируйте! Домашнее задание: «А»- конспект урока «В»-конспект, § 36,

«С»- конспект, § 36,№ 971, 979 (Рымкевич)

Генератор на транзисторе является автогенератором электромагнитных колебаний.

Автоколебательные электромагнитные системы по описывающим их законам, аналогичны механическим автоколебательным системам. Под автоколебательной системой понимают такую систему, в которой при отсутствии внешнего периодического воздействия возникают и существуют сколь угодно долго периодические колебания.

Рационально начать изучение темы с повторения механических автоколебательных систем, так как физические основы механических и электромагнитных автоколебаний едины.

Примером механической автоколебательной системы являются маятниковые часы, модель которых изображена на рисунке 1а. В 1657 году голландский физик Христиан Гюйгенс предложил использовать изохронность колебаний маятника для создания равномерного движения стрелки на часах. Устройство, предложенное Гюйгенсом, в его главных чертах сохранилось до настоящего времени: маятник, поднятый груз, анкер и ходовое колесо (рисунок 1б). Обращаю внимание учащихся на то, что в основном маятник движется свободно, получая за период два толчка. Колебания возникают и поддерживаются самой колебательной системой, то есть являются автоколебаниями.

Рисунок 1

Анализируя работу данного механизма, выделяем основные элементы, характерные для многих автоколебательных систем и объединяем их в блок-схему (рисунок 2)

Рисунок 2

Используя метод аналогий, переходим от механической автоколебательной системы к электромагнитной автоколебательной системе. Анализируем, что можно использовать в качестве источника энергии, клапана, колебательной системы в электрической цепи и как можно осуществить обратную связь между клапаном и колебательной системой. Одновременно на доске и в тетрадях заполняем таблицу 1.

Таблица 1.

Элементы автоколебательной системы

Механическая автоколебательная система (маятниковые часы)

Электромагнитная

автоколебательная система (генератор на транзисторе)

источник энергии

поднятый груз

батарея гальванических элементов

транзистор

колебательная система

колебательный контур

Обратная связь

через ходовое колесо

индуктивная – через катушки

Вспоминаем обозначения составляющих частей автогенератора (рисунок 3 а) и рисуем его схему (рисунок 3 б)

Рисунок 3

По данной схеме объясняем принцип работы генератора на транзисторе, подчеркнув в очередной раз, что это автоколебательная система. В момент подключения источника постоянного тока через коллекторную цепь транзистора проходит ток, заряжающий конденсатор колебательного контура. В контуре возникнут свободные электромагнитные колебания. Так как катушка колебательного контура индуктивно связана с катушкой обратной связи, то ее изменяющееся магнитное поле вызовет в катушке обратной связи переменную ЭДС такой же частоты, как и колебания в контуре. Эта ЭДС, будучи приложена к участку база – эмиттер, вызовет пульсацию тока в цепи коллектора. Так как частота этих пульсаций равна частоте электромагнитных колебаний в контуре, то они подзаряжают конденсатор контура и тем самым поддерживают постоянной амплитуду колебаний в контуре.

Собрав установку, изображенную на рисунке 4б можно продемонстрировать, что в автогенераторе без внешнего воздействия возникли электромагнитные колебания синусоидальной формы. Таким образом, в автогенераторе происходит преобразование энергии источника постоянного тока в энергию электромагнитных колебаний.

Поскольку в контуре существуют свободные колебания, то для них контур представляет только активное сопротивление, а потому напряжение на участке эмиттер – коллектор и на участке база – эмиттер должны быть сдвинуты на 180°. Чтобы продемонстрировать это учащимся, необходимо поменять местами провода, подходящие к катушке обратной связи. В этом случае колебания в генераторе не возникнут.

Второе условие работы генератора заключается в следующем: Энергия, поступающая в контур из коллекторной цепи, должна полностью восполнить необратимые преобразования в нем энергии. Это условие обеспечивается обратной связью. Чтобы убедить в этом учащихся, надо приподнять и медленно удалить катушку обратной связи от катушки контура. На экране осциллографа видно, как постепенно уменьшается амплитуда колебаний в контуре и наконец колебания исчезают.

Рисунок 4

На основании проделанных опытов сформулируем вывод, что обратная связь в генераторе автоколебаний должна удовлетворять двум условиям:

а) энергия от источника должна поступать в такт с колебаниями в контуре;

б) поступающая от источника энергия должна быть равна ее потерям в контуре.

Завершаем изучение темы рассмотрением вопроса о применении электромагнитных автоколебательных систем

Метод аналогий при изучении данной темы позволяет не только лучше усвоить суть вопроса, но и, подчеркнуть единство физических закономерностей механических и электромагнитных колебаний.

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания - незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан - некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь - управление работой клапана за счет процессов в самой колебательной системе.

Генератор на транзисторе - пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку L св индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.

При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды. Ток, протекающий по контурной катушке L , индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка L св подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

Если при положительной обратной связи медленно увеличивать расстояние между катушками L св и L , то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю. Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура - это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре - это амплитудное условие самовозбуждения.

Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

Уменьшая L и С , можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы - напряжением источника, расстоянием между L св и L , сопротивлением контура.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 394-395.

«Физика - 11 класс»

Вынужденные колебания возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях.
Такие генераторы не могут создавать колебания высокой частоты, необходимые для радиосвязи? т.к. для этого потребовалась бы очень большая скорость вращения ротора.
Колебания высокой частоты получают, например, с помощью генератора на транзисторе.


Автоколебательные системы

Обычно незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического напряжения.
Но возможны и другие способы получения незатухающих колебаний.

Например, есть система, в которой могут существовать свободные электромагнитные колебания, с источником энергии.
Если сама система будет регулировать поступление энергии в колебательный контур для компенсации потерь энергии на резисторе, то в ней могут возникнуть незатухающие колебания .

Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри самой системы, называются автоколебательными . Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями .

Генератор на транзисторе - пример автоколебательной системы.
Он состоит из колебательного контура с конденсатором емкостью С и катушкой индуктивностью L, источника энергии и транзистора.


Как создать незатухающие колебания в контуре?

Чтобы электромагнитные колебания в контуре не затухали, нужно компенсировать потери энергии за каждый период.

Пополнять энергию в контуре можно, подзаряжая конденсатор.
Для этого надо периодически подключать контур к источнику постоянного напряжения.

Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника пластина заряжена положительно, а присоединенная к отрицательному полюсу - отрицательно.
Только в этом случае источник будет подзаряжать конденсатор, пополняя его энергию.

Если же ключ замкнуть в момент, когда присоединенная к положительному полюсу источника пластина имеет отрицательный заряд, а присоединенная к отрицательному полюсу - положительный, то конденсатор будет разряжаться через источник. Энергия конденсатора при этом будет убывать.

Источник постоянного напряжения постоянно подключенный к конденсатору контура, не может поддерживать в нем незатухающие колебания, так же как постоянная сила не может поддерживать механические колебания.
В течение половины периода энергия поступает в контур, а в течение следующей половины периода возвращается в источник.

В контуре незатухающие колебания установятся лишь при условии, что источник будет подключаться к контуру в те интервалы времени, когда возможна передача энергии конденсатору.
Для этого необходимо обеспечить автоматическую работу ключа.
При высокой частоте колебаний ключ должен обладать надежным быстродействием. В качестве такого практически безынерционного ключа и используется транзистор.

Транзистор состоит из эмиттера, базы и коллектора.
Эмиттер и коллектор имеют одинаковые основные носители заряда, например дырки (полупроводник p-типа).
База имеет основные носители противоположного знака, например электроны (полупроводник n-типа).


Работа генератора на транзисторе

Колебательный контур соединен последовательно с источником напряжения и транзистором так, что на эмиттер подается положительный потенциал, а на коллектор - отрицательный.
При этом переход эмиттер - база (эмиттерный переход) является прямым, а переход база - коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет.
Это соответствует разомкнутому ключу.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя пластина конденсатора заряжена положительно, а нижняя - отрицательно.
Это соответствует замкнутому ключу.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя - положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре.
Необходима обратная связь .

Здесь обратная связь - индуктивная
К эмиттерному переходу подключена катушка индуктивностью L CB , индуктивно связанная с катушкой индуктивностью L контура.
Колебания в контуре вследствие электромагнитной индукции возбуждают колебания напряжения на концах катушки, а тем самым и на эмиттерном переходе.
Если фаза колебаний напряжения на эмиттерном переходе подобрана правильно, то «толчки» тока в цепи контура действуют на контур в нужные интервалы времени, и колебания не затухают.
Напротив, амплитуда колебаний в контуре возрастает до тех пор, пока потери энергии в контуре не станут точно компенсироваться поступлением энергии от источника.
Эта амплитуда тем больше, чем больше напряжение источника.
Увеличение напряжения приводит к усилению «толчков» тока, подзаряжающего конденсатор.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях, ЭВМ.


Основные элементы автоколебательной системы

На примере генератора на транзисторе можно выделить основные элементы, характерные для многих автоколебательных систем.


1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).

2. Колебательная система - та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).

3. Устройство, регулирующее поступление энергии от источника в колебательную систему - клапан (в рассмотренном генераторе - транзистор).

4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе - индуктивная связь катушки контура с катушкой в цепи эмиттер - база).


Примеры автоколебательных систем

Автоколебания в механических системах: часы с маятником или балансиром (колесиком с пружинкой, совершающим крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

К автоколебательным системам относятся электрический звонок с прерывателем, свисток, органные трубы и многое другое. Наше сердце и легкие также можно рассматривать как автоколебательные системы.