Приведенное значение эдс вторичной обмотки. От чего зависят ЭДС обмоток трансформатора и каково их назначение? Что называют коэффициентом трансформации

  • 07.03.2020

В 1876 г. П.И. Яблочков предложил пользоваться трансформатором для питания свечей. В дальнейшем конструкции трансформаторов разрабатывал другой русский изобретатель, механик И.Ф. Усагин, который предложил применять трансформаторы для питания не только свечей Яблочкова, но и других потребителей электрической энергии.

Трансформатор представляет собой электрический аппарат, основанный на явлении взаимоиндукции и предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же самой частоты. Простейший трансформатор имеет стальной сердечник и две обмотки, изолированные как от сердечника, так и друг от друга.

Обмотка трансформатора, которая подключается к источнику напряжения, называется первичной обмоткой, а та обмотка, к которой подключаются потребители или линии передач, ведущие к потребителям, называется вторичной обмоткой.

Переменный ток, проходя по первичной обмотке, создает переменный магнитный поток, который сцепляется с витками вторичной обмотки и наводит в них ЭДС.

Так как магнитный поток переменный, то индуктированная ЭДС во вторичной обмотке трансформатора также переменная и частота ее равна частоте тока в первичной обмотке.

Переменный магнитный поток, проходящий по сердечнику трансформатора, пересекает не только вторичную обмотку, но и первичную обмотку трансформатора. Поэтому в первичной обмотке также будут индуктироваться ЭДС.

Величины ЭДС, индуктирующихся в обмотках трансформатора, зависят от частоты переменного тока, числа витков каждой обмотки и величины магнитного потока в сердечнике. При определенной частоте и неизменном магнитном потоке величина ЭДС каждой обмотки зависит только от числа витков этой обмотки. Эту зависимость между величинами ЭДС и числами витков обмоток трансформатора можно выразить формулой: ?1 / ?2 = N1 / N2, где?1 и?2 – ЭДС первичной и вторичной обмоток, N1 и N2 – числа витков первичной и вторичной обмоток.

Разница между ЭДС и напряжением так мала, что зависимость между напряжениями и числами витков обеих обмоток можно выразить формулой: U1 / U2 = = N1 /N2. Разница между ЭДС и напряжением в первичной обмотке трансформатора становится особенно малой тогда, когда вторичная обмотка разомкнута и ток в ней равен нулю (холостая работа), а в первичной обмотке протекает только небольшой ток, называемый током холостого хода. При этом напряжение на зажимах вторичной обмотки равно наводимой в ней ЭДС.

Число, показывающее, во сколько раз напряжение в первичной обмотке больше (или меньше) напряжения во вторичной обмотке, называется коэффициентом трансформации и обозначается буквой k. k = U1 / U2 ? N1 / N2.

Номинальное напряжение обмоток высшего и низшего напряжений, указанное на заводском щитке трансформатора, относится к режиму холостого хода.

Трансформаторы, которые служат для повышения напряжения, называют повышающими; коэффициент трансформации у них меньше единицы. Понижающие трансформаторы понижают напряжение; коэффициент трансформации у них больше единицы.

Режим, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение, называется холостым ходом или холостой работой трансформатора.

Как устроен трансформатор?

(б, в) W x . W 2 подключается к нагрузке.

U 1 i 1 Ф. Этот поток индуцирует ЭДС е 1 и е 2 в обмотках трансформатора:

ЭДС е 1 U 1 , ЭДС е 2 создает напряжение U 2

· Понижающий трансформатор – трансформатор, который уменьшает напряжение (К>1).

Что называют коэффициентом трансформации?

Коэффициент трансформации - отношение действующих напряжений на концах первичной и вторичной обмоток при разомкнутой цепи вторичной обмотках (холостом ходе трансформатора). K=W 1 /W 2 =e 1 /e 2 .

Для трансформатора, работающего в режиме холостого хода, с достаточной для практики точность можно считать, что .

Какие вы знаете номинальные параметры трансформатора и что они определяют?

Номинальная мощность – это номинальная мощность каждой из обмоток трансформатора. Номинальный ток, напряжение обмоток. Внешняя характеристика – это зависимость напряжения на выводах трансформатора от тока, протекающего через нагрузку, подключенную к этим выводам, т.е. зависимость U2=f(I2) при U1=const. Нагрузка определяется коэффициентом нагрузки Kн=I2/I2ном ≈ I1/I1ном, КПД - η = P2/P1

Как определить номинальные токи обмоток трансформатора, если известна номинальная мощность трансформатора?

Номинальная мощность двухобмоточного трансформатора – это номинальная мощность каждой из обмоток трансформатора.

Уравнение номинальной мощности: S H =U1 * I1 ≈ U2 * I2

I1 = S H /U1 ; I2 = S H /U2

Что называют внешней характеристикой трансформатора и как ее получить?

Внешняя характеристика – это зависимость напряжения на выводах трансформатора от тока, протекающего через нагрузку, подключенную к этим выводам, т.е. зависимость U 2 =f(I 2) при U 1 =const. При изменении нагрузки (тока I 2) вторичное напряжение трансформатора изменяется. Это объясняется изменением падения напряжения на сопротивлении вторичной обмотки I 2 "z 2 и изменением ЭДС E 2 "=E 1 за счет изменения падения напряжения на сопротивлении первичной обмотки.

Уравнения равновесия ЭДС и напряжений принимают вид:

Ù 1 = –È 1 + Ì 1 "z 1 , Ù 2 "=È 2 – Ì 2 "z 2 " (1)

Значение нагрузки в трансформаторах определяют коэффициентом нагрузки:

K н =I 2 /I 2 ном ≈ I 1 /I 1 ном ;

Характер нагрузки – углом сдвига по фазе вторичных напряжения и тока. На практике часто пользуются формулой

U 2 = U 20 (1 - Δu/100),

Δu=K н (u ка cosφ 2 + u кр sinφ 2)

u ка = 100% I 1ном (R 1 - R 2 ")/U 1ном

u ка = 100% I 1ном (X 1 - X 2 ")/U 1ном

Как найти процентное изменение вторичного напряжения трансформатора для заданной нагрузки?

Процентное изменение вторичного напряжения ∆U 2 % при переменной нагрузке определяется так: , где - соответственно вторичные напряжения при холостом ходе и заданной нагрузке.

Какие вы знаете схемы замещения трансформатора и как определяются их параметры?

Т-образная схема замещения трансформатора:

Как устроен трансформатор?

Трансформатором называют статическое электромагнитное устройство, предназначенное для преобразования посредством магнитного потока электри­ческой энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при неизменной частоте.

Электромагнитная схема трансформатора (а) и условные графические обо­значения трансформатора (б, в) изображены на рис.1. На замкнутом магнитопроводе, набранном из листов электротехнической стали, расположены две обмотки. Первичная обмотка с числом витков W x подключается к источнику электрической энергии с напряжением U. Вторичная обмотка с числом витков W 2 подключается к нагрузке.

От чего зависят ЭДС обмоток трансформатора и каково их назначение?

Под действием подведённого переменного напряжения U 1 в первичной об­мотке возникает ток i 1 и появляется изменяющийся магнитный поток Ф. Этот поток индуцирует ЭДС е 1 и е 2 в обмотках трансформатора:

ЭДС е 1 уравновешивает основную часть напряжения источника U 1 , ЭДС е 2 создает напряжение U 2 на выходных зажимах трансформатора.

3. В каких случаях трансформатор называют повышающим и в каком - по­нижающим?

· Понижающий трансформатор – трансформатор, который уменьшает напряжение (К>1).

· Повышающий трансформатор – трансформатор, который увеличивает напряжение (К<1).

Принцип действия трансформатора основан на явлении электромагнитной индукции (взаимоиндукции). Взаимная индукция состоит в наведении ЭДС в индуктивной катушке при изменении тока другой катушке.

Под воздействием переменного тока в первичной обмотке в магнитопроводе создается переменный магнитный поток

который пронизывает первичную и вторичную обмотки и индуктирует в них ЭДС

где – амплитудные значения ЭДС.

Действующее значение ЭДС в обмотках равны

; .

Отношение ЭДС обмоток называется коэффициентом трансформации

Если , то вторичная ЭДС меньше первичной и трансформатор называ­ется понижающим, при– трансформатор повышающий.

Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.

Так как мы рассматриваем идеальный трансформатор, т.е. без рассеяния и потерь мощности, то ток х.х. является чисто намагничивающим – , т.е. он создаёт намагничивающую силу, которая создаёт поток, где– магнитное сопротивление сердечника, состоящее из сопротивления стали и сопротивления в стыках сердечника. Как амплитуда, так и форма кривой тока зависят от степени насыщения магнитной системы. Если поток изменяется синусоидально, то при ненасыщенной стали кривая тока холостого хода практически тоже синусоидальна. Но при насыщении стали кривая тока всё более отличается от синусоиды (рис. 2.7.) Кривую тока х.х. можно разложить на гармоники. Так как кривая симметрична относительно оси абсцисс, то ряд содержит гармонические только нечётного порядка. Первая гармоника токаi ( 01) совпадает по фазе с основным потоком. Из высших гармоник сильнее всего выражена третья гармоника тока i ( 03) .

Рис 2.7 Кривая тока Х.Х

Действующее значение тока холостого хода:

. (2.22)

Здесь I 1 m , I 3 m , I 5 m – амплитуды первой, третьей и пятой гармоник тока холостого хода.

Так как ток холостого хода отстаёт от напряжения на 90  , то активная мощность, потребляемая идеальным трансформатором из сети, тоже равна нулю, т.е. идеальный трансформатор потребляет из сети чисто реактивную мощность и намагничивающий ток.

Векторная диаграмма идеального трансформатора представлена на рис. 2.8.

Рис. 2.8. Векторная диаграмма идеального трансформатора

Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.

В реальном трансформаторе существуют рассеяние, и потери в стали и в меди. Эти потери покрываются за счёт мощности Р 0 , поступающей в трансформатор из сети.

где I 0а – действующее значение активной составляющей тока холостого хода.

Следовательно, ток холостого хода реального трансформатора имеет две оставляющие: намагничивающую – , создающую основной потокФ и совпадающую с ним по фазе, и активную:

Векторная диаграмма реального трансформатора представлена на рис. 2.9.

Обычно , поэтому на величину тока холостого хода эта составляющая влияет мало, а больше влияет на форму кривой тока и его фазу. Кривая тока холостого хода явно несинусоидальна, и сдвинута во времени относительно кривой потока на угол, называемый углом магнитного запаздывания

При замене действительной кривой тока холостого хода эквивалентной синусоидой, можно написать уравнение напряжений в комплексной форме, где все величины изменяются синусоидально:

Учитывая, что ЭДС рассеяния,

Рис. 2.9. Векторная диаграмма реального трансформатора

Рис. 2.11. Векторная диаграмма напряжений трансформатора, режим холостого хода

ЛР 5. Исследование режимов работы однофазного трансформатора

Назвать основные элементы конструкции однофазного трансформатора.

Однофазный трансформатор состоит из магнитопровода (сердечника) и двух обмоток, уложенных на нём. Обмотка, подсоединяемая к сети, называется первичной, а обмотка, к которой подсоединяется приемник электроэнергии - вторичная. Магнитопровод выполняется из ферромагнитного материала и служит для усиления магнитного поля и по нему замыкается магнитный поток.

Особенности исполнения магнитопровода трансформатора.

Магнитопровод трансформатора находится в магнитном поле переменного тока, а, следовательно, в процессе работы происходит его непрерывное перемагничивание и в нем индуктируются вихревые токи, на что затрачивается энергия, которая идет на нагрев магнитопровода. Для уменьшения потерь энергии на перемагничивание магнитопровод изготавливают из магнитомягкого ферромагнетика, который имеет малую остаточную индукцию и легко перемагничивается, а для уменьшения вихревых токов, а, следовательно, и степени нагрева магнитопровода, магнитопровод набирают из отдельных пластин электротехнической стали изолированных друг относительно друга.

3. Как определяются ЭДС обмоток трансформатора, от чего они зависят?

ЭДС обмоток трансформатора определяются по формулам:Е 1 =4,44*Фм*f*N 1 и Е 2 =4,44*Фм*f*N 2

где Фм – максимальное значение магнитного потока,

f - частота переменного тока,

N 1 и N 2 – соответственно количество витков первичной и вторичной обмоток.

Т.о., ЭДС обмоток трансформатора зависят от магнитного потока, частоты переменного тока и количества витков обмоток, а соотношение между ЭДС зависит от соотношения количества витков обмоток.

4. Назвать виды потерь энергии в трансформаторе, от чего они зависят?

При работе трансформатора в нем возникают два вида потерь энергии:

1. Магнитные потери – это потери энергии, возникающие в магнитопроводе. Эти потери пропорциональны напряжению сети. Энергия в данном случае затрачивается на перемагничивание магнитопровода и на создание вихревых токов и преобразуется в тепловую энергию, выделяемую в магнитопроводе.

2. Электрические потери – это потери энергии, возникающие в обмотках трансформатора. Вызываются эти потери токами, протекающими в обмотах, и определяются: Рэ = I 2 1 R 1 + I 2 2 R 2.

Т.о. электрические потери пропорциональны квадратам токов протекающих в обмотках трансформатора. В данном случае энергия затрачивается на нагрев обмоток.

5. Как определяются магнитные потери в трансформаторе, от чего они зависят?

Для определения магнитных потерь в трансформаторе проводится опыт ХХ, при котором ток во вторичной обмотке равен нулю, а в первичной обмотке ток не превышает 10% от I ном . Т.к. при проведении этого опыта электроприемник отключен, то вся мощность, измеренная ваттметром, включенным в цепь первичной обмотки трансформатора, является мощностью электрических и магнитных потерь. Магнитные потери пропорциональны напряжению, подводимому к первичной обмотке. Т.к. при проведении опыта ХХ к первичной обмотке подводится U ном , то и магнитные потери будут такими же, как и в номинальном режиме. Электрические потери зависят от токов в обмотках, а т.к. ток во вторичной обмотке равен нулю, а в первичной обмотке ток не превышает 10% от номинального то и электрические потери незначительны. Т.о., пренебрегая незначительными электрическими потерями, считаем, что вся мощность, измеренная при проведении опыта ХХ, является мощностью магнитных потерь.



6. Как определяются электрические потери в трансформаторе, от чего они зависят?

Для определения электрических потерь в трансформаторе проводится опыт КЗ. Для этого необходимо снизить напряжение на вторичной обмотке до нуля, замкнуть вторичные зажимы между собой и повышать напряжение до тех пор, пока в обмотках установятся номинальные токи. Напряжение, при котором в обмотках устанавливаются номинальные токи, называют напряжением КЗ. Как правило, напряжение КЗ незначительно и не превышает 10% от номинального.

Электрические потери в трансформаторе в ходе опыта КЗ определятся:Рэ= I 2 1ном R 1 + I 2 2ном R 2.

Т.к. при проведении опыта КЗ в обмотках трансформатора устанавливаются номинальные токи, то и электрические потери в них будут такими же как и в номинальном режиме. Магнитные потери пропорциональны напряжению на первичной обмотке, а т.к. в опыте КЗ к первичной обмотке подводится незначительное напряжение, то и магнитные потери незначительны. Т.о., пренебрегая незначительными магнитными потерями, можно считать, что вся мощность измеренная в опыте КЗ является мощностью электрических потерь.

ПРАКТИКУМ

ПО ЭЛЕКТРИЧЕСКИМ МАШИНАМ

И АППАРАТАМ

Учебное пособие

Для студентов очного и заочного обучения

в области приборостроения и оптотехники

в качестве учебного пособия для студентов высших учебных

заведений, обучающихся по специальности 200101 (190100)

«Приборостроение»

Казань 2005

УДК 621.375+621.316.5

ББК 31.261+31.264

Прохоров С.Г., Хуснутдинов Р.А. Практикум по электрическим машинам

и аппаратам: Учебное пособие: Для студентов очного и заочного обучения. Казань: Изд-во Казан. гос. техн. ун-та, 2005. 90 с.

ISBN 5-7579-0806-8

Предназначено для проведения практических занятий и выполнения самостоятельной работы по дисциплине «Электрические машины и аппараты» по направлению подготовки дипломированного специалиста 653700 – «Приборостроение».

Пособие может быть полезным для студентов, изучающих дисциплины

«Электротехника», «Электромеханическое оборудование в приборостроении»,

«Электрические машины в приборных устройствах», а также студентов всех

инженерных специальностей, в том числе и электротехнического профиля.

Табл. Ил. Библиогр.: 11 назв.

Рецензенты: кафедра электропривода и автоматики промышленных установок и технологических комплексов (Казанский государственный энергетический университет); профессор, канд. физ.-мат. наук, доцент В.А.Кирсанов (Казанский филиал Челябинского танкового института)

ISBN 5-7579-0806-8 © Изд-во Казан. гос. техн. ун-та, 2005

© Прохоров С.Г., Хуснутдинов Р.А.,

Предлагаемые тесты по дисциплине «Электрические машины и аппараты» предназначены для проведения практических занятий и выполнения самостоятельной работы. Тесты составлены по разделам «Трансформаторы», «Асинхронные машины», «Синхронные машины», «Коллекторные машины постоянного тока», «Электрические аппараты». Ответы в форме таблицы даны в конце пособия.

ТРАНСФОРМАТОРЫ

1. Почему воздушные зазоры в трансформаторе делают минимальными?

1) Для увеличения механической прочности сердечника.

3) Для уменьшения магнитного шума трансформатора.

4) Для увеличения массы сердечника.

2.Почему сердечник трансформатора выполняют из электротехнической стали?

1) Для уменьшения тока холостого хода.

2) Для уменьшения намагничивающей составляющей тока холостого

3) Для уменьшения активной составляющей тока холостого хода.

4) Для улучшения коррозийной стойкости.

3.Почему пластины сердечника трансформатора стягивают шпильками?

1) Для увеличения механической прочности.

2) Для крепления трансформатора к объекту.

3) Для уменьшения влаги внутри сердечника.

4) Для уменьшения магнитного шума.

4. Почему сердечник трансформатора выполняют из электрически изолированных друг от друга пластин электротехнической стали?

1) Для уменьшения массы сердечника.

2) Для увеличения электрической прочности сердечника.

3) Для уменьшения вихревых токов.

4) Для упрощения конструкции трансформатора.

5. Как обозначаются начала первичной обмотки трехфазного трансформатора?

1) a , b , c 2) x , y , z 3) A , B , C 4) X , Y , Z

6. Как соединены первичная и вторичная обмотки трехфазного трансформатора, если трансформатор имеет 11 группу (Y – звезда, Δ – треугольник)?

1) Y/Δ 2) Δ/Y 3) Y/Y 4) Δ/Δ

7. Как отличаются по массе магнитопровод и обмотка обычного трансформатора от автотрансформатора, если коэффициенты трансформации одинаковы К =1,95? Мощность и номинальные напряжения аппаратов одинаковы.

1) Не отличаются.

2) Массы магнитопровода и обмотки автотрансформатора меньше масс

магнитопровода и обмоток обычного трансформатора соответственно.

3)Масса магнитопровода автотрансформатора меньше массы магнитопровода обычного трансформатора, а массы обмоток равны.

4)Массы магнитопровода и обмоток обычного трансформатора меньше, чем у соответствующих величин автотрансформатора.

5)Масса обмотки автотрансформатора меньше массы обмоток обычного трансформатора, а массы магнитопроводов равны.

8. На каком законе электротехники основан принцип действия трансформатора?

1) На законе электромагнитных сил.

2) На законе Ома.

3) На законе электромагнитной индукции.

4) На первом законе Кирхгофа.

5) На втором законе Кирхгофа.

9. Что произойдет с трансформатором, если его включить в сеть постоянного напряжения той же величины?

1) Ничего не произойдет.

2) Может сгореть.

3) Уменьшится основной магнитный поток.

4) Уменьшится магнитный поток рассеяния первичной обмотки.

10. Что преобразует трансформатор?

1) Величину тока.

2) Величину напряжения.

3) Частоту.

4) Величины тока и напряжения.

11. Как передается электрическая энергия из первичной обмотки автотрансформатора во вторичную?

1) Электрическим путем.

2) Электромагнитным путем.

3) Электрическим и электромагнитным путем.

4) Как в обычном трансформаторе.

12. Какой магнитный поток в трансформаторе является переносчиком электрической энергии?

1) Магнитный поток рассеяния первичной обмотки.

2) Магнитный поток рассеяния вторичной обмотки.

3) Магнитный поток вторичной обмотки.

4) Магнитный поток сердечника.

13. На что влияет ЭДС самоиндукции первичной обмотки трансформатора?

1) Увеличивает активное сопротивление первичной обмотки.

2) Уменьшает активное сопротивление первичной обмотки.

3) Уменьшает ток первичной обмотки трансформатора.

4) Увеличивает ток вторичной обмотки трансформатора.

5) Увеличивает ток первичной обмотки трансформатора.

14. На что влияет ЭДС самоиндукции вторичной обмотки трансформатора?

1) Увеличивает активное сопротивление вторичной обмотки.

2) Уменьшает активное сопротивление вторичной обмотки.

3) Уменьшает ток вторичной обмотки трансформатора.

4) Увеличивает ток первичной обмотки трансформатора.

5) Уменьшает индуктивное сопротивление вторичной обмотки

трансформатора.

15. Какова роль ЭДС взаимоиндукции вторичной обмотки трансформатора?

1) Является источником ЭДС для вторичной цепи.

2) Уменьшает ток первичной обмотки.

3) Уменьшает ток вторичной обмотки.

4) Увеличивает магнитный поток трансформатора.

16. Выберите формулу закона электромагнитной индукции:

Выберите правильное написание действующего значения ЭДС вторичной обмотки трансформатора.

18. Как соотносятся по величине напряжение короткого замыкания U 1к и номинальное U 1н в трансформаторах средней мощности?

1) U 1к ≈ 0,05.U 1н 2) U 1к ≈ 0,5.U 1н 3) U 1к ≈ 0,6.U

4) U 1к ≈ 0,75.U 1н 5) U 1к ≈ U

19. Какие параметры Т-образной схемы замещения трансформатора определяются из опыта холостого хода?

1) r 0 , r 1 2) X 0 , r 1 3) r’ 2 , X’ 2