Технология lcos. Технологии проекторов: LCD (3LCD), DLP, LCoS. «Гибридные» проекторы D-ILA, LCoS и SXRD

  • 31.10.2019

Компания CANON была образована в 1937 году, и очень скоро стала известна как производитель качественной фототехники. На рынок профессиональных инсталляционных проекторов компания вышла относительно недавно, но уже сейчас во многих проектах используются созданные на базе технологии LCOS проекционные решения CANON. Об этой технологии, о самых интересных моделях линейки XEED, а также о кейсах, в которых «засветились» проекторы производителя, рассказывает специалист компании по проекторам Алексей Макаров.

С чего началась история проекторов CANON?

Проекционные линзы CANON начала производить в 1990 году, и это стало логичным шагом в развитии компании, производящей объективы. Ведь проектор, по сути, это фотоаппарат наоборот: в фотоаппарат свет попадает извне и через линзы фокусируется на матрице, а в проекторе картинка появляется внутри и через объектив фокусируется на экране.

Технология LCоS (Liquid Crystal on Silicon - жидкие кристаллы на кремниевой подложке), была разработана корпорацией JVC.

Принцип работы LCoS-проектора близок к 3LCD, но LCoS использует не просветные ЖК-матрицы, а отражающие. На подложке LCoS-кристалла расположен отражающий слой, поверх которого находится жидкокристаллическая матрица и поляризатор. Под воздействием электрических сигналов жидкие кристаллы либо закрывают отражающую поверхность, либо открываются, позволяя свету от внешнего источника отражаться от зеркальной подложки кристалла.

К преимуществам технологии LCOS относят:

  • Больший коэффициент полезного заполнения рабочего пространства матрицы. Поскольку в LCoS управляющие элементы размещены за светоотражающим слоем, они не препятствуют прохождению света, в отличие от просветных LCD-матриц, что уменьшает «сетчатость» изображения и минимизирует «эффект гребёнки». Расстояние между элементами матрицы составляет всего несколько десятков мкм и коэффициент заполнения выше, чем у LCD-и DLP.
  • LCoS-чипы более устойчивы к мощному излучению чем DLP- и LCD-матрицы, так как все элементы размещены на охлаждающей подложке.
  • LCoS опережает LCD и DLP по максимально доступному разрешению.
  • LCoS обеспечивает более глубокий чёрный цвет и более высокую контрастность, чем LCD.
  • Время отклика жидких кристаллов матрицы LCoS меньше, чем у кристаллов, используемых в просветных матрицах в LCD-технологии.

Что инновационного CANON привнесла в свои продукты, учитывая, что разработкой собственно проекционной технологии занимались сторонние производители?

Прежде всего, хорошую оптическую систему – объективы. К технологии LCOS мы добавили лучшее светопрохождение как во внутреннем тракте, так и снаружи и, кроме того, сам LCOS (его улучшенный вариант, называемый AISYS) также делаем мы. Слово XEED обозначает название линейки проекторов, и если модель маркирована таким образом, можно быть уверенным в том, что внутри проектора – настоящий LCOS и настоящие технологии CANON. Еще один немаловажный момент: LCOS-проекторы всегда очень маленького размера, что позволило нам сделать одни из самых компактных 4К-проекторов в мире.

Что особенного в оптике проекторов CANON ?

В проекционных устройствах хорошая оптика имеет огромное значение. В ряде объективов проекторов CANON используются настоящие асферические линзы и настоящая низкодисперсионная оптика, что позволяет получить глубину резкости, значительно лучшую фокусировку на всей площади экрана и возможность проецировать изображения на сложных поверхностях, а не только на плоских экранах. Также дорогие объективы могут искоренить такие неприятные явления как хроматические аберрации, когда по краям кадра видно некоторое расслоение по цветам, связанное с прохождением света по краям линзы.

Если же мы говорим о 4К-проекторах, то в них можно делать и так называемую «периферическую фокусировку». Это важно для таких объектов как, скажем, авиационные симуляторы, где используются изогнутые экраны. Здесь в фокусе должны быть и края экрана, и центр, а 4К-проекторы CANON имеют очень хитрые несъемные объективы, позволяющие делать сложную периферическую фокусировку. Это именно оптическая система, а не софтверные возможности. Проекторы XEED технологии LCOS позиционируются как инсталляционные и потому все модели этой серии подходят для создания мультипроекций: они легко справляются с геометрическими искажениями.

Из других преимуществ, я бы отметил еще малый вес: 4К-проектор весит около 17 килограммов и является одним из самых маленьких в мире. Поэтому если есть бюджет чуть больше, чем на стандартный DLP, и не требуются огромные люмены, LCOS-проекторы могут быть использованы с большим успехом.

Расскажите о моделях проекторов для мультипроекций

Примеры использования проекторов Canon для мультипроекции

На внутреннем мероприятии Canon в Австрии: сшивка из 8 проекторов с проекцией панорамы города на большой экран при высокой освещенности

В авиасимуляторах

Смотровая площадка A’DAM Toren, Амстердам, Нидерланды: два проектора светят на модель города Амстердама. Это обычный видео-мейпинг, там рассказана его история, показаны достопримечательности, все это замечательно выглядит.

Передвижной планетарий в Германии (совместно с AV Stumpfl).

Музей истории города Боровичи, Боровичского края: два проектора показывают на экране в 3D различные артефакты.

Музейный комплекс «Куликово поле» (Тульская область, село Монастырщино). Крупнейший проект 2016 года, удостоенный специального приза ProIntegration Awards 2016

На сегодняшний день наиболее актуальны две модели: WUX6010 и совсем недавно вышедшая WUX6500 – представитель седьмого поколения наших инсталляционных проекторов с технологией LCOS, моторизованным зумом, сдвигом объектива, фокусом и возможностью выбора одного из пяти сменных объектов. Функция сшивки также встроена в проекторы, и работать с этой опцией предельно просто: вы задаете область кадра и выбираете в меню толщину перекрытия. В общем-то, все. То есть для простых инсталляций можно просто взять два проектора и нажатием кнопки в меню быстренько их сшить. Для более сложных проектов потребуется некий софт, но в любом случае с проекторами такого класса можно делать замечательные мультипроекции, и у нас есть масса примеров подобных инсталляций: это и сшивка из 8 проекторов на внутреннем мероприятии Canon, и смотровая площадка A’DAM Toren, где два проектора светят на макет города Амстердам и при помощи видеомэппинга рассказывают историю нидерландской столицы, показывают ее главные достопримечательности, и передвижной планетарий в Германии, где проекторы CANON используются вместе с дополнительным оборудованием и софтом.

В России наш партнер, компания A3V активно использует наши проекторы в различных музейных инсталляциях: в Музее истории города Боровичи, в Музейном комплексе "Куликово поле". Последний стал в прошлом году крупнейшим для компании CANON проектом и был удостоен специального приза ProIntegration Awards 2016. Всего в этом проекте используется около 30 наших проекторов, в том числе и WUX6010.

Сколько стоят подобные инсталляционные устройства?

WUX6010 стоит в розницу 350 тысяч рублей без объектива. Стоимость последнего начинается от 47 тысяч. Более компактный вариант XEED WUX500, который оснащен теми же технологиями, что и его старший брат, но с несъемным объективов с зумом 1,8Х стоит 350 тысяч рублей вместе с линзой. Здесь фокусировку, зум и сдвиг линзы нужно будет делать вручную, и в этом – основное отличие двух этих моделей, но если вы смиритесь с необходимостью все настроить вручную, то за эту сумму получите профессиональный инсталляционный проектор весом всего около 6 кг. Его можно взять с собой в сумке и легко разместить в салоне самолета.

Есть ли в линейке проекторов CANON короткофокусные устройства?

Конечно, ведь они очень удобны. В портфеле CANON нет очень ярких проекторов, и когда есть возможность вместо дорогого яркого проектора, который устанавливается далеко от экрана, использовать более дешевый короткофокусный, мы всегда напоминаем об этом заказчику: и кабель экономится, и свет не бьет в глаза, и можно использовать для обратной проекции, когда за экраном не много места. В линейке CANON есть короткофокусный проектор WUX450ST со сложной линзой без зума. Его Стоимость составляет 500 тысяч рублей, но он не зря стоит таких денег, потому что сфера его применения невероятно широка. Кстати, на выставке ISE 2017 я первый раз увидел специально изготовленный для этого проектора стол: проектор крепился под столешницу и отображал картинку на том уровне, на котором люди привыкли ее видеть.

Дело в том, что у этого проектора огромный сдвиг линзы по вертикали, и эта его функция в некотором роде уникальна. Изображение не искажается, не расфокусируется, что открывает огромные возможности: проектор можно крепить под стол и показывать картинку сверху, или крепить под потолок и опустить картинку вниз. Геометрию вывести тоже несложно.

В проекте компании A3V Музей "Куликово поле", можно увидеть временную шкалу, обозначающую различные исторические события, происходившие на Руси на протяжении веков. На первый взгляд кажется, что все изображение на стене формируется при помощи двух проекторов, но на самом деле есть и третий, который скрыт снизу. Благодаря большому сдвигу линзы изображение сведено по геометрии без каких-либо проблем.

Примеры использования проектора WUX450ST

В городе Утрехт, возле Амстердама, недавно , где все, кроме еды, является проекцией. Она повсюду: на стенах, на столе, и даже на посетителях. Проекторы размешены под потолком, а к столам прикручены механизмы, которые иногда заставляют столы трястись, большой вентилятор тоже создает определенный эффект. В комплексе все это – такой своеобразный 3D-ресторан. Здесь использовано огромное количество короткофокусных проекторов именно потому, что мало места и нельзя светить людям в глаза. Со своей задачей устройства CANON справляются отлично.

ISE2015: совместная инсталляция с AV Stumpfl - большое количество проекторов под потолком, которые засвечивают большую поверхность пола и стен. Все это ярко, красочно и при этом достаточно бюджетно.

Музей художественной культуры Новгородской земли (в процессе построения экспозиции). Под потолком 10 короткофокусных проекторов Canon

Что интересного было на стенде CANON на ISE 2017?

Я бы выделил одну из инсталляций: рядом с большим экраном было установлено специальное зеркало, на которое проецировал изображение наш лазерно-фосфорный проектор. Зеркало отображало картинку на огромный экран, позволяя зрителю ощутить себя в самой гуще событий: перед его взором вырастали разные изображения, панорамные фотографии и прочее. Выглядело впечатляюще и инновационно.



И еще хотелось бы рассказать об инсталляции, созданной совместно с компанией "Энфитек". Ими разработан особый вид пассивного 3D: это специальные фильтры, которые ставятся либо внутрь линзы проектора, либо непосредственно перед ней. Для просмотра изображения используются специальные пассивные очки. На инсталляции на нашем стенде была сделана обратная проекция с использованием двух 4К-проекторов, установленных за экраном, которые при помощи фильтров "Энфитек" показывали настоящее 4К 3D-изображение с рендерингом в реальном времени. Все вместе это было призвано вызвать интерес к использованию проекторов с высоким разрешением во всякого рода проектах визуализации. Кстати, LCOS-проекторы чаще всего используются для пассивного 3D.

Где можно приобрести проекторы Canon?

Одним из самых больших и активных наших дистрибьюторов является компания "Мерлион", у которой всегда есть складской запас оборудования. Также оборудование CANON можно приобрести в компания A3V – это интегратор, который занимается оборудованием музеев, и у нашего нового партнера, компании "Аскрин".

Еще один наш дистрибьютор находится в Перми, это компания "Аудиовизуальные системы", которая занимается большими, серьезными проектами – авиасимуляторами, планетариями – и накопила огромный опыт в этом нелегком деле. Поэтому, если у вас сложные проекты и много технических вопросов, с ними вы вполне можете сотрудничать.

Я с удовольствием отвечу на ваши вопросы лично, в офлайне, по телефону или по электронной почте. Так что пишите, пообщаемся.

Магазин проекторов в Москве HDtime приглашает вас за покупками! На полках нашего магазина вас ждёт богатый ассортимент проекторов разных ценовых категорий и характеристик, как для дома, так и для офиса. Мультимедийная техника, доступная в нашем магазине, - это проекторы для домашнего кинотеатра, а также для использования в офисе. Вас приятно порадуют цены на представленные в нашем магазине товары от самых известных производителей, за качество продукции которых мы готовы поручиться.

Как выбрать правильный проектор?

Какими высокими бы ни были требования к технике, всегда хочется максимально недорого купить проектор. В нашем интернет-магазине в Москве вы сможете выбрать оптимальную модель среди мультимедийного презентационного оборудования и домашних проекторов и купить её недорого — по самым низким в Москве ценам.

Обратите своё внимание и на разнообразные акции и скидки - это поможет вам совершить ещё более выгодную покупку. Мы заботимся о том, чтобы вы остались довольны сотрудничеством с нашим магазином, поэтому всегда готовы пойти навстречу и помочь с выбором.

Для того чтобы выбрать домашний проектор, не обязательно быть экспертом в технике. Достаточно определиться с ответами на несколько ключевых вопросов.

Важно понять, для чего именно вы будете использовать проектор: от этого зависит, подойдёт вам недорогой проектор для дома или лучше обратить своё внимание на более дорогостоящую и многофункциональную, мощную технику. В целом, цену проектора определяют его характеристики: цена стартует в среднем от 10 тысяч рублей и уверенно стремится к бесконечности.

Прежде чем начать поиски идеального проектора, определитесь:

  • для чего вам нужен проектор;
  • какой ценовой диапазон для вас приемлем;
  • есть ли у вас требования к обслуживанию техники.

Для более продвинутых пользователей и тех, кто способен чётко сформулировать свои требования относительно покупки, существует ряд предпочтительных характеристик. К ним относятся:

    • качество цветопередачи;
    • яркость и контрастность;
    • способы установки техники;
    • разъёмы и варианты интерфейсов;
    • поддержка дополнительных функций (3D);
    • возможности лампы и другие нюансы.

Выбор вида проектора

Условно мы можем разделить все проекторы на три типа.

В большинстве случаев использование проектора планируется в помещении, где есть источник света. Это может быть кабинет, лекционный зал, офис и любое другое аналогичное помещение. Именно поэтому один из ключевых критериев для проекторов, предназначенных для работы в таких условиях, - это способность техники давать яркое изображение, независимо от наличия искусственного освещения. Чаще всего подобные проекторы обладают достаточно скромными габаритами, их можно транспортировать с места на место, они мобильны. Ориентируясь на технику этого типа, вы можете купить проектор для школы или офиса с целью проведения презентаций, сопровождения докладов и т.д.

Ещё один частый запрос: купить проектор для кинотеатра. Это более профессиональные модели, они работают при выключенном свете, поэтому яркость изображения здесь - не главное. Главное - это цветопередача и контрастность. Не будет лишней и возможность демонстрации 3D видео.

Ну, а третий тип - это инсталляционные проекторы, которые являются наиболее мощным и профессиональным оборудованием. Возможности такой техники находятся далеко за пределами тех, на которые способен любой домашний проектор.

В нашем интернет-магазине вы найдёте разнообразные модели техники, как профессиональные, так и домашние проекторы. Воспользуйтесь возможностью купить проектор для домашнего кинотеатра недорого, чтобы использовать технику для просмотра фильмов. Лучшие цены и отменное качество ждут вас! Помимо отличного изображения, вы сможете значительно сэкономить: заплатите цену проектора один раз и забудьте о дорогостоящих билетах в кино, ведь теперь у вас будет личный кинотеатр! Благодаря такому мультимедийному оборудованию, вы сможете расширить круг своих возможностей и насладиться любимыми фильмами, с удобством сидя дома на любимом диване.

Покупки в интернет-магазине Hdtime

Мы с удовольствием поможем вам выбрать такой проектор, который будет полностью отвечать вашим требованиям, и при этом будет иметь доступную цену. Даже если ваши познания в технике весьма скромны, не забывайте о том, что в магазине Hdtime работает команда профессионалов, всегда готовая прийти на помощь и подобрать оптимальный вариант.

Выбирайте с умом, принимая решение в пользу качества, и тогда ваш проектор будет долго радовать вас бесперебойной отличной работой. Приятных и выгодных вам покупок!

Пора поэтапно разобраться в технологиях проекторов. Начнем с матрицы, какие они бывают и каково отличие. Рассмотрим каким образом формируется цветная картинка. А далее перейдем к свойствам светового источника

Матрица

Это основа формирования изображения в любом проекторе. Нам осталось разобраться, что это такое и в чем разница между одноматричными и трёхматричными моделями проекторов.
В общих чертах – матрица, это устройство, способное точечно пропускать, либо блокировать световой поток, за счёт чего на экране появляется видимое изображение. Даже у телевизора и компьютерного монитора тоже есть матрица, причём только одна. В чём разница между матрицей проектора и одноименным устройством телевизора? Для проектора используются матрицы, способные дать только чёрно-белую картинку. Однако если на неё падает не белый, а, к примеру, зелёный свет, то изображение будет чёрно-зелёным. В телевизорах и мониторах используются цветные матрицы. Почему? Ответ мы узнаем, рассмотрев две иллюстрации: пиксели проектора слева, пиксели монитора (справа)

Увеличив второе изображение (экран телевизора), мы увидим, что каждый пиксель состоит из трёх полосок разного цвета: красной, синей и зелёной. Пока пиксели маленькие, полоски визуально смешиваются друг с другом, образуя нужный оттенок. Но стоит их многократно увеличит, как становиться видна пиксельная сетка и все изображение теряется. Именно поэтому цветная матрица не применяется в конструкции проектора, ведь нам нужны монолитные пиксельные квадратики.
Ещё один нюанс: матрица должна выдерживать высокие температуры от непосредственного воздействия светового источника.
Вернёмся к нашему широкоформатному изображению. Как уже стало понятно, нам требуется матрица, которая будет отображать одноцветные точки. Такая матрица является одноцветной (или чёрно-белой) по определению. Используя три различных одноцветных изображения одного кадра, на выходе получаем желаемый результат:

Именно для этого нужны три матрицы. Три – по одной на каждый базовый цвет. Трёхматричный проектор совмещает изображения внутри, при этом на экран попадает уже готовая картинка.
Одноматричный проектор совмещает те же изображения непосредственно на экране, меняя их с такой скоростью, что человеческий глаз воспринимает сложенные одноцветные картинки, как одну.

Рассмотрим подробнее отличия одно- и трехматричных проеторов:

  1. Использование одной матрицы влияет на цену проектора. Следовательно, сам проектор будет дешевле, если только не используется дорогая, продвинутая матрица
  2. Компактные и «карманные» модели используют только одну матрицу
  3. Трёхматричный проектор одномоментно использует все три цвета, одноматричный – только один. Это немедленно отражается на яркости: при одной и той же мощности светового источника, яркость трёхматричного проектора будет ниже
  4. Одноматричные проекторы часто грешат «эффектом радуги», то есть разделением цвета на базовые составляющие. Трёхматричная модель не допустит подобного эффекта, ни при каких условиях
  5. Для точного отображения цвета, матрицы в трёхматричном проекторе должны быть подогнаны идеально. Малейшее разногласие немедленно сказывается на качестве картинки в виде размытых границ пикселей. Одноматричные же модели всегда выдают чётко очерченный пиксель

Вовсе не обязательно, чтобы перечисленные проблемы были присущи каждому отдельному проектору. Здесь приведены трудности, с которыми сталкиваются разработчики, решая их лучше или хуже в каждом конкретном случае.
Если обратить внимание на более дорогие проекторы, в особенности, на модели для домашнего кинотеатра, вы обнаружите, что большинство проблем на техническом уровне уже решены, а качество картинки зависит скорее от умения правильно настроить устройство.
Однако в бюджетном сегменте все недостатки, описанные выше – больная тема. Сюда относятся проекторы для офиса и образования, а также модели для дома (не для домашнего кинотеатра). В классе домашних проекторов основная конкуренция идёт между одноматричными DLP и трёхматричными LCD. Трёхматричные DLP тоже существуют, но это уже другая ценовая категория.
Теперь, когда мы осветили разницу между одноматричной и трёхматричной технологией, перейдём к типу матриц, ведь именно благодаря им, технологии получают свои названия (DLP, LCD и др.)

Проекторы DLP

Когда речь идёт о проекторах DLP, имеются в виду одноматричные модели, если нет уточнения, что DLP трёхматричный. Подавляющее большинство проекторов, встречающихся на рынке – это как раз DLP. Матрица DLP называется DMD чипом, что в переводе с английского при расшифровке означает «цифровое микрозеркальное устройство». Матрица состоит из нескольких миллионов микрозеркал, которые могут поворачиваться, фиксируясь в одном из двух предусмотренных положений.

Два положения зеркала предназначены для того, чтобы менять траекторию отражаемого луча света. В одном случае отражение попадает на экран, во втором – на светопоглотитель. В результате на дисплей проецируется белая или чёрная точка.

Оттенки серого получаются за счёт частоты многократного перехода луча с экрана на поглотитель света и обратно:

Вернёмся к цветному изображению. Как мы выяснили, каждый из базовых цветов появляются на экране поочерёдно.

Для того чтобы белый цвет лампы окрашивался этими базовыми цветами, существует цветовое колесо.

Цветовое колесо – это фильтр в виде диска с фиксированной скоростью вращения. У каждой модели эта скорость разная, и чем она выше, тем меньше выражен эффект радуги. По соотношению цветных сегментов, эта деталь также разнится. Например, на иллюстрации выше – классическое цветовое колесо с тремя базовыми цветами (RGBRGB). Колесо RGBCMY содержит дополнительные цвета (кроме красного, зелёного и синего – жёлтый, циан и маджента).

Несколько модернизированное цветовое колесо RGBRGB имеет бесцветный сегмент. Он позволяет увеличить чёрно-белую яркость проектора.

А это оптический блок DLP проектора и принцип его действия:

Цветовое колесо с прозрачным сегментом явилось отличным решением для увеличения производительности бюджетных проекторов. Офисные и учебные модели, которые чаще всего используются в светлом помещении, за счёт увеличения чёрно-белой яркости могут преодолевать фоновую засветку экрана, делая изображение достаточно чётким. Конечно, цветовая яркость при этом отстаёт от чёрно-белой. Цвета могут казаться слишком тёмными или тусклыми. Однако прозрачный сегмент не является непременной деталью каждого DLP проектора, или технологии в целом.
Следует сразу же сказать, что зеркальная матрица наилучшим образом отсекает свет, позволяя добиться лучших значений контрастности, максимально достоверного чёрного цвета. С другой стороны, работа DMD чипа сопровождается постоянным движением массы микрозеркал. Из-за этого возникает эффект «цветового шума» на экране, снижение плавности оттеночных переходов и сокращение количества цветовых градаций.
Более дорогие проекторы используют трехматричную технологию DLP. Это могут быть солидные домашние модели, или инсталляционные. Три матрицы полностью исключают такие недостатки, как «эффект радуги» и низкая цветовая яркость.

Проекторы 3LCD

3LCD технология – разработка Epson, которая теперь используется многими производителями проекторов, в том числе такими гигантами, как Sony.
Использование трёх матриц вместо одной зашифровано в самом названии. И эти матрицы не зеркальные, а жидкокристаллические. Обработка цвета, таким образом, происходит внутри проектора и на экран проецируется готовое цветное изображение.
Упрощённая схема работы 3LCD проектора:

Если в DLP моделях базовые цвета получают, пропуская белый свет сквозь цветные фильтры цветового колеса, то в 3LCD проекторах три базовых цвета извлекают непосредственно из света лампы, пропуская его через призму. Разложив белый спектр на составляющие, проектор направляет цветовые потоки на матрицы, соединённые в одну конструкцию с призмой. Здесь три цвета снова объединяются, вследствие чего получается та многоцветная картинка, которую мы и видим.
Призма не пропускает белый свет напрямую к экрану, сам белый цвет формируется так же, как и остальные: путём смешением красного, зелёного и синего. Поэтому технология 3LCD исключает дисбаланс между чёрно-белой и цветовой яркостью. С одной стороны это несомненный плюс: мы видим точные цвета. С другой стороны яркость 3LCD проекторов заметно ниже, чем одноматричных DLP.

С права можно рассмотреть как выглядит 3LCD проектор изнутри, а слева вы можете наблюдать схему преобразования света в цвет.

В отличие от зеркального чипа DMD, 3LCD работает на просвет и в равных условиях 3LCD матрица немного хуже справляется с отсечением лишнего света, снижая, таким образом, контрастность картинки. Однако 3LCD матрицам не нужно двигаться наподобие микрозеркал, они могут работать в открытом и полузакрытом положении, пропуская тот процент светового потока, который требуется.
Дорогие проекторы для домашнего кинотеатра часто используют модификацию 3LCD с пометкой C2Fine. В этом случае контрастность считается достаточной для элитного сегмента моделей, работающих в идеальных условиях кинозала.

DLP или 3LCD?

Пора более подробно сравнить DLP и 3LCD технологий для бюджетных моделей, использующих лампы в качестве светового источника. Дорогие проекторы используют усовершенствованные технологии, которые чаще всего сглаживают или полностью исключают недостатки.
Рассмотрим DLP и 3LCD в условиях:
затемнённого помещения;
при свете.
Разные условия по определению предполагают разный результат, так как в темноте от проектора не требуется особая яркость. 1000 люмен или даже меньше, вполне достаточно, а вот контрастность должна быть на уровне. В освещённой комнате всё как раз наоборот: нам нужна яркость, чтобы «победить» фоновую засветку, а контрастность теряет свою актуальность.

Яркость и цветопередача

Как мы выяснили ранее, DLP проектор одномоментно выдаёт на экран один базовый цвет, отсекая остальные, словно бы выбрасывая их.

Если мы используем такой проектор в тёмном помещении, то всё в порядке: очень высокая яркость не нужна. Однако работа того же устройства в офисе или учебном классе при свете выглядит иначе. Здесь проектор должен обладать хорошим показателем яркости, а значит мощным световым источником: это влечёт за собой удорожание устройства, повышение уровня шума и некоторые другие неудобства. Чтобы избежать перечисленных минусов, производитель добавил в цветовое колесо бесцветный сегмент, за счёт чего увеличил яркость. Однако этот ход привёл к дисбалансу между чёрно-белой и цветовой яркостью: любой цвет на экране смотрится тёмным и/или недостаточно насыщенным.
Трёхматричная технология 3LCD исключает подобный дисбаланс, поэтому производитель в спецификации часто упоминает высокую цветовую яркость. Но сама по себе яркость – это одна из трёх характеристик цвета, наравне с насыщенностью и оттенком.

Контрастность

Технология DLP обеспечивает более высокую контрастность изображения, чем 3LCD. Это, опять же, характерно для тёмных помещений, в освещённой комнате контрастность не имеет никакого значения. Напомним, что речь идёт о бюджетном сегменте, не о дорогих проекторах.
Эффект разделения цвета, или знаменитый «эффект радуги». Этот недостаток характерен только для одноматричных DLP и проявляется он в контрастных сценах. Насколько эффект будет заметен или сглажен, зависит от того, с какой скоростью вращается цветовое колесо.

Сравним некоторые другие особенности.
Так называемая «москитная сетка» (screen door effect), что это такое? Для наглядности возьмём два произвольных проектора для офиса, сравним.

На второй иллюстрации пиксельная сетка заметнее. Это происходит потому, что вокруг каждого пикселя в 3LCD проекторе существует некое очень маленькое пространство, необходимое для управляющего элемента. У зеркальных матриц DLP такой элемент находится позади пикселя и подобный зазор отсутствует. Приверженцы DLP технологии обосновывают свою позицию тем, что DLP изображение более слитное, в то время как 3LCD проектор даёт картинку с окантовкой каждой отдельной пиксельной точки, из-за чего возникает иллюзия взгляда сквозь москитную сетку. Мы считаем, что такое мнение является преувеличением, пиксельность хорошо заметна и на первой иллюстрации. И 3LCD и DLP проекторы в большей или меньшей степени демонстрируют пиксельную сетку. Очень часто непредвзятое сравнение не обнаруживает заметной разницы. Полное избавление от этого эффекта возможно только у солидных моделей премиум класса, которые используют дорогостоящие технологии интеллектуального сглаживания изображения.

Плавность цветовых переходов

Эта характеристика обусловлена особенностью отражающего чипа DMD DLP проектора и его управляющим устройством. Суть в том, что некоторые модели могут отображать более-менее плавные цветовые переходы, а другие – нет. Особенно хорошо это видно при резких цветовых перепадах. Здесь может проявиться так называемый «эффект пастеризации», то есть, визуальный цифровой шум вдоль границ объекта.
Несведение пикселей. Это недостаток, присущий трёхматричным проекторам. Он может проявляться у любой из бюджетных 3LCD моделей и обуславливается неточностью совмещения трёх матриц. Следствие – чуть размытые, нечёткие очертания каждого отдельного пикселя. DLP проекторы напротив, всегда демонстрируют пиксели с чётко очерченными краями. Впрочем, это сомнительное преимущество, потому что оно практически целиком теряется из-за использования дешёвых объективов.
Противопылевые фильтры. А вернее, их отсутствие у DLP проекторов, заявляется производителями как преимущество: вам не придётся менять фильтры, что сокращает расходы на обслуживание проектора. Достаточно просто время от времени пылесосить вентиляционные отверстия. Это сомнительный аргумент, поскольку накопившаяся пыль приводит к перегреву устройства и повышению его электропотребления. Однако оптический блок DLP герметичен и пыль никак не может повлиять на качество картинки. С другой стороны, от пыли не защищена лампа, следовательно, яркость может становиться ниже. Некоторые востребованные DLP проекторы всё же оборудуются фильтрами.

Размеры.

Вы не найдёте компактных 3LCD проекторов. Миниатюрность подразумевает использование одной матрицы, поэтому все мини-проекторы созданы на базе технологии DLP.

Технология LCoS

Обратимся к более дорогим проекторам. Здесь мы можем видеть ещё одну технологию, называемую LCoS. Собственно, LCoS представляет собой гибрид DLP и 3LCD. Существует множество вариаций, например Epson использует «зеркальный» 3LCD, фирма Sony - SXRD, и так далее.
Принцип технологии можно наглядно представить, как «Отражающий 3LCD». Поверх зеркального слоя матрицы присутствует слой жидких кристаллов:

Упрощённо, LCoS матрица - это LCD матрица, наклеенная на зеркало. Преимущество новшества в том, что свет проходит сквозь матрицу дважды, а значит, есть возможность лучше отсечь лишний свет. Это положительно сказывается на контрастности. Управляющий элемент находится с задней стороны матрицы, как у DLP. Однако LCoS отсутствуют микрозеркала и, по сути, нет вообще никаких движущихся элементов, а следовательно, и никакого зазора между пикселями. В результате – на экране вы не увидите пресловутой «москитной сетки».
Сравним прохождение света через 3LCD и LCoS матрицы.
3LCD проектор: LCoS проектор:

Во втором случае путь света заметно сложнее.

LCoS против 3LCD и DLP

Тот случай, когда детище перещеголяло родителей: LCoS технология изначально задумывалась для того, чтобы сохранить и преумножить достоинства DLP и 3LCD проекторов, избавившись от их недостатков.
Отметим, что LCoS модели имеют собственный минус – это цена. Гибридные матрицы используются именно в солидных проекторах для домашнего кинотеатра. Однако когда речь идёт об этом ценовом сегменте, проекторы DLP и 3LCD представлены уже совсем иными моделями. DLP и 3LCD класса «Премиум» избавлены от подавляющего большинства недостатков своих недорогих собратьев. Так 3LCD матрицы C2fine обеспечивают «глубокий чёрный» и значение контрастности высочайшего уровня, а в модернизированной матрице благополучно устранены зазоры, следовательно, исчезает «москитная сетка». А дорогой DLP проектор может иметь три матрицы.
Как итог – мы перемещаемся в высокую ценовую категорию, где сравнение качества изображения идёт на другом уровне и учитывается каждая мелкая деталь.

Шапочное знакомство с проекторами Philips серии PicoPix состоялось на выставке IFA в 2010 году . В преддверии IFA 2011 до нашей тестовой лаборатории добрался их представитель, отличающийся наличием встроенного мультимедийного плеера. Особый интерес представляет используемая технология проецирования, так как со светодиодными источниками света у нас побывали LCD- и DLP-проекторы, а вот LED-проекторы с отражающими ЖК-матрицами (LCoS) мы еще не тестировали.

Комплект поставки, характеристики и цена

Паспортные характеристики
Технология проецирования LCoS
Матрица 0,37″
Разрешение матрицы 800×600
Объектив Нет данных
Тип источника света Светодиодный, КЗС
Срок службы источника света 20 000 ч
Световой поток 30 лм
Контрастность 400:1
Размер проецируемого изображения, диагональ (в скобках — расстояние до экрана) минимум 13,2 см (0,2 м)
максимум 205,7 см (3,0 м)
Интерфейсы
  • Аудио/видеовход, стереофонические аудиосигналы, VGA и компонентные видеосигналы Y/Cb/Cr (Y/Pb/Pr), проприетарный разъем
  • Стереофонический аудио- и композитный видеовход, 4-контактное гнездо миниджек 3,5 мм
  • USB-порт, чтение с внешних накопителей (FAT32), гнездо mini-B
  • Слот для карт SD/SDHC (до 32 Гбайт, FAT32)
  • Выход на наушники, 3-контактное гнездо миниджек 3,5 мм
Форматы входного сигнала телевизионные (композитный): NTSC, PAL, SECAM
компонентные аналоговые видеосигналы Y/Cb/Cr (Y/Pb/Pr): 480i, 480p, 576i, 576p, 720p, 1080i, 1080p@50/60 Гц
аналоговые RGB-сигналы: VGA (640×480, 60 Гц), SVGA (800×600, 60 Гц), XGA (1024×768, 60 Гц), WXGA (1280×768, 60 Гц)
Уровень шума Нет данных
Встроенная звуковая система Два громкоговорителя по 0,3 Вт
Встроенный мультимедийный плеер — поддержка воспроизведения
  • графических файлов JPEG, BMP, PNG, GIF, TIFF
  • аудиофайлов MP3, WAV
  • видеофайлов (контейнер: кодек) — .avi: MJPEG, MPEG-4, H.264; .mov: MJPEG, MPEG-4, H.264; .mp4: MJPEG, MPEG-4, H.264; .mkv: MPEG-4, H.264; .flv: H.263, H.264; .ts: H.264; .m2ts: H.264; .swf: SWF
Особенности
  • Встроенная память 2 Гбайта
  • Откидывающаяся ножка (6°)
  • Штативное гнездо
  • Встроенная АКБ (LiPol) 7,4 В, 2300 мА·ч
  • Работа от АКБ 2 ч или 2,5 ч в экономном режиме
  • Заряд АКБ за 3 ч
Размеры (Ш×В×Г) 100×32×100 мм
Масса 290 г
Потребляемая мощность Нет данных
Напряжение питания (внешний БП) 100—240 В, 50/60 Гц
Комплект поставки
  • Проектор
  • Блок питания (100—240 В, 50/60 Гц на 12 В, 2 A, две сменные вилки)
  • ИК-пульт ДУ и элемент питания CR2025 для него
  • Краткое руководство пользователя
  • Чехол
  • Штатив
  • Переходник со штекера миниджек 3,5 мм на 3 гнезда RCA
  • Переходник USB — штекер типа mini-B на гнездо типа A
Ссылка на сайт производителя
Средняя текущая цена (количество предложений) в московской рознице (рублевый эквивалент — во всплывающей подсказке) Н/Д()

Внешний вид

По габаритам проектор почти карманный, в смысле в карман влезет, но только в большой. Его корпус изготовлен из пластика, при этом верхняя и нижняя панели черные с зеркально-гладкой относительно устойчивой к появлению царапин поверхностью, а по периметру — пластик с серебристой поверхностью. На верхней панели находятся логотип, кнопки управления, индикатор зарядки и колесико фокусировки.

Во время работы при нажатии на любую кнопку и при получении команды с пульта включается синяя подсветка значков на кнопках, которая гаснет через несколько секунд. Окошко единственного ИК-приемника находится в самом неожиданном месте — в углу, на переходе правой боковины в заднюю панель. На правой и на левой панели есть вентиляционные решетки, за которыми спрятаны миниатюрные громкоговорители. Кроме того, на левом боку есть разъем для наушников,

а на правом — выключатель питания.

На передней панели есть ниша объектива, обрамленная металлическим кольцом, и вентиляционная решетка,

на задней — интерфейсные разъемы, слот для карт памяти SD и разъем питания.

На днище находятся откидывающаяся ножка, еще одна вентиляционная решетка, штативное гнездо и резиновая площадка.

С прижатой ножкой из-за выпуклого днища проектор лежит на ровной плоскости неустойчиво, поэтому при проекции со стола лучше или откидывать ножку (но проекция при этом будет направлена вверх), или закрепить проектор на миниатюрном штативе, входящем в комплект поставки. Также в комплекте поставки есть чехол с двумя жесткими стенками, куда с трудом втискивается проектор и ничего больше не влезает.

Пульт

Пульт маленький с минимумом кнопок. Обозначения кнопок крупные и контрастные, но пользоваться таким пультом все равно неудобно. Зато маленький. Направлять пульт нужно примерно в сторону окошка ИК-приемника, по отражению с экрана пульт не работает.

Коммутация

В компании Philips видимо решили подзаработать на продаже аксессуаров, поэтому ввод качественного видеосигнала осуществляется через проприетарный малогабаритный разъем, а в комплекте поставки нет ни одного переходника на этот разъем. Но нам повезло, вместе с проектором нам достался кабель-переходник с этого разъема на штекер mini D-sub 15 pin и штекер миниджек 3,5 мм, который позволяет подключать проектор к компьютеру с VGA-видеовыходом и аудиовыходом в виде обычного гнезда 3,5 мм.

Кроме этого кабеля в качестве дополнительных аксессуаров заявлены переходники для подключения к источнику компонентного видеосигнала (и стереофонического аудиосигнала), а также для подключения к «яблочной» технике — к iPod и iPhone. Без дополнительных трат проектор можно подключить к источнику композитного видеосигнала и стереофонического аудиосигнала, так как переходник для четырехконтактного гнезда миниджек 3,5 мм (на обычные гнезда RCA) в комплекте все же имеется, как и USB-переходник со штекера типа mini-B на гнездо типа A. К USB-порту можно подключать USB-накопители. Поддерживается, видимо, только FAT(32). Питания на порте хватает для работы типичного USB HDD с диском 2,5 дюйма. При подключении картовода проектор распознает все вставленные карты памяти одновременно, выводя их в браузере в виде отдельных корневых папок. Проектор можно напрямую подключить к компьютеру по USB, при этом проекция автоматически выключится, а с компьютера будет доступна встроенная в проектор память и карта SD, если она находится в картоводе проектора. Проектор комплектуется внешним блоком питания, который можно использовать для работы и для зарядки встроенной АКБ. Последняя по данным производителя заряжается за 3 часа, и уже по нашим данным обеспечивает непрерывную работу в ярком режиме в течение 1 ч 44 мин .

Меню и локализация

В меню используется ровный и достаточно крупный шрифт без засечек. При включении проектора выводится заглавная страница с подписанными иконками, откуда можно запустить браузеры с ограничением на файлы определенного типа или без ограничения, переключиться на внешний источник сигнала (А/В-вход имеет преимущество перед VGA/компонентным) или перейти в меню с настройками.

Настройки изображения можно вызывать и непосредственно при работе — сначала вызвав кнопками пульта ползунок с яркостью, затем стрелками вверх и вниз выбрав нужную настройку (контрастность, насыщенность или громкость). Есть русская версия экранного меню. Перевод на русский язык в целом адекватный. При работе с USB-накопителями или SD-картами кириллица в названиях файлов и папок отображается корректно. Теги из аудиофайлов частично отображаются (в браузере), русские должны быть в кодировке Unicode (UTF-8). На встроенную память записано руководство пользователя, также русскую версию руководства можно скачать с русского сайта компании в виде PDF-файла. Оттуда же можно скачать последнее обновление микропрограммы. На момент тестирования там была версия 2.1, до которой мы проектор благополучно и обновили.

Управление проекцией

Фокусное расстояние фиксированное и не меняется. Фокусировка изображения на экране производится вращением ребристого колесика. Проекция направлена строго вперед, так что центр области проекции практически находится на оси объектива. Такая прямолинейность не всегда удобна. Нет никаких режимов трансформации, проектор просто выводит картинку на всю область проекции. Переворота и отражения проекции тоже нет.

Настройка изображения

В проекторе есть несколько предустановленных профилей с фиксированными значениями настроек изображения и один пользовательский профиль, в котором можно настраивать яркость, контрастность и насыщенность.

Измерение яркостных характеристик

Измерение светового потока, контрастности и равномерности освещения проводились по методике ANSI .

Результаты измерений для проектора Philips PPX1430:

Максимальный световой поток меньше заявленных 30 лм. В полной темноте такой яркости хватает для проекции на экран шириной где-то до 0,5 м, в едва освещенном помещении лучше и не пытаться проецировать больше чем на лист А4. Равномерность освещенности белого поля приемлемая. Контрастность невысокая. Также мы измерили контрастность, измеряя освещенность в центре экрана для белого и черного поля, т.н. контрастность full on/full off.

Режим Контрастность full on/full off
Высокой яркости 272:1
Экономичный 284:1

Контрастность ниже заявленных 400:1. Впрочем, так как световой поток невысокий, соответственно и уровень черного низкий, и как следствие черный цвет воспринимается довольно глубоким.

Проектор мы не разбирали, но результаты тестов позволяют предположить следующий принцип формирования полноцветного изображения. В проекторе используется одна жидкокристаллическая матрица на отражающей подложке (LCoS), которая последовательно освещается светодиодными источниками красного, зеленого и синего цветов. В течение импульса каждая ячейка матрицы пропускает (вернее, она только поляризует, а пропускает/не пропускает поляризатор) свет определенный интервал времени, чем он длиннее, чем выше воспринимаемая интенсивность цветовой компоненты соответствующего пикселя изображения. Глаз человека выполняет интегрирующую функцию, на основе импульсов трех цветов формируя результирующий цвет пикселя. Принцип работы в чем-то похож на технологию DLP. Для иллюстрации приведем зависимость яркости от времени для белого цвета и чистых основных цветов, а также для серого и темных оттенков цветов:


Для наглядности все графики яркости, кроме нижних, смещены вверх и выровнены по импульсам красного, зеленого и синего цветов.

Видно, что уменьшение интенсивности достигается уменьшением длительности пропускания. Также можно заметить, что для ускорения переключения используется адаптивный разгон матрицы — для ярких цветов он включен, для темных выключен. Например, время отклика для яркого зеленого цвета равно 0,23 мс на включение и 0,02 мс на выключение, а для темно-зеленого — 0,70 мс и 0,28 мс соответственно. (Заметим, что на полученные значения времен отклика, особенно на время выключения в случае ярких цветов, может влиять и модуляция источников света.)

Анализ зависимостей яркости от времени показал, что частота чередования цветов составляет 60 Гц (при входном сигнале с 60 Гц вертикальной частоты). Это довольно низкая частота (соответствует односкоростному светофильтру), эффект радуги очень выражен, мало того, артефакты видны даже без движения глаз — яркие объекты в движении расслаиваются на составляющие их основные цвета.

Для оценки характера роста яркости на шкале серого мы измерили яркость 256 оттенков серого (от 0, 0, 0 до 255, 255, 255) при Яркость = 6 и Контраст = 5. Заметим, что настройка Яркость регулирует уровень черного, а настройка Контраст — уровень белого. Шаг регулировки большой, поэтому при диапазоне оттенков 0—255 имеется или небольшой завал в светах, или яркость белого чуть ниже максимально возможной яркости. График ниже показывает прирост (не абсолютное значение!) яркости между соседними полутонами:

Рост прироста яркости прослеживается, но разброс в приросте большой. При указанных значениях настроек в тенях различаются все оттенки:

Аппроксимация полученной гамма-кривой дала показатель 1,46 , что меньше стандартного значения 2,2, при этом аппроксимирующая показательная функция немного отклоняется от реальной гамма-кривой:

Звуковые характеристики и потребление электроэнергии

Внимание! Приведенные значения уровня звукового давления от системы охлаждения получены по нашей методике и их нельзя напрямую сравнивать с паспортными данными проектора.

Проектор относительно тихий, хотя странно, что при уменьшении яркости режим охлаждения не меняется. Потребление мы измеряли на входе внешнего блока питания при полностью заряженной встроенной АКБ. Если проектор выключен, а батарея заряжается, то от сети потребляется 11 Вт.

Встроенные громкоговорители для своих размеров довольно громкие и звучат не так плохо, как можно было бы ожидать. Даже стереоэффект прослеживается. При подключении наушников встроенные громкоговорители отключаются. В наушниках звук громкий, но без запаса. Различаются средние и высокие частоты (низких маловато), искажений немного, в паузах шума не слышно.

Тестирование видеотракта

VGA-подключение

Тестирование в основном проводилось при разрешении VGA-сигнала в 800 на 600 пикселей и вертикальной частоте обновления в 60 Гц. Результат работы функции автоподстройки под параметры VGA-сигнала требует ручной коррекции положения, но ее нет, поэтому картинка была обрезана с двух сторон на пару пикселей, хотя вывод был один к одному, без интерполяции. Белое поле в центре имело заметный зеленоватый оттенок. Черное поля было равномерным по цветовому тону и по яркости. Геометрия хорошая, прогиб границ внутрь составляет пару миллиметров на 50 см ширины. В центре картинка слегка расфокусирована. Ширина цветной каймы на границах объектов, обусловленная наличием хроматических аберраций у объектива, в целом незначительная, и только в углах доходит до 1/3 пикселя. Граница между пикселями едва заметна. Тонкие цветные линии толщиной в один пиксель выводятся без потери цветовой четкости. Поддерживаются, видимо, только указанные в спецификациях разрешения, любое отклонение от них приводило к черному экрану со списком поддерживаемых режимов.

Работа с бытовым плеером

Работа с источниками композитного видеосигнала проверялась с использованием . Четкость изображения несколько понижается из-за интерполяции к разрешению матрицы проектора. Слабые градации оттенков в тенях и на светлых участках изображения хорошо различаются (завал в тенях и светах после регулировки уровней настройками Яркость и Контраст не выходит за безопасные границы). Картинка выводится по полям.

Близкий к черному диапазон можно не учитывать, так как в нем цветопередача не так важна, а погрешность измерения цветовых характеристик высокая. Цветовая температура очень высокая, как и отклонение от спектра абсолютно черного тела. Причина этому — заниженная яркость красного цвета. К сожалению, возможность ручной правки цветового баланса непредусмотрена.

Встроенный мультимедийный плеер

С USB-носителей и с SD-карт проектор умеет показывать картинки (JPG , GIF , BMP , несжатый TIF и PNG ). Изображения можно просматривать в режиме слайд-шоу с заданным интервалом (2—20 c) и случайным эффектом перехода. Картинки отображаются вписанными до ближайших границ проекции с сохранением правильных пропорций. Есть увеличение со сдвигом увеличенной области.

Из аудиофайлов воспроизводятся MP3 , OGG и WMA с практически любыми сочетаниями частоты дискретизации и битрейта, не поддерживаются только 24-битные и сжатые без потерь WMA. Кроме них плеер проектора справился также с AAC -файлами и c аудиофайлами MPEG-1/2 Layer 2 (с расширением MPA ). При проигрывании аудиофайлов проектор в обязательном порядке выключает проекцию, воспроизведение можно приостанавливать, и всё.

Заявленный список контейнеров и кодеков очень обширный, мы протестировали далеко не все их сочетания, ограничившись нашей подборкой из популярных типов видеофайлов. В итоге оказалось проще перечислить, что не воспроизводится. Это файлы WMV и OGM . Все остальное вплоть до разрешения Full HD с высоким потоком плеер сумел показать. Внешние субтитры не поддерживаются. Встроенные текстовые субтитры частично поддерживаются (хорошо в MKV и плохо — очень мелко выводятся — в AVI). Пропорции картинки сохраняются, но анаморфирование в MKV не обрабатывается. Переключения между аудиодорожками и субтитрами нет — всегда воспроизводятся только первые дорожки. При выводе изображения по экрану часто сверху вниз пробегает характерная волна рассинхронизации, видимо плеер не подстраивает частоту выводимых кадров под частоту обновления экрана. Работают быстрая перемотка вперед и назад, а также приостановка воспроизведения.

В проекторе есть встроенный браузер, который позволяет просматривать содержимое встроенной памяти, подключенных USB-носителей и вставленных карт SD. Между этими накопителями можно переключаться кнопкой возврата, находясь в главном меню. Папки и файлы можно копировать и удалять.

Выводы

Для продвинутых техноманьяков проектор Philips PPX1430 интересен как концепт устройства с необычным способом формирования изображения — «вечные» светодиодные источники света, ЖК на отражающей подложке, импульсный поочередный вывод цветов. Для обычных пользователей это устройство является, скорее, забавной игрушкой — кино посмотреть, и впечатление произвести, достав из кармана самодостаточную миниатюрную версию домашнего кинотеатра.

Достоинства:

  • Небольшие размеры и вес
  • Поддержка USB-носителей и SD-карт
  • Встроенная память в 2 Гбайта
  • Встроенный мультиформатный плеер
  • Штатив в комплекте

Недостатки:

  • Цветопередача отличается от стандартной
  • Нестандартный интерфейсный разъем
  • Отсутствие нужных переходников в комплекте
  • В экономичном режиме уровень шума не понижается

Проекторы

Современные видео технологии отражают достижения технического прогресса весьма наглядно: смотришь и не можешь наглядеться на экран плазменного или ЖК-телевизора нового поколения. И все же, если всерьез говорить о домашнем кинотеатре с большим экраном, без проекционной системы тут никак. А еще точнее, - без системы прямой (так и хочется добавить «и откровенной») проекции. Все же обратная так и не прижилась в такой степени, как прямая, несмотря на определенные преимущества, которые, однако, нивелируются целым набором недостатков.

Пожалуй, единственное обстоятельство, которое может удержать начинающего домоседа-синемана от установки проекционной системы в пользу плазмы - это необходимость тушить свет и задергивать шторы во время сеанса. Ведь белый (и даже серый) экран только в темноте способен дать черный фон, в противном же случае картинка будет выбеливаться и потеряет выразительность. Но и это не очень вразумительный аргумент. Да, плазму можно смотреть при дневном свете, но наряду с фильмом вы будете видеть все яркие предметы интерьера комнаты, отражающиеся на экране почти как в зеркале (несмотря на антибликовое покрытие). К тому же, размеры экрана будут ограничены 65 дюймами диагонали (либо 103", но при этом еще и бюджетом, который редко бывает «резиновым»). ЖК-панели не бликуют, но по качеству изображения они во многом значительно уступает плазме, да и с размеры экрана тут дело обстоит не лучше, если не хуже. Значит, все-таки проектор.

Типы проекторов

Какие бывают проекторы? На современном рынке в основном присутствуют два типа: на жидко-кристаллических матрицах (LCD, или 3-LCD, или Liquid Crystal Device) и одноматричные микрозеркальные (DLP, или Digital Light Processing). Основная доля рынка проекционной техники приходится именно на эти два типа, причем продажи LCD- и DLP-проекторов соотносятся примерно как 3:1 в пользу первых. Третий тип, представленный весьма узко, это проекторы D-ILA, или LCoS. Расшифровываются эти аббревиатуры как Digital Image Light Amplification и Liquid Crystal on Silicon. Это своеобразный «гибрид» технологий LCD и DLP. Все три технологии на сегодня представлены достаточно большим количеством моделей Full HD (формат 1080p), а проекторы DLP и D-ILA бывают и более высокого разрешения - их используют в коммерческих кинотеатрах.

Ничтожную долю рынка (по количеству продаж) представляют трехматричные DLP-проекторы, которые в силу своей дороговизны занимают лишь наиболее элитарный сектор. Наконец, CRT-проекторы на сегодня практически полностью сняты с производства.

История вопроса

Еще каких-нибудь пять лет назад классификацию проекторов принято было начинать с кинескопных (CRT, или Cathode Ray Tube) проекторов, которым сегодня отводится почетное место в историческом очерке. На момент, когда большинство фирм-производителей прекратило производство CRT-проекторов, это технология была на пике своего развития. Никакой другой проектор не мог соревноваться с CRT по качеству изображения, по тому ощущению приобщения к настоящему кино, которое они создавали у зрителя. Но уж очень громоздкими, сложными в настройке и дорогими были это агрегаты, к тому же они имели жесткие ограничения по яркости. Современные проекторы, пережившие CRT, конечно, во многом превосходят последние по качеству, и им еще есть, куда развиваться дальше, но все же у технологии CRT и сейчас осталось немало убежденных приверженцев. Здесь примерно та же, ситуация, что с виниловыми пластинками и ламповой техникой. Поэтому CRT-технология все же заслуживает внимания. Тем более что это единственная технология, не использующая светоклапанов: световой поток создается и модулируется одновременно в электронно-лучевых трубках. Точнее, модулируется электронный луч, который, попадая на люминофоры трех трубок, вызывает их свечение. Все остальные технологии относятся к светоклапанному типу. То есть лампа (источник света) горит с постоянной интенсивностью, а модуляция светового потока осуществляется различными «заградительными» устройствами с внешним управлением. Следует, однако, оговориться, что в современной проекционной технике обычно предусмотрено несколько статических режимов свечения лампы, а также динамической управление диафрагмой, регулирующей количество света от лампы (подробнее об этом будет сказано ниже).

Кинескопные прокторы прочерчивали изображение строка за строкой, как в обычных телевизорах, только без маски. Поэтому создаваемый ими растр был непрерывным по горизонтали, отсюда - высокое разрешение, ограниченное лишь спектром входного сигнала (следует, однако, оговориться, что также и инерционностью свечения люминофора). Межстрочные же промежутки, обнажавшиеся на больших экранах, удавалось заполнить благодаря интерполяционным технологиям (удвоители, учетверители строк, или скейлеры, которые попутно преобразовывали чересстрочную развертку в прогрессивную). Большие проблемы возникали со сведением трех лучей: требовались усилия специально подготовленного персонала, исключалась возможность перестановки проектора, поскольку при этом его приходилось сводить заново. Но даже когда проектор никто и не собирался трогать, точность сведения со временем уходила, поэтому была необходима ее корректировка с определенной периодичностью.

А что было раньше помимо CRT? Ведь виду ограниченного светового потока эта технология не могла обеспечить проекцию на большие экраны. Между тем, известно, что во второй половине прошлого века некоторые праздники с уличными шествиями сопровождались «небесными шоу», когда изображение проецировалось на огромные щиты, стены домов и даже... на облака! Еще в 1973 году компания Hughes Aircraft изобрела нечто такое, что с трудом поддается осмыслению, и назвала свое изобретение тремя буквами - ILA (Image Light Amplifier). Специальная пленка покрывалась тонким слоем масла, на котором электронный луч «рисовал» изображение, формируя потенциальный рельеф (имеется в виду электрический потенциал). В зависимости от величины полученного заряда слой масла на разных участках менял толщину: электрическое поле и сила поверхностного натяжения работали друг против друга. С обратной стороны прозрачной пленки подавался мощный световой поток от лампы - на просвет. В зависимости от толщины слоя масла менялось количество пропускаемого света. Трудно поверить, но эта система работала! Затем компании Toshiba и JVC начали обкатку идеи уже на другом, более технологичном уровне - с применением жидких кристаллов, которые еще в 1970-м были получены Джеймсом Фергюсоном. Появились технологии D-ILA (Direct-Drive Image Light Amplification) и LCoS (Liquid Crystal on Silicon). Еще один технологический синоним добавила Sony - SXRD (Silicon X-tal Reflective Display).

А что говорит история о двух других? Автором LCD-технологии был, очевидно, наш соотечественник, живший в Нью-Йорке - Джин Долгофф. Начиная с 1968 года, когда он еще учился в колледже, будущий изобретатель озадачился идеей более яркого, нежели CRT, проекционного устройства, и пошел по пути мощного источника света в виде лампы и светоклапана, который предстояло разработать самому. В 1984 году после долгих опытов он остановился на матрице из органических жидких кристаллов, которые под действием электрического поля изменяли свою ориентацию в пространстве, пропуская при этом больше или меньше света. В 1988 году Долгофф создал первую в мире компанию, начавшую выпуск LCD-проекторов, под названием Projectavision. Затем довольно быстро получил миллионный контракт, а затем начал продавать лицензии таким крупным компаниям, как Panasonic и Samsung. Что было дальше, хорошо известно.

Цифровые многозеркальные устройства (DMD, или Digital Mirror Device) появились всего на год раньше, чем LCD-матрицы - в 1987 году. Увы, имя автора - Лэри Хорнбек - едва ли дает основания полагать, что он, как и г-н Долгофф, также был нашим соотечественником. Да и работал он не сам по себе, а под эгидой крупной американской компании Texas Instruments, которая в течение десятка лет вкладывало большие ресурсы в разработку гибких микрозеркал (Deformable Mirror Device), пока Хорнбек не доказал, что букву «D» в аббревиатуре DMD следует понимать по-иному. Матрица из твердых микроскопических зеркал, имеющих всего два рабочих положения - открыто и закрыто - и вот вам готовый светоклапан, цифровой по самой сути (в отличие от LCD). Затем наряду с еще тремя компаниями Texas Instruments была привлечена к разработке дисплеев высокого разрешения, и первый результат появился в 1992 году. А массовое производство DMD-матриц началось в 1995-м.

Принципы работы проекционных технологий: 3-LCD

Свет от мощной галоидной лампы расщепляется с помощью призмы на три потока, каждый из которых проходит через свой светофильтр и свою LCD-матрицу. Таким образом получаются потоки R, G, B (красный, зеленый, голубой), которые затем снова складываются в оптической системе проектора и через объектив проецируются на экран. Матрицы имеют пиксельную структуру: каждым пикселем управляет поверхностный твердотельный транзистор. Жидкие кристаллы реагируют на напряжение, не потребляя при этом тока, что делает управление матрицами весьма экономичным. Сигнал управления - аналоговый.

Принципы работы проекционных технологий: одноматричная DLP

Пиксели DMD-матрицы образованы микроскопическими зеркалами, расстояние между которыми меньше микрона. Каждое такое зеркальце шарнирно закреплено на ножке и может принимать всего два положения. Управление осуществляется с помощью электрического потенциала, который также может принимать лишь два значения и формируется поверхностными транзисторами. Сигнал управления - цифровой (только нули и единицы), но при этом кодированный в виде дискретной широтно-импульсной модуляции (ШИМ). Степень свечения каждого пиксела определяется не величиной отражаемого им светового потока (она всегда одинакова), а временем пребывания соответствующего зеркальца в открытом состоянии. Более короткие вспышки соответствуют более темным точкам, более длинные, вплоть до периода частоты обновления полей, соответственно более светлым. Интеграция яркости свечения осуществляется не в самом проекторе и даже не на экране, а в психо-физическом аппарате зрителя. То есть, где-то в наших извилинах и сетчатке глаза.

Открытое состояние пиксела соответствует направлению отраженного света в объектив, закрытое - в специальный поглотитель.

Однако это только часть конструкции DLP-проектора с одной матрицей. Чтобы получить цветное изображение, нужны три модулируемых световых потока. Они в данном случае формируются с помощью одной и той же матрицы последовательно. Для этого в проекторе присутствует механический блок (как тут не вспомнить первые телевизоры с дырчатым диском Нипкова!): цветовое колесо с прозрачными красным, зеленым и голубым секторами. Частота вращения колеса жестко синхронизирована с сигналом. Таким образом, цветосинтез, как и интеграция значений яркости, происходи «в организме» зрителя. Если бы наше зрение не обладало некоторой инертностью, мы видели бы на экране, на который светит DLP-проектор, лишь вереницу слепящих цветных точек, и никакого кино...

Принципы работы проекционных технологий: трехматричная DLP

Здесь никакого колеса нет, зато матриц не одна, а три, плюс призма, расщепляющая световой поток на три составляющие. Работают матрицы синхронно, а не по очереди. Каждая обрабатывает свою часть светового потока (R, G, B). Это переносит процесс цветосинтеза из наших с вами мозгов на экран. Правда, за очень большие деньги, если сравнивать одно- и трехматричные DLP-проекторы по стоимости.

Принципы работы проекционных технологий: D-ILA (LCoS, SXRD)

В определенном смысле это «гибридная» технология, использующая жидкие кристаллы на просвет (как в LCD) и вместе с тем на отражение, как в DLP. Но все же по своей сути она ближе к LCD. Матриц здесь тоже три, но свет проходит через слой жидких кристаллов дважды, отражаясь от зеркальной подложки. Соответственно он дважды подвергается модулирующему воздействию светоклапанов, что делает модуляцию светового потока более эффективной.

Преимущества и недостатки проекционных технологий

Как известно, мяса без костей не бывает. Не бывает и технологий, полностью свободных от недостатков. И недостатки эти как правило врожденные, они заложены в самой конструкции матриц. Как, впрочем, и преимущества.

Начнем с 3-LCD. Это, как известно, матрицы просветного типа, степень прозрачности пикселей определяет количество света, прошедшего насквозь. Остальная часть светового потока вязнет в жидких кристаллах. Следовательно, сама матрица выполняет еще и роль поглотителя (балласта), который, естественно, нагревается. А вот у DLP-технологии зеркальца, обладающие высоким коэффициентом отражения, практически не греются, а греется поглотитель, который находится вне матрицы. Отсюда - гораздо более высокая стабильность во времени у DLP-технологии по сравнению с LCD. К тому же, оптический тракт у DLP полностью закрытый, исключено попадание пыли, отсутствуют оптические артефакты, вызываемые потоками теплого воздуха, через которые проходит свет (в DLP это имеет место только если выходные отверстия системы охлаждения балласта выведены прямо под объектив, чего производители, естественно, избегают). А в LCD-проекторе оптический тракт не опечатаешь, ведь воздушный поток должен обдувать сами матрицы, которые ощутимо греются. Поэтому время от времени приходится не только менять фильтры системы охлаждения, но и полностью очищать внутреннее пространство проектора.

Но это не самый значительный фактор. Важнее - то, что токоведущие дорожки, подводящие к пикселям матриц управляющие сигналы, в LCD-матрицах находятся на пути светового потока. В DLP же (как и в LCoS, D-ILA и SXRD) они расположены на подложке и не преграждают путь световому потоку. Поэтому пиксельная «сеточка» традиционно гораздо заметнее у LCD-проекторов, чем у DLP. Последние, правда, изначально грешили темными пятнышками в серединах пикселей (там, где находится крепежный шарнир зеркальца). Но это было заметно, только если смотреть на экран вплотную. Еще один небольшой недостаток DLP - ореол, вызываемый дифракцией на боковых гранях зеркал. Он поднимает уровень черного (очень незначительно) и создает вокруг изображения чуть заметную засветку, которая легко побеждается с помощью черного обрамления экрана. Но это - сущий пустяк по сравнению с т. н. «эффектом радуги», свойственным одноматричным DLP-моделям. Эффект этот имеет место из-за сдвига во времени проецировании на экран красного, зеленого и голубого полей. При быстром движении глаз целостность восприятия их нарушается. Особенно заметна радуга на наиболее контрастных сценах (скажем, белые тиры на черном фоне). Понятно, что у трехматричных проекторов, как и у моделей LCD или D-ILA, никакой радуги нет и в помине.

Традиционно LCD лидировало по яркости (благодаря более высокому коэффициенту использования света лампы) по сравнению с DLP, тогда как DLP опережало LCD по контрастности и глубине черного. Отсюда родилось мнение, что LCD - это проекторы скорее для презентаций, проходящий при свете, а DLP - для домашнего кинотеатра, где света нет и где гораздо важнее не яркость, а достоверная передача деталей в темных сценах фильма. Понятно, что это весьма условная классификация. Действительно, множество моделей LCD-проекторов и предназначались для презентаций, но такие есть и в категории одноматричных DLP. И, действительно, остаточная засветка у жидких кристаллов гораздо выше, чем у микрозеркал, особо микрозеркал последних поколений: полностью запереть ЖК-светоклапан невозможно, к тому же, имеет место засветка яркими пикселями более темных соседних. Вместе с тем, цвета у LCD всегда казались заметно более насыщенными, а у DLP изображение было боле строгим и менее красочным. Хотя это дело вкуса. Часто приходится наталкиваться на мнение, что и четкость LCD лучше, чем у DLP, однако с этим хочется поспорить: субъективные впечатления говорят об обратном. К тому же, DLP-изображение всегда было более стабильным, фотографически тщательно прорисованным, а на LCD, казалось, отдельные пиксели «копошатся» даже на неподвижной картинке, контуры слегка размыты, а объекты несколько раздуты. В целом картинка часто казалась какой-то переслащенной, слегка неуклюжей. Возможно, дело тут еще и в высокой инерционности жидких кристаллов - еще одно очко в пользу DLP. Зато LCD-проекторы примерно одних ценовых категорий с DLP-моделями чаще всего обладают более широкими пределами масштабирования.

А вот D-ILA, обладая всеми добродетелями LCD, оказалась свободной от такого серьезного недостатка, как пониженное разрешение в темных сценах: ведь свет проходит через клапан дважды, и поэтому уровень черного по логике вещей получаются глубже, улучшается и контрастность.
Из артефактов, пожалуй, остается упомянуть такие эффекты, как пиксельные, MPEG- и фликер-шумы, «пересыпание пикселей» при «наезде» камеры на медленно движущийся или неподвижный объект, зубчатые диагональные линии и «эффект расчески» при быстром движении (расслоение полукадров при чересстрочной развертке), неравномерность движений и размывание контуров движущихся объектов, а также потеря четкости внутри этих контуров. Однако все эти недостатки так или иначе свойственны любой пиксельной технологии, а все, что связано с зубчатостью, дергаными движениями и размыванием контуров, относится в первую очередь к несовершенству алгоритмов цифровой обработки: деинтерлейсинга (преобразование чересстрочного сигнала в прогрессивный), адаптивной технологии компенсации движений, интерполяционных алгоритмов вычисления промежуточных пикселей.

Развитие и достижения проекционной технологии

Так и подмывает в начале этой главы написать: забудьте все, о чем говорилось в предыдущей! Потому что, взглянув на великолепие, которое откроется на экране при наличии проектора Full HD любой технологии, подключенном к проигрывателю Blu-Ray по DVI или HDMI, можно прийти в недоумение по поводу недостатков, о которых говорилось выше. Где пиксельная сеточка, считавшаяся неизлечимым дефектом LCD-технологии? Где посредственная контрастность и темно-серый цвет вместо радикально-черного? Похоже, сбывается мечта достичь в домашнем кинотеатре уровня качества, характерного для настоящего кино. И даже превзойти его - это уже не кажется утопией. Правда, один недочет все же полностью победить не удалось: это эффект радуги. Но и он стал настолько эфемерным, что подчас о нем забываешь, а, вспомнив, начинаешь крутить головой, пытаясь обнаружить - куда делся?

Эффект радуги

С радуги, пожалуй, и начнем рассказ о том, как современные проекционные технологии дошли до такой роскоши. Путь был долгим, поколение сменялось за поколением, но по-настоящему радикальные изменения произошли с освоением формата 1080p, когда надписи HD Ready на корпусах проекторов стали сменяться на Full HD.

Итак, с радугой начали бороться с помощью ускорения вращения цветового колеса. Естественно: чем чаще сменяются цветовые поля, тем меньше проявляется эффект. И, действительно, когда появились проекторы с удвоенной скоростью колеса, на котором было уже не три, а шесть секторов (два комплекта стандартных R, G, B), радуга стала менее заметной. Правда, попутно стремились поднять яркость, которая у DLP-проекторов поначалу сильно отставала от их LCD-конкурентов, для чего ввели в колесо дополнительный прозрачный сектор, который просто добавил яркости, но уровень черного при этом поднялся, а краски выцвели. Это был не более чем реверанс в сторону рынка презентационной техники. Но сегодня, когда скорости вращения колеса еще больше выросли (в современных моделях используются вращающиеся светофильтры с количеством сегментов до 8), как-то даже неловко об этом вспоминать, хотя радуга и осталась (в сильно урезанном виде).

На заметность радуги, а также на разрешение (что естественно) очень сильно повлияла тенденция увеличения количества пикселей в матрице. Но основный вехи развития DLP-технологии, пожалуй, приходятся на два события: выпуск DMD-матриц 2-го поколения с углом отклонения зеркал в 12° вместо 10° (HD 2) и переход на формат 16:9 (HD2+ Mustang). Лишние 2° позволили радикально улучшить воспроизведение черного и контрастность, а важность перехода на широкий формат и подавно не требует дополнительного обоснования. А потом уже пошло по накатанной: Matterhorn, DarkChip, DarkChip 2, HD3, xHD3. Все больше пикселей и меньше артефактов. На Full HD вы уже не увидите ни «пересыпания пикселей», ни MPEG-шумов (последнее, однако, скорее заслуга HD-источника), лишь легкий москитный шум, да и то не на всех сценах.

Пиксельная сетка и уровень черного

LCD-технология сделала еще более значительный рывок за последние годы. Пиксельная сеточка полностью исчезла благодаря технологии MicroLens (микроскопические линзочки за пикселями слегка увеличивают пятно, компенсируя тени от токоведущих дорожек). А уровень черного опустился настолько, что теперь не всегда можно отличить LCD от DLP путем прямого сравнения. Хотя считается, что в этом плане DLP по-прежнему лидирует, хотя и не с таким отрывом, как раньше.

Плавность движений

Конечно, оптическая (и тем более механическая, где она есть) части проекционных агрегатов не могут развиваться слишком быстро. Зато электроника - может. С появлением мощных сверхскоростных процессоров стало возможным использовать сложные алгоритмы цифрового обработки видеосигнала в реальном времени, повысить разрядность представления сигнала (вплоть до 16 бит), что исключило возникновение видимых глазом «ступенек» на плавных цветовых и яркостных переходах, как это часто наблюдалось несколько лет назад. Все более плавными становятся движения: интерполяционные технологии успевают синтезировать нужное количество промежуточной видео информации. И все это удается на фоне и без того заоблачных требований к быстродействию процессоров, предъявляемых новыми форматами телевидения высокой четкости (1080i, 1080p).

Управление световым потоком

Особо следует отметить ту огромную пользу, которую принесли режимы статического и динамического управления световым потоком. Мало того, что в процессе электронной обработки видео в зависимости от того, насколько светлая или темная сцена воспроизводится, параметры сигнала оптимально подстраиваются так, чтобы зритель увидел как можно больше деталей и чтобы цветовой баланс оставался как можно более натуральным. Задействуется еще и моторизованная диафрагма, регулирующая количество света, что позволяет значительно улучшить глубину черного и разборчивость оттенков темных сценах и исключить выбеливание наиболее ярких фрагментов на светлых. Кроме этого, во многих моделях проекторов предусмотрено пониженный режим мощности лампы для просмотра фильмов в темноте. Это не только продлевает ресурс лампы, но и, наряду с динамической диафрагмой, работает на улучшение восприятия картинки, а также снижает шум вентиляторов системы охлаждения.

Режимы просмотра

В любом современном проекторе, предназначенном для домашнего кинотеатра, бывают запрограммированы несколько режимов просмотра, что позволяет для различных условий внешней освещенности и сюжета выбрать оптимальные параметры изображения простым перебором режимов с пульта ДУ. В большинстве случаев более серьезных настроек не требуется, хотя при желании пользователю предоставляется весьма широкий набор регулировок, некоторые из которых требуют определенного навыка и наличия специальных тестовых сигналов, а также светфильтра. Некоторые наиболее простые тестовые шаблоны часто встраиваются в память проектора и могут быть выведены на экран одним нажатием кнопки пульта ДУ. Это очень удобно при установке проектора, когда нужно настроить фокус. Объективы могут быть механические и (у боле дорогих моделей) моторизованные, тогда и фокусировка, и размеры экрана могут настраиваться с пульта. Полезны также такие функции, как смещение объектива по вертикали (иногда и по горизонтали), особенно если проектор вывешивается на потолке выше уровня экрана. Следует, однако, помнить, что электронными средствами компенсации трапецеидальных искажений, которые возникают при значительном смещении (если проектор установлен слишком высоко или не по центру относительно экрана) следует пользоваться с большой осторожностью, поскольку в жертву правильной геометрии изображения приносится разрешение.

В последнее время общепринятой тенденцией стало программирование не только готовых режимов просмотра (например, спорт, кино, динамичное или мягкое изображение), но и калибровок ISF (Image Science Foundation). Это компания, которая на протяжении многих лет разрабатывает и внедряет стандарты качественного воспроизведения видео в домашнем кинотеатре. Настройки ISF Day и ISF Night (соответственно для просмотра в условиях умеренной засветки и в темноте) включают тщательно оптимизированные по многим показателям параметры (яркость, контрастность, гамма, цветность, оттенок и т. д.) и, будучи взятыми за точку отсчета, допускают дополнительные корректировки - чтобы подстроить изображение под индивидуальные предпочтения конкретного зрителя.

Анаморфные линзы 2,35:1

Все более популярными становятся широкоформатные экраны с пропорциями 2,35:1. Поскольку не все фильмы записаны именно в этом формате, да и сами матрицы проекторов имеют иные пропорции (16:9 или 4:3), часто возникает ситуация, при которой изображение не вписывается в матрицу по ширине или высоте. В результате либо отсекается его часть по краям, либо задействуются не все пиксели матрицы. Выходом из положения может быть анаморфная насадка на объектив. Например, чтобы воспроизвести фильма формата 2,35:1 на соответствующем экране с учетом того, что матрица имеет пропорции 16:9, изображение сперва сжимается по горизонтали электронным методом в процессоре до 16:9, после чего с помощью анаморфной линзы его боковые части растягиваются до 2,35:1. Таким образом, матрица полностью задействуется, разрешение по вертикали получается максимально возможным, а некоторая потеря горизонтального разрешения из-за сжатия по бокам оказывается незаметной, поскольку взгляд в основном «оценивает» то, что происходит в центре экрана. Как пример подобной опции, реализованной на самом высоком уровне (дорогая профессиональная оптика, выносной процессор) можно привести технологию компании Runco - CineWide & AutoScope. Анаморфная линза смонтирована на подвижной моторизованной каретке, которая надвигается на объектив автоматически при воспроизведении фильма 2,35:1.

Проектор и «умный дом»

Современные проекторы оснащаются также портами RS-232 и триггерными входами и выходами, что позволяет автоматизировать систему домашнего кинотеатра и даже интегрировать ее в общую систему «умного дома», а также, если экран снабжен моторизованными шторками, избавить владельца системы от необходимости вручную сдвигать и раздвигать их при смене форматов изображения (2,35:1, 16:9 или 4:3).

Как выбирать проектор

LCD или DLP?

Однозначного ответа на этот вопрос не существует. Среди консультантов салонов аппаратуры есть приверженцы каждой технологии, и у них всегда найдется куча аргументов в пользу именно того, что им выгоднее всего продать. Поэтому доверять нужно только лишь собственным впечатлениям от демонстрации, причем желательно, чтобы она охватывала не одну модель и даже не одну технологию. Только так можно понять, например, что больше подходит именно вам - LCD- или DLP-проектор. Или - D-ILA. Следует, однако, иметь в виду определенные подробности, которые позволят обратить внимание на наиболее существенные моменты в процессе выбора.

Итак, проектор LCD (мы говорим сейчас о современны моделях, лишенных многих недостатков, о которых шла речь выше) за те же деньги, что и DLP, скорее всего будет несколько ярче и «цветастее». Возможно, он будет слегка менее шумным (за счет отсутствия механических блоков, не считая вентилятора). Одно и то же разрешение в случае LCD-проектора в среднем стоит несколько дешевле, чем с DLP. При этом пределы зуммирования будут шире (обычно 2:1 и более), чем у DLP. И уж точно не будет никакой радуги.

Зато DLP будет давать более четкое, глубокое изображение, хотя и слегка менее насыщенное по цветам. Хотя и не сильно, но темные сцены будут более разборчивыми, а черный цвет - более глубоким. Как и в случае с LCD-проектором, практически никакой пиксельной структуры с места зрителя вы не заметите: минули те времена, когда в целях уменьшения ее заметности знатоки советовали чуть размыть фокусировку. Итак, если вам ближе буйство красок на экране при некоторой «фривольности» общей подачи, то, скорее всего, LCD, если же вы предпочитаете документальную четкость и почти голографическую достоверность глубины изображения, лучше DLP.

Но это еще не все, что нужно иметь в виду. Существует мнение, что одноматричная DLP-проекция не лучшим образом сказывается на зрении и, по крайней мере, гораздо быстрее утомляет, вызывая дискомфорт и головную боль. Учитывая довольно сложный механизм формирования изображения, трудно с этим спорить, однако есть основания полагать, что негативное воздействие микрозеркальной технологии на глаза и мозг зрителя существенно преувеличены. Известны случаи, когда действительно работники ситуационных центров, оснащенных DLP-проекторами, жаловались на усталость, головные боли недомогание, и резь в глазах. Но ведь они вынуждены были «смотреть кино» в течение всей смены, а не неполных два часа. К тому же, не исключено, что работали они с теми моделями одноматричных DLP-проекторов, которые предназначены не для домашнего кинотеатра, а выбирались в расчете на высокую яркость. Но, так или иначе, прежде, чем решиться на DLP, полезно на себе проверить, будет ли проявляться вышеописанный эффект, для чего полезно просмотреть не один-два фрагмента фильма на пять минут, а посвятить этому занятью хотя бы полчаса, тщательно прислушиваясь к собственным ощущениям. При этом обязательно нужно попытаться оценить, насколько вас раздражает и отвлекает от просмотра эффект радуги. Стоит даже специально время от времени его создавать, тряся растопыренными пальцами перед глазами или делая резкие движения головой.

Естественно, конкурирующие друг с другом производители проекторов различных технологий используют все средства для информационной борьбы. Приверженцы LCD кивают на ненадежность DLP, аргументируя свой скепсис тем, что если что-то крутится, то рано или поздно сломается: износится подшипник или сгорит мотор. Говорят и о «залипании» микрозеркал, что, в принципе, вполне вероятно. Однако массовых или даже ощутимо частых отказов, мертвых пикселей и разлетевшихся на куски цветовых колес за более, чем десятилетний срок существования DLP-технологии не наблюдается. Хотя единичные случаи, конечно, имеют место.

С другой стороны, DLP-апологеты ссылаются на поставленный компанией Texas Instruments эксперимент, в ходе которого несколько моделей DLP- и LCD-проекторов работали непрерывно, и при этом параметры проецируемых изображений периодически оценивались. Примерно через 1300 часов непрерывной работы LCD-модели показали явную деградацию цветового баланса: уровень голубого существенно упал. Это объяснили тем, что жидкие кристаллы чувствительны к перегреву и особенно к ультрафиолетовому излучению, которое присутствует в спектре лампы и которое значительно в меньшей степени подавляется голубым светофильтром, нежели зеленым и красным. Несомненно, все так и есть, но данный эксперимент не вполне корректен, поскольку условия испытания проекторов были слишком жесткие. Ведь в реальной жизни никому и в голову не придет смотреть кино без перерыва сутки напролет в течение нескольких месяцев! Вот в различных инсталляциях, использующих проекторы в холлах гостиниц и других общественных помещений для декорации, возможно, действительно лучше отдать предпочтение DLP-моделям, чтобы снизить эксплутационные расходы.

«Гибридные» проекторы D-ILA, LCoS и SXRD

По поводу «гибридных» технологий (D-ILA, LCoS и SXRD) можно сказать то же самое: только собственное впечатление должно быть решающим при приобретении проектора. Пожалуй, по качеству современные LCD-модели вряд ли уступают этим «неформалам», которые в целом стоят значительно дороже при сходных показателях. Правда, компания Sony утверждает, что технология SXRD гарантирует значительно меньшую инерционность матриц по сравнению с двумя другими схожими технологиями. Так или иначе, все равно DLP впереди, и с большим отрывом. Хотя у жидких кристаллов в общем-то хватает быстродействия, чтобы картинка не казалась смазанной, может быть, в их повышенной инерционности причина того, что изображение с DLP-проектора почти всегда кажется более «быстрым», менее громоздким?

Трехмартичные DLP-проекторы

Наконец, о трехматричных DLP-проекторах. К сожалению, до сих пор эта категория недоступна большинству пользователей из-за непомерно высоких цен. И, несмотря на кажущуюся технологическую безгрешность, и тут можно найти, к чему придраться (за такие-то деньги!). Радуги, конечно, нет и быть не может, но при быстром движении глаз зритель может на какую-то долю секунды уловить что-то вроде радуги, но только серо-белого оттенка (как будто ряд тонких вертикальных полос градаций серого). Может быть, и не на всех моделях и не на любом сюжете, но все же. К тому же, понятно, что остаточная засветка от трех матриц не может быть меньше, чем от одной, а, значит, контрастность здесь может быть чуточку поменьше, чем у одноматричного DLP-проектора. Иногда можно заметить и небольшое, в пределах одного пикселя или даже меньше, расслоение цветных полей - конечно, только подойдя вплотную к экрану. Однако если уж подобный дефект имеет место, он, хотя и незначительно, будет проявляться и с нормального расстояния в виде небольшой потери четкости. Тем не менее, трехматричные проекторы в целом демонстрируют отменное качество изображения. Они комплектуются лучшей оптикой и начиняются самыми продвинутыми «электронными мозгами», реализующими последние самые последние технологии обработки сигнала. Впрочем, «мозги» эти часто локализуются не в самом проекторе, а в выносном блоке видеопроцессора, с которым проектор соединяется одним лишь кабелем - DVI или HDMI. Такая раздельная компоновка (как и высокая стоимость) - еще один признак принадлежности к самой элитной касте проекционной аппаратуры.

В заключение отметим, что чем бы ни руководствовался покупатель, последнее, на что нужно серьезно обращать внимание, это цифры в спецификациях. Они нещадно завышаются производителями, а если и нет, то приводятся результаты измерений в условиях, далеких от условий домашнего кинотеатра. Особенно это касается гигантских значений яркости и контрастности. Можно просто исходить из того, что яркость любого современного проектора, предназначенного для домашнего кинотеатра, а тем более Full HD, достаточна, если речь не идет об очень большом экране. И самыми рекордными показателями как яркости, так и контрастности все равно не удастся добиться того, чтобы изображение при умеренной освещенности оставалось таким же безупречным, как в полной темноте.