Библиотека программиста все, что необходимо начинающему и опытному программисту. Алгоритмы замещения страниц. Часы. Алгоритм LRU

  • 21.07.2019

На собеседованиях часто спрашивают, какая сортировка самая быстрая. Вопрос с подвохом. Объясняем, почему, и ищем оптимальный вариант.

В ответ вы должны спросить: «А для какого случая выбирается оптимальная по времени сортировка?» И лишь тогда, когда будут озвучены условия, можно смело перебирать имеющиеся варианты.

Существуют:

  • алгоритмы сортировки O(n 2) вроде сортировки вставками, пузырьком и выбором, которые используются в особых случаях;
  • быстрая сортировка (общего назначения): в среднем O(n log n) обменов, но худшее время – O(n 2) , если массив уже отсортирован, или элементы равны;
  • алгоритмы O(n log n) , такие как сортировка слиянием и кучей (пирамидальная сортировка), которые также являются хорошими алгоритмами сортировки общего назначения;
  • O(n) или линейные алгоритмы сортировки (выбор, выбор с обменом, выбор с подсчетом) для списков целых чисел, которые могут быть подходящими в зависимости от характера целых чисел в ваших списках.

Если все, что вы знаете, – это отношение общего порядка между элементами, то оптимальные алгоритмы будут иметь сложность О(n log n) . Для линейных алгоритмов нужна дополнительная информация о структуре элементов.

Оптимальность алгоритма тесно зависит от типа списков/массивов, которые вы собираетесь сортировать, и даже от модели ЭВМ. Чем больше информации в вашем распоряжении, тем более точным будет выбор. При очень слабых предположениях о факторах оптимальной сложностью худшего случая может быть О(n!) .

Данный ответ касается только сложностей. Фактическое время выполнения алгоритмов зависит от огромного количества факторов.

Тестирование

Итак, какая же сортировка самая быстрая?

Визуализация

Неплохая визуализация сортировок продемонстрирована в этом видео:

Кажется, что она отвечает на вопрос о том, какая сортировка самая быстрая, но не стоит забывать, что на скорость влияет множество факторов, и это лишь один из продемонстрированных вариантов.

Во многих приложениях возникает задача обнаружения аномалий, которые могут появиться на очередном многомерном кадре последовательности изображений. Такими аномалиями могут быть, например, очаги лесных пожаров, патологические изменения на медицинских изображениях, новые объекты в охраняемой зоне и др. При этом задача обнаружения формализуется следующим образом, Пусть производятся наблюдения

СП с пространственно-временными корреляционными связями и СП независимых случайных величин с нулевыми средними и дисперсиями . Вектор параметров позволяет учесть, например, возможные взаимные пространственные смещения и повороты соседних кадров изображения.

Появление детерминированного сигнала приводит к изменению модели (2.1) лишь в области индексов (рис. 1) последнего из наблюдаемых кадров:

где - совокупность отсчетов полезного сигнала.

В рассмотренных условиях необходимо найти правило проверки гипотезы Н0 об отсутствии аномалии в области G при альтернативном предположении Н1 о справедливости модели (2.2).

При заданных вероятностных характеристиках компонент моделей (2.1), (2.2) могут быть определены соответствующие условные плотности распределения вероятностей (ПРВ) наблюдений W(Z|Н0) и W(Z|Н1). Поэтому для решения задачи обнаружения следует воспользоваться сравнением с пороговым уровнем отношения правдоподобия (ОП):

(2.3)

Для упрощения вычислений представим условные ПРВ в виде произведений: , где ZG - совокупность наблюдений по области G; Z0 - совокупность всех наблюдений, не принадлежащих области предполагаемого сигнала. Поскольку , ОП (2.3) перепишется в форме:

. (2.4)

Будем аппроксимировать условные ПРВ, входящие в ОП (2.4), гауссовскими распределениями:

где , и , , - условные математические ожидания и пространственные ковариационные матрицы наблюдений ZG при отсутствии и наличии полезного сигнала соответственно.

С учетом моделей наблюдений (2.1), (2.2) нетрудно получить следующие формулы для условных средних , где - оптимальный прогноз значений СП , построенный на основе всех имеющихся наблюдений Z0 , не принадлежащих области сигнала. Пространственные матрицы V0 и V1 оказываются одинаковыми:, где - ковариационная матрица ошибок оптимального прогноза.

После подстановки приведенных соотношений в (2.4), (2.5) и логарифмирования находим следующий алгоритм обнаружения сигнала:

, (2.6)

где- порог обнаружения. Как следует из формулы (2.6), процедура обнаружения аномалий включает в себя компенсацию мешающих изображений с помощью вычитания из наблюдения оптимального прогноза , найденного на основе всех наблюдений, не принадлежащих области G. После компенсации мешающих СП осуществляется линейное весовое cуммирование остатков

Применяя формулу Фробениуса обращения блочных матриц, можно показать, что статистика приводиться к эквивалентному виду:

где ,- оптимальный прогноз значения , построенный на основе всех имеющихся наблюдений, кроме ; . -дисперсия ошибки этого прогноза. В отличие от будем называть "прогнозом в точку". При обнаружении аномалий во всевозможных областях G с большим числом элементов "прогноз в точку" может быть найден с помощью значительно меньшего числа вычислительных операций, чем "прогноз в область" .

Еще одна форма записи оптимальной процедуры обнаружения может быть получена в предположении, что полезный сигнал может занимать все имеющиеся кадры изображения, т.е. область G включает все многомерные сетки . Тогда наилучший прогноз , и алгоритм (2.6) принимает вид:

, (2.8)

где ; - ковариационная матрица мешающего изображения.

Непосредственная реализация процедуры (2.8) затруднительна из-за большого числа вычислительных операций. Тем не менее, раскладывая пространственную симметрическую матрицу в произведение двух треугольных , можно представить (2.8) в форме

(2.9)

соответствующий предварительному "выбеливанию" последовательности изображений , и последующему весовому суммированию с весами . Во многих случаях такой подход позволяет найти приемлемые для практики квазиоптимальные алгоритмы "выбеливания" . При этом самостоятельное рассмотрение адаптивных рекурсивных фильтров, близких по свойствам к выбеливающим, является важным направлением поиска возможностей относительно простой технической или программной реализации системы обработки последовательностей изображений. Новым качеством, которым обладают алгоритмы (2.7), (2.8) и (2.9) по отношению к (2.6), является разделение трудоемкой операции оптимального прогнозирования или выбеливания, не связанной с формой сигнала, и относительно простого весового суммирования, учитывающего вид полезного сигнала. Это позволяет достаточно просто решать как задачи обнаружения аномалий с неизвестными параметрами положения, так и более сложные проблемы многоальтернативного обнаружения (распознавания) нескольких видов сигналов .

Приведенные результаты позволяют уточнить условия, при которых справедлива предложенная замена условных ПРВ нормальными распределениями. Прежде всего, это широкий класс с гауссовскими моделями (2.1), (2.2). В этих случаях процедуры (2.6), (2.7), (2.9) строго оптимальны. При негауссовских компонентах моделей (2.1), (2.2) достаточным условием оптимальности служит возможность аппроксимации апостериорной ПРВ прогноза нормальным распределением. Заметим, что последнее условие выполняется и во многих прикладных задачах обработки СП со значительными пространственно-временными корреляционными связями и обычно эквивалентно условию высокой апостериорной точности прогнозирования.

Предположим, что все искажения в канале строго детерминированы и случайным является только гауссовский аддитивный шум n(t), который вначале полагаем белым, со спектральной плотностью N 0 . Это значит, что при передаче сигнала u i (t) (символа b i (i = 0,1,...,m-1) приходящий сигнал можно описать моделью (3.38):

z(t) = s i (t) + n(t), (0≤t≤T), (6.17)

где все s i (t) = ku i (t-τ) (i = 0, 1,..., m-1) известны. Неизвестны лишь реализация помехи и индекс i действительно переданного сигнала, который и должна определить решающая схема.

Будем также считать, что все s i (t) являются финитными сигналами, длительность которых Т. Это имеет место, если передаваемые сигналы u i (t) финитны и имеют одинаковую длительность (система синхронная), а в канале нет ни многолучевого распространения, ни линейных искажений, вызывающих увеличение длительности сигнала (либо они скорректированы).

В дальнейшем будем везде полагать, что в системе обеспечена надежная тактовая синхронизация, т. е. границы тактового интервала, на котором приходит сигнал s(t), известны точно. Вопросы синхронизации весьма существенны при реализации оптимальных демодуляторов и синхронных систем связи вообще, но они выходят за пределы данного курса. Момент начала посылки s(t) примем за нуль.

Определим в этих условиях алгоритм работы оптимального (т. е. основанного на правиле максимального правдоподобия) демодулятора, анализирующего сигнал на тактовом интервале 0-Т. Для этого необходимо найти отношения правдоподобия для всех m возможных сигналов относительно нулевой гипотезы (s(t)=0; z(t) = n(t)).

Задача затрудняется тем, что ширина спектра сигнала бесконечна (поскольку он финитный), а поэтому пространство сигналов бесконечномерное L 2 (Т). Для таких сигналов (или бесконечномерных векторов), как отмечалось, не существует плотности вероятностей. Однако существуют "-мерные плотности вероятностей для любых n сечений сигнала (см. § 2.1).

Заменим вначале белый шум квазибелым, имеющим ту же одностороннюю спектральную плотность мощности N 0 , но только в некоторой полосе частот F = n/2T, где n>>1. Рассмотрим вначале дополнительную гипотезу, т. е. будем считать что Z(t) - шум. Возьмем на тактовом интервале n равноотстоящих сечений через Δt = 1/2F = T/n. Отсчеты Z 1 ,...., Z n в этих сечениях для квазибелого гауссовского шума независимы в соответствии с (2.49). Поэтому n-мерная плотность вероятностей для взятых отсчетов

где σ 2 = N 0 F - дисперсия (мощность) квазибелого шума.

При гипотезе, что передавался символ b i , согласно (6.17) n(t) = z(t) - s i (t). Следовательно, условная n-мерная плотность вероятности сечений Z(t) определится такой же формулой, как и (6.18), если z(t k) заменить разностью z(t k)-s i (t k), представляющей при этой гипотезе шум:

Отношение правдоподобия для сигнала s i (относительно дополнительной гипотезы), вычисленное для n сечений:

Заменим дисперсию σ 2 ее выражением: σ 2 = N 0 F = N 0 /(2Δt). Тогда

По правилу максимума правдоподобия в случае квазибелого шума решающая схема должна выбирать значение i, обеспечивающее максимум Λ i [n] . Вместо максимума Λ i можно отыскивать максимум его логарифма:

Второй член в (6.22) не зависит от t и его можно при сравнении гипотез не учитывать. Тогда правило решения о том, что передавался символ b i , согласно (6.10) можно выразить системой неравенств

Вернемся теперь к исходной задаче для белого шума. Для этого будем расширять полосу F, тогда число сечений п стремится к бесконечности, а Δt - к нулю. Суммы в (6.22) обратятся в интегралы, и травило решения определится так:

Выражение (6.24) определяет те операции (алгоритм работы), которые должен совершать оптимальный приемник над входным колебанием z(t).

На рис. 6.2 для m = 2 показана структурная схема приемного устройства, работающего в соответствии с алгоритмом (6.24).

Здесь "-" - вычитающие устройства; Γ 0 , Γ 1 - генераторы опорных сигналов s 0 (t), s 1 (t); "KB" - квадраторы; ∫ - интеграторы; РУ - решающее устройство, определяющее в моменты времени, кратные Т (при замыкании ключей), номер ветви с минимальным сигналом.

При m>2 в схеме рис. 6.2 и других нижеприведенных схемах растет соответственно число ветвей обработки сигнала, попадающих на РУ.

В пространстве Гильберта


определяет норму разности векторов z и s или расстояние между ними * . Поэтому алгоритм (6.24) можно записать в виде

||z - s i ||

и придать ему простую геометрическую интерпретацию: оптимальный демодулятор должен регистрировать тот из сигналов s i (t) (соответствующий символу b i), который "ближе" к принятому колебанию z(t). В качестве примера на рис. 6.3 показано оптимальное разбиение двумерного пространства принимаемых сигналов z(t) при передаче сигналов s 1 (t) и s 0 (t). Области принятия решения в пользу символов 0 или 1 расположены по обе стороны от прямой 0-0, перпендикулярной отрезку, соединяющему точки сигналов и делящих его пополам.

Наличие в схеме рис. 6.2 квадраторов, призванных обеспечить квадратичное преобразование мгновенных значений входных сигналов во всем их динамическом диапазоне, часто затрудняет ее реализацию. Поэтому на основе (6.24) получим эквивалентный алгоритм приема, не требующий устройств возведения в квадрат.

Раскрыв скобки под знаком интеграла и сократив в обеих частях неравенств (6.24) слагаемое

приходим к алгоритму приема:

где E j - энергия ожидаемого сигнала s j (t) :


Для двоичной системы алгоритм (6.25) сводится к проверке одного неравенства

Устройство, непосредственно вычисляющее скалярное произведение


называют активным фильтром, или коррелятором, поэтому приемник, реализующий алгоритм (6.25), называют корреляционным.

* (Для n-мерного пространства Евклида эта норма равна )


На рис. 6.4 показана структурная схема приемного устройства, работающего в соответствии с (6.27). Здесь блоки × - перемножители; Γ 0 , Γ 1 - генераторы опорных сигналов s 0 (t) s 1 (t); ∫ - интеграторы; "-" - вычитающие устройства; РУ - решающее устройство, определяющее в моменты времени, кратные Т (при замыкании ключа), i = 0, 1 - номер ветви с максимальным сигналом.

Если сигналы u i (t) выбраны таким образом, что все их реализации (а следовательно, и все реализации s i (t) имеют одинаковые энергии (E i = const), алгоритм приема (6.25) (и соответственно его реализация) упрощается (отпадает необходимость в вычитающих устройствах) и принимает вид

Из (6.29) видно, что правило решения не изменится, если сигнал z(t), поступающий на вход демодулятора, умножить на любое число. Поэтому система, в которой все реализации сигнала имеют равную энергию, отличается тем, что оптимальный алгоритм приема в ней не требует знания "масштаба" приходящего сигнала или, другими словами, знания коэффициента передачи k канала. Эта важная особенность обусловила широкое распространение систем сигналов с равной энергией, которые обычно называют системами с активной паузой. Это особенно важно для каналов с замираниями, в которых коэффициент передачи флуктуирует (см. §6.7).

Заметим, что для двоичной системы неравенство (6.27) можно представить в более простом виде:


где s Δ (0 = s 1 (t) - s 0 (t) - разностный сигнал; λ = 0,5(E 1 -Е 0) - пороговый уровень. Для системы с активной паузой Х=0, что значительно облегчает реализацию оптимальной схемы.

При выполнении неравенства (6.30) регистрируется символ 1, в противном случае - 0. Для реализации (6.30) в схеме рис. 6.4 требуется лишь одна ветвь.

На рис. 6.5,а показана схема, реализующая алгоритм (6.30) для двоичной системы передачи однополярными импульсами (с пассивной паузой): s 1 (t) = a, s 0 (t) = 0. При этих сигналах s Δ (t) = s 1 (t) = a, Е 1 = а 2 Т, E 0 = 0, λ = а 2 T/2 и (6.30) примет следующий, вид:


Рассмотренную систему двоичных сигналов используют в простейших устройствах проводной связи. В радиоканалах, а также в современных кабельных каналах применяют высокочастотные сигналы. Наиболее простыми двоичными системами с гармоническими сигналами являются системы с амплитудной (AM), фазовой (ФМ) и частотной (ЧМ) манипуляцией.

В двоичной AM s 1 (t) = acos(ω 0 t + φ), s 0 (t) = 0. Все входящие сюда постоянные (а, ω 0 , φ) в этом параграфе полагаем известными. Поскольку здесь s Δ (t) = s 1 (t), Е 1 = а 2 Т/2 и E 0 = 0, правило (6.30) запишется так:


Оно реализуется схемой рис. 6.5,6, которая отличается от рис. 6.5,a блоком перемножения приходящего сигнала с опорным сигналом cos(ω 0 t + φ). Пороговый уровень λ̇ в этом случае равен aT/(4RC).

При двоичной ФМ системе s 0 (t) = a cos(tω 0 + φ), s 0 (t) = а cos (tω 0 + φ + π) = -s 1 (t). Это - система с активной паузой, и поэтому в (6.30) λ = 0. Легко убедиться, что правило решения сводится при этом к следующему:


и реализуется той же схемой рис. 6.5,6 при λ̇ = 0. В этом случае РУ играет роль дискриминатора полярностей.

Рис. 6.6. Оптимальный демодулятор с обеляющим фильтром при гауссовском "окрашенном" шуме

Рассмотрим вкратце случай, когда гауссовский шум в канале не белый и не квазибелый, а "окрашенный", т. е. имеет неравномерную плотность мощности G(f) в полосе спектра сигнала. Пропустим приходящую на вход демодулятора сумму сигнала и шума через фильтр с передаточной функцией k(i2πf), такой чтобы в полосе спектра сигнала произведение G(f) |k(i2πf)| 2 было постоянной величиной N 0 . Из всех возможных фильтров с k(i2πf), удовлетворяющих этому условию и различающихся только фазо-частотной характеристикой, можно выбрать минимально фазовый, который является обратимым. Очевидно, что на выходе фильтра шум окажется квазибелым: G вых (f)=N 0 . Поэтому такой фильтр называется обеляющим.

Сигнал s i (t) после прохождения через обеляющий фильтр превратится в некоторый другой сигнал, который обозначим s" i (t). Вид его можно определить, зная s i (t) и k(i2πf). Если теперь подать колебания с выхода обеляющего фильтра на демодулятор, являющийся оптимальным для приема сигналов s" i (t) (i = 0, 1, ..., m-1), то получим схему рис. 6.6, которая, очевидно, является оптимальной для сигналов s i (t) при окрашенном шуме.

Следует обратить внимание на то, что в схеме рис. 6.2, 6.4 и 6.5 опорный сигнал должен иметь те же начальные фазы, что и ожидаемые приходящие сигналы или, другими словами, должен быть когерентным с приходящими сигналами. Это требование обычно затрудняет реализацию демодулятора и требует введения в него, помимо указанных на рисунках блоков, дополнительных устройств, предназначенных для регулировки фаз опорных сигналов.

Все методы приема, для реализации которых необходимо точное априорное знание начальных фаз приходящих сигналов, называют когерентными. В тех случаях, когда сведения о начальных фазах ожидаемых сигналов извлекаются из самого принимаемого сигнала (например, если фаза флуктуирует, но настолько медленно, что может быть предсказана по предыдущим элементам сигнала), прием называют квазикогерентным. Если же сведения о начальных фазах приходящих сигналов отсутствуют или по каким- либо соображениям их не используют, то прием называют не когерентным (см. § 6.6).

Оптимизация алгоритма разрабатываемой программы
Этап разработки алгоритма вашего приложения - самый сложный во всей цепочке жизненного цикла программы. От того, насколько глубоко продуманы все аспекты вашей задачи, во многом зависит успех ее реализации в виде программного кода. В общем случае изменения в структуре самой программы дают намного больший эффект, чем тонкая настройка программного кода. Идеальных решений не бывает, и разработка алгоритма приложения всегда сопровождается ошибками и недоработками. Здесь важно найти узкие места в алгоритме, наиболее влияющие на производительность работы приложения.

Кроме того, как показывает практика, почти всегда можно найти способ улучшить уже разработанный алгоритм программы. Конечно, лучше всего тщательно разработать алгоритм в начале проектирования, чтобы избежать в дальнейшем многих неприятных последствий, связанных с доработкой фрагментов программного кода в течение короткого промежутка времени. Не жалейте времени на разработку алгоритма приложения - это избавит вас от головной боли при отладке и тестировании программы и сэкономит время.

Следует иметь в виду, что алгоритм, эффективный с точки зрения производительности программы, никогда не соответствует требованиям постановки задачи на все 100% и наоборот. Неплохие с точки зрения структуры и читабельности алгоритмы, как правило, не эффективны в плане реализации программного кода. Одна из причин - стремление разработчика упростить общую структуру программы за счет использования везде, где только можно, высокоуровневых вложенных структур для вычислений. Упрощение алгоритма в этом случае неизбежно ведет к снижению производительности программы.

В начале разработки алгоритма довольно сложно оценить, каким будет программный код приложения. Чтобы правильно разработать алгоритм программы, необходимо следовать нескольким простым правилам:
1. Тщательно изучить задачу, для которой будет разработана программа.
2. Определить основные требования к программе и представить их в формализованном виде.
3. Определить форму представления. входных и выходных данных и их структуру, а также возможные ограничения.
4. На основе этих данных определить программный вариант (или модель) реализации задачи.
5. Выбрать метод реализации задачи.
6. Разработать алгоритм реализации программного кода. Не следует путать алгоритм решения задачи с алгоритмом реализации программного кода.
В общем случае, они никогда не совпадают. Это самый ответственный этап разработки программного обеспечения!
7. Разработать исходный текст программы в соответствии с алгоритмом реализации программного кода.
8. Провести отладку и тестирование программного кода разработанного приложения.

Не следует воспринимать эти правила буквально. В каждом конкретном случае программист сам выбирает методику разработки программ. Некоторые этапы разработки приложения могут дополнительно детализироваться, а некоторые вообще отсутствовать. Для небольших задач достаточно разработать алгоритм, слегка подправить его для реализации программного кода и затем отладить.

При создании больших приложений, возможно, понадобится разрабатывать и тестировать отдельные фрагменты программного кода, что может потребовать дополнительной детализации программного алгоритма.
Для правильной алгоритмизации задач программисту могут помочь многочисленные литературные источники. Принципы построения эффективных алгоритмов достаточно хорошо разработаны. Имеется немало хорошей литературы по этой теме, например книга Д. Кнута "Искусство программирования".

Оптимизация с учетом аппаратных средств компьютера
Обычно разработчик программного обеспечения стремится к тому, чтобы производительность работы приложения как можно меньше зависела от аппаратуры компьютера. При этом следует принимать во внимание наихудший вариант, когда у пользователя вашей программы будет далеко не самая последняя модель компьютера. В этом случае "ревизия" работы аппаратной части часто позволяет найти резервы для улучшения работы приложения.
Первое, что нужно сделать, - проанализировать производительность компьютерной периферии, на которой должна работать программа. В любом случае знание того, что работает быстрее, а что медленнее, поможет при разработке программы. Анализ пропускной способности системы позволяет определить узкие места и принять правильное решение. Различные устройства компьютера имеют разную пропускную способность. Наиболее быстрыми из них являются процессор и оперативная память, относительно медленными - жесткий диск и CD-привод. Самыми медленными являются принтеры, плоттеры и сканеры.

Итак, наиболее ответственным действием менеджера памяти является выделение кадра оперативной памяти для размещения в ней виртуальной страницы, находящейся во внешней памяти. Напомним, что мы рассматриваем ситуацию, когда размер виртуальной памяти для каждого процесса может существенно превосходить размер основной памяти. Это означает, что при выделении страницы основной памяти с большой вероятностью не удастся найти свободный страничный кадр . В этом случае операционная система в соответствии с заложенными в нее критериями должна:

  • найти некоторую занятую страницу основной памяти;
  • переместить в случае надобности ее содержимое во внешнюю память;
  • переписать в этот страничный кадр содержимое нужной виртуальной страницы из внешней памяти;
  • должным образом модифицировать необходимый элемент соответствующей таблицы страниц;
  • продолжить выполнение процесса, которому эта виртуальная страница понадобилась.

Заметим, что при замещении приходится дважды передавать страницу между основной и вторичной памятью. Процесс замещения может быть оптимизирован за счет использования бита модификации (один из атрибутов страницы в таблице страниц). Бит модификации устанавливается компьютером, если хотя бы один байт был записан на страницу. При выборе кандидата на замещение проверяется бит модификации . Если бит не установлен, нет необходимости переписывать данную страницу на диск , ее копия на диске уже имеется. Подобный метод также применяется к read-only -страницам, они никогда не модифицируются. Эта схема уменьшает время обработки page fault .

Существует большое количество разнообразных алгоритмов замещения страниц. Все они делятся на локальные и глобальные. Локальные алгоритмы, в отличие от глобальных, распределяют фиксированное или динамически настраиваемое число страниц для каждого процесса. Когда процесс израсходует все предназначенные ему страницы, система будет удалять из физической памяти одну из его страниц, а не из страниц других процессов. Глобальный же алгоритм замещения в случае возникновения исключительной ситуации удовлетворится освобождением любой физической страницы, независимо от того, какому процессу она принадлежала.

Глобальные алгоритмы имеют ряд недостатков. Во-первых, они делают одни процессы чувствительными к поведению других процессов. Например, если один процесс в системе одновременно использует большое количество страниц памяти, то все остальные приложения будут в результате ощущать сильное замедление из-за недостатка кадров памяти для своей работы. Во-вторых, некорректно работающее приложение может подорвать работу всей системы (если, конечно, в системе не предусмотрено ограничение на размер памяти, выделяемой процессу), пытаясь захватить больше памяти. Поэтому в многозадачной системе иногда приходится использовать более сложные локальные алгоритмы. Применение локальных алгоритмов требует хранения в операционной системе списка физических кадров, выделенных каждому процессу. Этот список страниц иногда называют резидентным множеством процесса. В одном из следующих разделов рассмотрен вариант алгоритма подкачки, основанный на приведении резидентного множества в соответствие так называемому рабочему набору процесса.

Эффективность алгоритма обычно оценивается на конкретной последовательности ссылок к памяти, для которой подсчитывается число возникающих page faults . Эта последовательность называется строкой обращений (reference string ). Мы можем генерировать строку обращений искусственным образом при помощи датчика случайных чисел или трассируя конкретную систему. Последний метод дает слишком много ссылок, для уменьшения числа которых можно сделать две вещи:

  • для конкретного размера страниц можно запоминать только их номера, а не адреса, на которые идет ссылка;
  • несколько подряд идущих ссылок на одну страницу можно фиксировать один раз.

Как уже говорилось, большинство процессоров имеют простейшие аппаратные средства , позволяющие собирать некоторую статистику обращений к памяти. Эти средства обычно включают два специальных флага на каждый элемент таблицы страниц. Флаг ссылки (reference бит ) автоматически устанавливается, когда происходит любое обращение к этой странице, а уже рассмотренный выше флаг изменения ( modify бит ) устанавливается, если производится запись в эту страницу. Операционная система периодически проверяет установку таких флагов, для того чтобы выделить активно используемые страницы, после чего значения этих флагов сбрасываются.

Рассмотрим ряд алгоритмов замещения страниц.

Алгоритм FIFO. Выталкивание первой пришедшей страницы

Простейший алгоритм. Каждой странице присваивается временная метка. Реализуется это просто созданием очереди страниц, в конец которой страницы попадают, когда загружаются в физическую память, а из начала берутся, когда требуется освободить память. Для замещения выбирается старейшая страница. К сожалению, эта стратегия с достаточной вероятностью будет приводить к замещению активно используемых страниц, например страниц кода текстового процессора при редактировании файла. Заметим, что при замещении активных страниц все работает корректно, но page fault происходит немедленно.

Аномалия Билэди (Belady)

На первый взгляд кажется очевидным, что чем больше в памяти страничных кадров, тем реже будут иметь место page faults . Удивительно, но это не всегда так. Как установил Билэди с коллегами, определенные последовательности обращений к страницам в действительности приводят к увеличению числа страничных нарушений при увеличении кадров, выделенных процессу. Это явление носит название "аномалии Билэди" или "аномалии FIFO ".

Система с тремя кадрами (9 faults) оказывается более производительной, чем с четырьмя кадрами (10 faults), для строки обращений к памяти 012301401234 при выборе стратегии FIFO .


Рис. 10.1.

Оптимальный алгоритм (OPT)

Одним из последствий открытия аномалии Билэди стал поиск оптимального алгоритма, который при заданной строке обращений имел бы минимальную частоту page faults среди всех других алгоритмов. Такой алгоритм был найден. Он прост: замещай страницу, которая не будет использоваться в течение самого длительного периода времени.

Каждая страница должна быть помечена числом инструкций, которые будут выполнены, прежде чем на эту страницу будет сделана первая ссылка. Выталкиваться должна страница, для которой это число наибольшее.

Этот алгоритм легко описать, но реализовать невозможно. ОС не знает, к какой странице будет следующее обращение. (Ранее такие проблемы возникали при планировании процессов - алгоритм SJF ).

Зато мы можем сделать вывод, что для того, чтобы алгоритм замещения был максимально близок к идеальному алгоритму, система должна как можно точнее предсказывать обращения процессов к памяти. Данный алгоритм применяется для оценки качества реализуемых алгоритмов.

Выталкивание дольше всего не использовавшейся страницы. Алгоритм LRU

Одним из приближений к алгоритму OPT является алгоритм, исходящий из эвристического правила, что недавнее прошлое - хороший ориентир для прогнозирования ближайшего будущего.

Ключевое отличие между FIFO и оптимальным алгоритмом заключается в том, что один смотрит назад, а другой вперед. Если использовать прошлое для аппроксимации будущего, имеет смысл замещать страницу, которая не использовалась в течение самого долгого времени. Такой подход называется least recently used алгоритм (LRU ). Работа алгоритма проиллюстрирована на рис. рис. 10.2 . Сравнивая рис. 10.1 b и 10.2, можно увидеть, что использование LRU алгоритма позволяет сократить количество страничных нарушений .


Рис. 10.2.

LRU - хороший, но труднореализуемый алгоритм. Необходимо иметь связанный список всех страниц в памяти, в начале которого будут хранится недавно использованные страницы. Причем этот список должен обновляться при каждом обращении к памяти. Много времени нужно и на поиск страниц в таком списке.

В [Таненбаум, 2002 ] рассмотрен вариант реализации алгоритма LRU со специальным 64-битным указателем, который автоматически увеличивается на единицу после выполнения каждой инструкции, а в таблице страниц имеется соответствующее поле, в которое заносится значение указателя при каждой ссылке на страницу. При возникновении page fault выгружается страница с наименьшим значением этого поля.

Как оптимальный алгоритм, так и LRU не страдают от аномалии Билэди . Существует класс алгоритмов, для которых при одной и той же строке обращений множество страниц в памяти для n кадров всегда является подмножеством страниц для n+1 кадра. Эти алгоритмы не проявляют аномалии Билэди и называются стековыми (stack) алгоритмами.

Выталкивание редко используемой страницы. Алгоритм NFU

Поскольку большинство современных процессоров не предоставляют соответствующей аппаратной поддержки для реализации алгоритма