Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности. Схемы подключения солнечных батарей загородного дома

  • 13.09.2019

В связи с резким повышение стоимости электроэнергии, образованные люди стают все больше интересоваться подключением экономных . Неограниченное количество запасов экологически чистой энергии сегодня стало интересовать все большее количество населения планеты. Задача каждого человека заключается лишь в умении эффективно преобразовать солнечную энергию в необходимую, к примеру, электрическую или тепловую.

Получение электрической энергии стало реальной возможностью благодаря изобретению которой основан на специфических свойствах самого проводника: вырабатывать электрический ток под воздействием света.

Устройство и принцип действия системы

Базовой составляющей солнечной батареи являются фотогальванические ячейки, которые производятся из кремниевых пластин. Сама панель, на которую крепятся в дальнейшем кремниевые пластины, состоит из алюминиевой рамы со вставленным закаленным, ударопрочным, сверхпрозрачным стеклом. Поверх стекла, напоминающего по конструкции матрицу, аккуратно укладываются фотогальванические ячейки, которые соединяются между собой методом пайки.

Следует отметить, что величина солнечной батареи, которую устанавливают на поверхность здания, напрямую зависит от необходимого количества потребляемой мощности. В конце сборки всей батареи остаются 2 выхода «+» и «-».

В дальнейшем, набор полученных ячеек подвергается принудительной инкапсуляции, то есть тщательной герметизации при помощи специальной пленки или двухкомпонентного компаундома.

Далее, под воздействием солнечной энергии на кремниевых пластинах образуется разность потенциалов, которая в результате последовательного крепления ячеек между собой суммируется. Таким образом, получается сбор солнечной энергии и преобразование ее в электрическую.

Следует заметить, что напряжение солнечной батареи будет стационарно изменчиво. Такая изменчивость напрямую зависит от интенсивности светового потока, то есть времени суток и года.

Для обеспечения эффективного использования преобразованной электроэнергии, необходимо правильно осуществить подключение солнечной батареи в схеме взаимодействия с иными обслуживающими устройствами.

Реализация подключения устройства

Наибольшей популярности и распространенности, на сегодняшний день, получили 12-вольтовые системы с прямым преобразованием в 220 В переменного напряжения. Базовая схема такой батареи зачастую состоит из:

  1. Солнечной батареи. Возможно нескольких, в зависимости от потребляемой мощности всего электрического оборудования.
  2. Контроллера заряда-разряда аккумулятора.
  3. Аккумуляторных батарей.
  4. Инвертора.

Для более внятного представления работы всей схемы необходимо разобраться в работе и задаче каждого элемента.

  • Диод Шоттки. Зачастую этот диод схематически не обозначается на схемах, так как считается изначально вмонтированным элементом системы. Главным предназначением таких диодов является препятствие протеканию обратного тока в ночное время суток и мало солнечную погоду.
  • Контролер заряда АКБ. Является электронным устройством, способным автоматически управлять процессами зарядки и разрядки аккумулятора, а также защитить его от чрезмерной зарядки и разрядки.

Работа АКБ происходит следующим образом: в светлое время суток, когда аккумулятор осуществляет зарядку от солнечной батареи, контроллер следит за напряжением на клеммах аккумулятора, и как только оно достигает верхнего предела, процесс зарядки работа по приему энергии прекращается и ток перенаправляется к нагрузке.

В темное время суток солнечная панель не осуществляет работу, а питание всех составляющих системы осуществляется исключительно за счет предварительно заряженного аккумулятора. Как только, напряжение на клеммах аккумулятора достигло нижнего предела – контроллер производит отключение работы схемы.

Дополнительными функциями, которые контроллер осуществляет для защиты элементов реализованной схемы, являются: короткое замыкание и гроза.

  • Аккумуляторная батарея. В реализации такой схемы работы системы является накопителем электрической энергии, вырабатываемой солнечной батареей на протяжении всего светового дня. Такая реализация схемы дает возможность осуществлять обслуживание электрических приборов в темное время суток.

В качестве аккумуляторной батареи можно использовать: автомобильные аккумуляторы (только на открытом пространстве), необслуживаемые аккумуляторы (специально предназначены для осуществления многократных и частых циклов зарядки-разрядки).

Монтаж системы

Солнечные батареи устанавливаются на открытых участках под углом 45 градусов к горизонту по направлению в южную сторону. Только в таком положении можно поглотить наибольшее количество электрической энергии.

Если панель поместить на поворотное устройство, которое будет осуществлять движение по направлению светила в автоматическом режиме, то можно накопить большее количество энергии для личного пользования.

Разновидности систем

Следует отметить, что небольшие помещения, такие как частные дома и квартиры снабдить необходимым запасом электроэнергии гораздо проще, нежели большие предприятия. Поэтому для частных случаев установку системы можно осуществлять своими руками, чего не скажешь о больших и мощных производствах, на которых площадь панелей может достигать километров.

Использование солнечных батарей сегодня является отличной альтернативой рационального вложения капиталов в прогрессивную технику, которая помогает сохранить не только бюджет, но и окружающий мир.

Подключение солнечных батарей нередко вызывает определенные вопросы, особенно когда требуется соединить несколько модулей. Кажется, что это очень сложный процесс, требующий специфических знаний. А на самом деле схема подключения очень проста, ее легко реализовать и собрать фотобатарею нужной мощности.

Существует три варианта включения батарей в общую цепь. Это последовательное, параллельное и смешанное (последовательно-параллельное) соединения.

В этом случае одноименные клеммы двух модулей соединяются между собой («плюс» с «плюсом», «минус» - с «минусом»). Далее от клемм одного из фотомодулей выводятся провода, которые и подключаются или к контроллеру заряда, или непосредственно к аккумулятору. Таким образом, можно объединять любое количество солнечных батарей, главное – соединять друг с другом только одноименные клеммы.

Эта схема подразумевает соединение «плюса» первого модуля с «минусом» второго, и вывод внешних проводов от «минуса» первого фотомодуля и «плюса» второго. Здесь также не имеет значения, сколько солнечных панелей будет объединено в одну батарею. Главное – не нарушить принцип. «Плюс» первого на «минус» второго, «плюс» второго на «минус» третьего, «плюс» третьего на «минус» четвертого и т.д. Провода от незадействованных клемм («минус» первого модуля и «плюс» последнего) выводятся на контроллер или аккумулятор.

Нередко используется и смешанная схема подключения. В этом случае для начала нужно собрать две группы параллельно соединенных модулей (объединив одноименные клеммы), а затем соединить их между собой последовательно так, как будто это единичные модули, а не группы. Количество групп (равно как и число батарей в них) может быть любым.

Зачем нужны разные соединения

Разные способы коммутации необходимы для получения нужных выходных параметров. К примеру, если требуется обеспечить мощность в 160 Вт и напряжение 12 В, а мощность одной солнечной батареи только 80 Вт при требуемых 12 В, то это означает, что нужно параллельно соединить 2 батареи. В итоге напряжение системы не изменится (12 В), а суммарная выходная мощность станет 160 Вт. Если же необходимо получить выходное напряжение не 12 В, а, скажем, 24 В, то в этом случае применяется последовательное соединение двух модулей. Смешанная схема позволяет регулировать оба параметра одновременно. Таким образом, используя разные типы коммутации можно собрать солнечную электростанцию с оптимально подходящими для работы характеристиками.

Подключение к энергосистеме дома

Что же касается интеграции собранного гелибатареи в энергосистему частного дома, то здесь есть несколько вариантов. Так, самой востребованной является схема с использованием контроллера заряда, батарейного инвертора и аккумуляторных батарей. Напряжение от гелиополя сначала направляется на заряд АКБ и лишь после этого передается на нагрузку.

Нагрузку, как правило, подразделяют на 2 категории: резервируемую (холодильники, газовые котлы, аварийное освещение и т.д.) и не резервируемую (обычное освещение, компьютер и пр.). Потребляемая мощность резервируемых приборов может быть любой, но длительность их автономной работы определяется емкостью АКБ.

Благодаря наличию особого батарейного инвертора становится возможной передача электричества на нагрузки в том случае, если напряжение на АКБ превышает заданное значение. При этом потребители могут запитываться от гелиоэнергии даже при наличии напряжения в центральной электросети. Таким образом, существенно уменьшается внешнее энергопотребление дома.

При отключении центральной сети инвертор запитает резервируемую нагрузку от АКБ. Если гелиополе в это время производит энергию, то инвертор использует и ее. Излишки солнечной энергии, не расходуемые на нагрузку, пойдут на зарядку АКБ. Данная схема отлично подходит для обеспечения автономного энергоснабжения, она работает и при отсутствии центрального напряжения питания. Но при этом не резервируемая нагрузка будет запитываться только от солнца (по остаточной технологии), приоритетными являются резервируемые потребители.

Если же планируется использовать гелиополе лишь для снижения энергопотребления из внешней сети, то можно воспользоваться более простой и дешевой схемой. Она гораздо выгоднее при редких и кратковременных отключениях электричества. Днем гелиополе снабжает энергией потребителей, если этого недостаточно, то электричество забирается из внешней сети. Но при отключении централизованного питания инвертор выключится и солнечная энергия не будет использоваться. Резервируемая нагрузка будет питаться от АКБ.

Продолжаем нашу тему, посвященную строительству домашней солнечной электростанции. С общей информацией о , о принципах расчета солнечных панелей, а также о для автономных систем электроснабжения вы можете ознакомиться, прочитав наши предыдущие статьи. Сегодня же мы расскажем об особенностях самостоятельного изготовления солнечных панелей, о последовательности подключения электрических преобразователей и о защитных устройствах, которые должны входить в комплект солнечной электростанции.

Изготовление фотоэлектрических модулей

Стандартный фотоэлектрический модуль (панель) состоит из трех основных элементов.

  1. Корпус панели.
  2. Рамка.
  3. Фотоэлектрические ячейки.

Самым простым по конструкции элементом солнечного модуля является его корпус. Как правило, его лицевая сторона представляет собой обыкновенный лист стекла, размеры которого соответствуют количеству солнечных ячеек.

Adoronkin Пользователь FORUMHOUSE

Стекло использовал обычное оконное – 3 мм (самое недорогое). Проводил тест: производительность модуля стекло ухудшает незначительно, так что не вижу особого смысла брать закалённое или просветлённое стекло.

Оконное стекло часто используется при изготовлении защитного корпуса для солнечных панелей. Если же вы сомневаетесь в прочности этого материала, то можно использовать стекло закаленное или обычное, но более толстое (5…6 мм). В этом случае можно не сомневаться, что фотоэлектрические элементы будут надежно защищены от проявлений разрушительной природной стихии (от града, например).

Тыльная сторона корпуса может быть изготовлена из влагостойкого материала, который будет защищать его от попадания пыли и влаги на солнечные элементы. Это может быть металлическая жесть, герметично прикрепленная к рамке с помощью заклепок и силикона или, опять же, обыкновенное стекло.

При этом наличие задней стенки на корпусе самодельной солнечной панели некоторые умельцы и вовсе не приветствуют.

Adoronkin

Тыльная сторона батареи открыта (для лучшего охлаждения), но покрыта акриловым лаком, смешанным с прозрачным герметиком.

Учитывая, что при нагреве панелей значительно падает их мощность, подобное решение выглядит оправданно. Ведь оно обеспечивает эффективное охлаждение полупроводниковых элементов и одновременно – качественную герметизацию солнечных ячеек. Все вместе гарантированно продлевает срок эксплуатации солнечных панелей.

Рамка

Рамки для самодельных солнечных панелей чаще всего изготавливают из стандартных алюминиевых уголков. Лучше использовать алюминий с покрытием – анодированный или крашенный. Если есть соблазн изготовить рамку из дерева или пластика, будьте готовы к тому, что через пару лет изделие может рассохнуться или вовсе развалиться под действием климатических факторов (исключение составляет оконный пластик).

BOB691774 Пользователь FORUMHOUSE

Покупаю там, где производят окна. Цена – 80 руб. за метр. Профиль полностью готов к работе, только запилить надо на 45° и под нагревом, углы склеить.

Рассмотрим самый простой вариант панели: панель с алюминиевой рамкой.

Детали алюминиевой рамки легко скрепляются между собой болтами или саморезами.

Впоследствии к алюминиевому уголку можно без особых усилий приклеить стеклянный корпус. Все, что для этого нужно – обычный силиконовый герметик.

Adoronkin

Я брал силиконовый герметик – универсальный. Достаточно 1-го тюбика. Герметик лучше брать прозрачный. Химическую безопасность герметика по отношению к фотоэлектрическим элементам подтвердила годовая эксплуатация батареи.

В итоге получится неглубокий ящик со стеклянным дном, к которому впоследствии будут приклеены фотоэлектрические элементы.

Определяя размер корпуса и рамки, следует учитывать необходимость в зазоре между соседними фотоэлектрическими ячейками, который равен – 2…5 мм.

Пайка солнечных элементов

Самым ответственным этапом сборки солнечных модулей является спаивание фотоэлектрических элементов. Солнечные ячейки изготовлены из очень хрупкого материала, поэтому и обращения они требуют соответствующего. Те люди, которые уже имели с ними дело, впредь при покупке солнечных элементов заказывают себе ячейки с некоторым запасом по количеству (10 – 15%). Например, для изготовления панели, рассчитанной на 36 элементов, они приобретают 39 – 42 ячейки.

Тонкие шинки для спаивания солнечных ячеек, более толстые шинки (с помощью которых соседние ряды панели объединяются между собой) и солнечные ячейки лучше приобретать у одного и того же продавца. Это экономит время на поиски подходящих элементов и дает определенные гарантии их совместимости.

Пайка элементов в случае их последовательного соединения производится по следующей схеме.

Отрицательный (лицевой) контакт солнечного элемента припаивается к положительному (тыльному) контакту следующей ячейки и т. д.

Так выглядит готовая панель.

Для работы понадобятся следующие инструменты и материалы:

  • Мощный паяльник 40-60 Вт (не менее).
  • Флюс (флюс-маркер) – обязательно должен быть нейтральным (в противном случае припаянные контакты быстро окислятся).
  • Шинки разной ширины.
  • Резиновые перчатки – чтобы не вымазывать солнечные элементы (особенно их лицевую часть).

Еще нам понадобится олово. Это на тот случай, если шинка будет плохо припаиваться к контактам. Ячейки, с которыми ведется работа, располагаются на твердой и ровной поверхности. Это может быть дощечка или стекло. Для того, чтобы ячейки не скользили по рабочей поверхности стола, их можно зафиксировать с помощью кусочков изоленты, проклеенных по периметру элемента. Клеить изоленту на саму ячейку (особенно на ее лицевую часть) не следует. Свободный конец шинки следует прикрепить к столу с помощью двухстороннего скотча.

Пайка элементов и сборка панелей производятся в следующем порядке: первым делом контактная канавка пластины по всей длине промазывается флюсом. Затем плоская шинка укладывается в канавку и припаивается к контакту пластины по всей ее ширине (на отрицательном полюсе элемента).

Или в трех точках (как правило – на положительном полюсе элемента).

Количество точек припаивания зависит от конструкции элемента.

Поочередно контакты припаиваются ко всем солнечным элементам. Дополнительный припой используется только в тех случаях, когда с первого раза шинку не удается надежно припаять к пластине.

В первую очередь контакты припаиваются к лицевой (отрицательной) стороне каждой ячейки, которая будет ложиться на стеклянный корпус панели.

Шинка необходимого размера подготавливается заранее. Ее длина должна соответствовать ширине 2-х соседних пластин.

Пластины с припаянными контактами выкладываются на стеклянный корпус панели лицевой стороной вниз. После этого их можно припаивать друг к другу согласно полярности («–» каждой ячейки припаивается к «+» соседней ячейки и так далее).

Для того чтобы элементы было удобнее располагать на стеклянном корпусе панели, его поверхность можно предварительно разметить.

Sliderrr Пользователь FORUMHOUSE

На стекле нанес черным фломастером точки расположения ячеек. Расположил ячейки и зафиксировал их головками, гайками и болтами.

Гайки, ключи и другие металлические предметы в данном случае использовались в качестве груза. Зафиксировать ячейки можно также с помощью прозрачного силикона, который наносится на стекло по углам каждого элемента.

Объединяя между собой соседние ряды фотоэлектрических элементов, следует использовать дополнительный припой. Это повысит надежность пайки в местах соединения проводников различной ширины.

Когда все ячейки спаяны между собой, а проводники выведены наружу сквозь алюминиевую рамку панели, можно приступать к заливке солнечных элементов.

Для этого швы между соседними элементами заливаются силиконовым герметиком.

Sliderrr

Залил силиконом зазоры между панелями (немного приплюснул и срезал сопло шприца, чтобы обеспечить эстетичность шва и хороший контакт силикона со стеклом). Когда подсохло, промазал по периметру каждую панельку ещё раз. После того, как высох герметик, два раза покрыл ячейки яхтовым лаком. В дальнейшем попробую лак изоляционный.

Пользователь Mirosh вместо лака использует для заливки ячеек белый силикон, который наносит на поверхность тонким слоем при помощи шпателя. Результат – вполне удовлетворителен.

Перед окончательной сборкой каждый элемент желательно протестировать на предмет генерируемой им мощности. Сделать это можно с помощью мультиметра. Если существенных различий между силой тока и напряжением, которые генерирует каждая отдельная ячейка, нет, то можно смело включать их в состав фотоэлектрического модуля.

Установка диодов Шоттки

В конструкции солнечных панелей зачастую используются элементы, о которых мы ранее не упоминали. Это шунтирующие диоды Шоттки.

К их установке прибегают по двум причинам.

Во-первых, шунтирующие диоды ставят для того, чтобы в темное время суток или в пасмурную погоду солнечные панели не разряжали аккумулятор, входящий в комплект солнечной электростанции.

Alex МАП Пользователь FORUMHOUSE

В случае прямого подключения солнечных батарей к аккумулятору ночью на панелях высаживается напряжение, и они греются. Поэтому в схему примитивного солнечного контроллера, разработанного ещё лет 10 назад, был введён диод Шоттки (защита от ночного разряда АКБ).

Если к солнечным панелям подключен современный контроллер, то особой необходимости в защите от ночного разряда нет. Исправный контроллер, без помощи дополнительных устройств, вовремя отключит СБ от аккумулятора.

Во-вторых, если солнечный модуль закрывается тенью от стоящего рядом здания (или другого массивного предмета), то мощность этого элемента снижается. Последствия снижения мощности таковы: по отношению к остальным панелям, подключенным к затененному элементу последовательно, затененный элемент из источника тока превращается в резистивную нагрузку. Сопротивление затененного модуля сильно возрастает, а его температура значительно увеличивается.

Значительное снижение мощности – это самое безобидное из того, к чему может привести частичное затенение последовательно соединенной солнечной батареи. Ведь в конечном итоге затененный модуль перегреется и выйдет из строя. Это явление получило название «эффект горячего пятна».

Для того чтобы избежать этого эффекта, параллельно каждому последовательно подключенному модулю (или последовательному ряду солнечных ячеек) устанавливается диод Шоттки. Диод позволяет пустить электричество в обход затененной панели. В этом случае генерируемое напряжение снизится, но большой просадки тока удастся избежать.

Alex МАП

Большой ток от остальных панелей цепи, которые освещены, не прервётся, а пойдёт в обход затенённых частей панелей через диоды. Итоговое напряжение станет чуть меньше, но контроллеру это не важно. Если бы в панелях не были встроены диоды, тогда при малейшем затенении хотя бы кусочка 1 панели вся цепочка полностью бы переставала давать ток.

Иными словами, потери мощности будут соизмеримы с площадью затенения.

Диоды можно устанавливать параллельно всему модулю, а можно параллельно его отдельным рядам.

Здесь изображена схема, при которой каждый ряд ячеек, установленных в одном модуле, имеет свой диод. На практике же модуль чаще всего разделяется на 2 равные части.

HouzeR Пользователь FORUMHOUSE

Обычно для четырехрядной панели выводится средняя точка, то есть ячейки шунтируются пополам. Диоды ставят в клеммной коробке.

В любом случае, все модули солнечной панели следует располагать так, чтобы свет попадал на них равномерно. Тогда не придется решать проблему шунтирования отдельных модулей или даже ячеек.

Клеммные коробки для удобства располагают на тыльной стороне солнечных панелей.

Если несколько последовательно соединенных групп панелей подключается к контроллеру параллельно, то в этом случае каждая последовательная цепочка включается в общую цепь через развязывающий диод. Это позволяет избежать потерь при рассогласовании отдельных последовательных цепочек и дополнительно защитить аккумулятор от разряда в ночное время (если, вдруг, контроллер выйдет из строя).

Диоды подбираются по двум основным параметрам: по максимальной силе тока, которая будет проходить в прямом направлении (прямой ток), и по обратному напряжению. Максимальное напряжение обратного тока (Uобр.макс.) не должно привести к пробою диода. При этом рабочие характеристики диода должны немного превышать номинал панели (примерно в 1,3 – 1,5 раза).

Но здесь есть одна хитрость.

Мax94 Пользователь FORUMHOUSE

Нормальных Шоттки на большие напряжения не бывает. Это просто столбы с падением по прямому току. Так что лучше брать обычные с Urev. Max ≈ 30...100В.

Установка панелей

Как правильно крепить панели и где их устанавливать? Ответы на эти вопросы зависят от конструкции СБ и от возможностей их владельца. Единственное, о чем должны позаботиться все без исключения – это о соблюдении угла наклона. Для каждого региона этот угол будет свой, а зависит он напрямую от широты местности.

В среднем зимой угол наклона должен быть на 10°…15° выше оптимального значения, летом – на такую же величину – ниже. можно посмотреть в разделе FORUMHOUSE.

Сечение проводников

В соответствии с постулатами электротехники слишком малое сечение проводника может привести к его перегреву и даже к возгоранию. Слишком большое – это неплохо, но приведет к необоснованно завышенному удорожанию автономной системы. Поэтому задача ее создателя – найти «золотую середину».

Начнем с того, что самые толстые проводники следует устанавливать в цепи, соединяющий аккумулятор с инвертором (кстати, чем короче будет этот участок, тем лучше). Именно здесь протекают токи большой силы.

Проводники, соединяющие панели с инвертором, а также соединяющие панели между собой, можно выбирать с малым сечением. На этих участках цепи может присутствовать сравнительно высокое напряжение, но всегда будет малая сила тока.

HeliosHouse Пользователь FORUMHOUSE

16 мм² не нужно и 10 мм² не нужно. 4 – более чем достаточно. "Толстый" провод понадобится только в контуре инвертора, сечение нужно подбирать в соответствии с мощностью тока.

«Толстый» и «тонкий» – понятия растяжимые, поэтому не будем уходить от стандартов.

Учитывая, что алюминиевые проводники в домашних системах электроснабжения на сегодняшний день использовать запрещено, табличные данные распространяются на медные токопроводящие жилы с поливинилхлоридной или резиновой изоляцией.

Также, выбирая проводники, следует обращать внимание на рекомендации производителей инверторов, контроллеров и других устройств, задействованных в системе.

Защитные автоматы

В цепи солнечной электростанции, как и в цепи любого другого мощного источника электроэнергии, необходимо ставить защиту от коротких замыканий. В первую очередь автоматы или плавкие вставки должны защищать силовые кабели, идущие от аккумуляторных батарей к инвертору.

Leo2 Пользователь FORUMHOUSE

Если замкнет что в инверторе, то так и до пожара недалеко. Одно из требований к аккумуляторным системам – наличие автомата DC или плавкой вставки как минимум на одном из проводов и как можно ближе к клеммам аккумулятора.

Помимо этого, защита ставится в цепь аккумулятора и контроллера. Не стоит также пренебрегать защитой отдельных групп потребителей (потребителей постоянного тока, бытовых приборов и т. д.). Но это уже правило построения любой системы электроснабжения.

Автомат, устанавливаемый между аккумулятором и контроллером, должен иметь большой запас по току осечки. Иными словами, защита не должна сработать случайно (при увеличении нагрузки). Причина: если на ввод контроллера подается напряжение (от СБ), то в этот момент от него нельзя отключать аккумулятор. Это может привести к выходу устройства из строя.

Порядок подключения

Сборка электрической цепи происходит в следующем порядке:

  1. Подключение контроллера к аккумулятору.
  2. Подключение к контроллеру солнечных панелей.
  3. Подключение к контроллеру группы потребителей постоянного тока.
  4. Подключение инвертора к аккумуляторным батареям.
  5. Подключение нагрузки к выходу инвертора.

Подобная последовательность подключения поможет уберечь контроллер и инвертор от повреждений.

Вы можете узнать от участников нашего портала, посетив соответствующую тему. Тем, кого всерьез заинтересовала , мы рекомендуем посетить еще один полезный раздел, посвященный обмену опытом в этой области. В заключение предлагаем вашему вниманию видеосюжет, который расскажет о том, как правильно монтируются и подключаются солнечные батареи.

Подключение солнечных батарей не должно вызывать сложностей. Ничего экстраординарного в этой процедуре нет. Но поскольку то и дело я продолжаю получать вопросы по схеме подключения солнечных батарей, я решил написать эту статью и привести иллюстрации, чтобы раз и навсегда снять эти вопросы.

Из физики школьного периода нам известны понятия последовательного, параллельного и последовательно-параллельного (или смешанного) подключения. Ничего в солнечных батареях нет такого, что бы выводило их подключение за рамки понятий школьной физики. Я прекрасно понимаю, что люди задают эти вопросы не потому, что не знают что такое последовательное или параллельное соединение. Знают. Их “пугает” новый предмет рассмотрения - солнечные батареи.

Так вот, скажу ещё раз: ничего такого в солнечных батареях нет. Это всего лишь такой же составной из солнечных модулей прибор, как и все другие, а значит и схемы соединений группы модулей в батареи осуществляются по тем же принципам. После сказанного мною вы воскликните: “Вот в чем дело! А я-то думал!”, и продолжать статью необходимости уже, как бы, и нет.

Тем не менее я продолжу, чтобы уничтожить всякие сомнения, плюс попутно вы получите полезную практическую информацию. Я с бОльшей симпатией отношусь к тем, кто, не боясь показаться глупым, задают вопросы. Это помогает им двигаться вперед, а не казаться умными и стоять на месте.

Три варианта схем подключения

Как мы уже говорили выше, существует три варианта соединений солнечных модулей в солнечные батареи. Давайте посмотрим на первый из них - вариант параллельного соединения (рис. 1):

Рисунок 1.

В этом варианте мы соединяем клемму (+) одного модуля с клеммой (+) второго модуля, так же соединяем и клеммы (-) обоих модулей. От клеммы (+) и клеммы (-) любого из модулей мы выводим концы (жилы) для подключения получившейся группы (батареи) из двух модулей для подключения к, например, контроллеру заряда, если он предусмотрен в нашей солнечной электростанции или к аккумуляторным батареям, в случае, если контроллер заряда батарей не предусмотрен.

Если есть необходимость соединить три модуля в единую батарею, мы поступаем точно также. Соединяем все три клеммы (+), затем - все три клеммы (-) и также выводим концы от клемм (+) и от клемм (-). Не важно сколько батарей приходится соединять, все повторяется точно также.

Вариант два. Последовательное соединение (рис. 2):

Рисунок 2.

В этом случае клемму (+) первого модуля соединяем с клеммой (-) второго модуля. От клеммы (-) первого модуля и от клеммы (+) второго модуля выводим концы для подключения к контроллеру заряда или аккумуляторным батареям. Так же не важно какое количество модулей будете соединять, принцип тот же. Клемма (+) первого на клемму (-) второго, клемма (+) второго на клемму (-) третьего, клемма (+) третьего на клемму (-) четвертого и т. д., ровно столько, сколько модулей вам необходимо соединить.

Ну и, третий вариант. Последовательно-параллельный (рис. 3):

Рисунок 3.

Действительно, иногда приходится прибегать и к этому варианту соединения. Для простоты понимания - вы собираете сначала две группы модулей параллельно, на рисунке левый верхний и левый нижний это первая группа. Правый верхний и правый нижний - вторая группа. После этого соединяете эти две группы последовательно так, как если бы это были не группы, а два модуля. В группе может быть не два модуля, а три и четыре, а таких групп может быть тоже и три и четыре и больше.

На практике это выглядит следующим образом. Так выглядит солнечный модуль с лицевой стороны, т. е. со стороны рабочей его поверхности:

Это его тыльная сторона с расположенной на ней клеммной коробкой. Как раз в ней и следует подключать к клеммам жилы кабеля:

Это его тыльная сторона с расположенной на ней клеммной коробкой. Как раз в ней и следует подключать к клеммам жилы кабеля:

Это сама клеммная коробка с подключенными жилами кабеля. Обратите внимание на то, чтобы жилы кабеля были либо опрессованы наконечником-кольцо, либо, как в моем случае облужены припоем:

А это опрессованные жилы кабеля, предназначенные для подключения в клеммных зажимах уже под крышей дома:

Третья жила у меня резервная. Пока она не задействована, поэтому и не опрессована.

Какая необходимость соединять модули по разным схемам

Смотрите. Мы знаем, что нам необходима мощность солнечной электростанции 160 Вт, а приборы, контроллер заряда, инвертор - на 12 В входного напряжения. Мы приобретаем два 12-ти вольтовых солнечных модуля, каждый по 80 Вт и соединяем их как? Правильно. Параллельно. Тем самым обеспечиваем напряжение схемы 12 В и суммарная мощность модулей будет 160 Вт.

Т. е. мы воспользовались первой параллельной схемой соединения. Если бы нам понадобилась мощность 240 Вт и напряжение 12 В, мы опять бы прибегли к первой схеме, только модулей уже было бы три.

Бывают случаи, когда есть необходимость собрать схему не на 12 В, а на 24 В, 36 В и выше. Для чего это нужно? Дело в том, что чем больше модулей мы устанавливаем, тем больше суммарная мощность солнечных модулей. Это в свою очередь приводит к повышению токов в цепях. Мы же помним закон Ома.

Мощность деленая на напряжение равняется силе тока. Мощность мы увеличиваем, напряжение остается прежним, значит ток увеличивается. Увеличение тока вынуждает нас увеличивать сечение провода. Так вот представьте, количество модулей увеличивается, значит увеличивается площадь покрываемая ими, следовательно увеличивается и длина проводов.

Не забывайте про рекомендацию, которою я давал о коммутации солнечных модулей под крышей дома, в статье . А мы еще и сечение этих проводов должны увеличить. Т. е. следует неизбежное удорожание проводов. Чтобы избежать лишних затрат и перестраивают систему на более высокое напряжение.

Этого можно добиться соединив модули последовательно. Предположим, на рисунке 2 изображены два 12-ти вольтовые модуля. Благодаря последовательной схеме соединения, мы добились, что их можно включить в 24-х вольтовую схему. Что касается смешанного соединения, оно необходимо, когда обе задачи приходится решать одновременно.

Заключение

При использовании разных вариантов схем, следует иметь ввиду некоторые важные вещи влияющие на результирующие электрические характеристики, получающиеся при коммутации модулей в солнечные батареи.

Это важно!

Так, к примеру, в прошлой статье мы говорили, что при последовательном соединении напряжение соединяемых модулей суммируется. Если вы соединяете два 12-ти вольтовые модуля, то результирующим напряжением будет 24 Вольта. Я не беру сейчас во внимание такие понятия, как напряжение холостого хода, ток короткого замыкания и т. д., чтобы не морочить вам голову теорией.

Но мы не говорили о том, что будет с токами, а ведь это важно для вас при выборе, например, контроллера заряда солнечных батарей. На какой входной ток контроллер вам выбирать.

Так вот, необходимо знать: в последовательной схеме результирующий ток будет равен току модуля с наименьшим его значением, т. е. наименьшему току из всех соединяемых последовательно модулей. Именно поэтому рекомендуется последовательно соединять модули с одинаковыми характеристиками, чтобы из-за одного “слабого” модуля не терять мощность, которую могли бы обеспечить модули, будь они все одинаковы.

При параллельном соединении, мы говорили, результирующее напряжение будет равно напряжению одного модуля, независимо от того, сколько вы их соединяете параллельно. А вот результирующий ток будет собой представлять сумму токов всех модулей соединенных параллельно.

Чтобы у вас не вызывало трудностей смешанное (или последовательно-параллельное соединение), смело, образно конечно, дробите всю группу на более мелкие и выяснив ток и напряжение по отдельности каждой мелкой группы, рассматривайте эти мелкие группы как отдельный модуль.

Как видите, ничего сверхзаумного в схеме подключения солнечных батарей нет. Все просто. К стати, этот же принцип соединения касается и аккумуляторных батарей, но это уже отдельная песня. Там есть свои нюансы.

Если вам помогла эта статья нажмите на одну из кнопок социальных сетей, чтобы статья могла помочь и другим.

Взвесив все положительные и отрицательные моменты использования альтернативных источников энергии, и выбрав использование последних в качестве основного поставщика электрического тока к потребляющим электроприборам, можно приступать к установке модулей на их будущее место работы: то есть балкон или крышу своего дома. Казалось бы, что может быть проще, но возникает вполне логичный вопрос - как соединить так, чтобы максимально и, по возможности, без потерь использовать возможности .

Значение школьного курса физики

Вспоминая обязательную школьную программу по физике, можно отметить, что возможны три варианта соединения :

  • параллельное,
  • последовательное,
  • смешанное, или как его еще называют последовательно-параллельное.

Название каждого соединения возвращает в прошлое на уроки физики. Даже если не получается вспомнить точное определение каждому из указанных терминов, почти все смогут нарисовать или хотя бы своими словами объяснить основные отличия той или иной схемы подключения.

Схема соединения солнечных источников энергии подчиняется все тем же законам школьной физики. Казалось бы, солнечные батареи - высокотехнологичный агрегат, еще недавно бывший основой для написания фантастических произведений, должен подключаться также непонятно, как и сам процесс фотосинтеза, происходящий в панелях, но это далеко не так.

Параллельное соединение солнечных панелей обеспечивает такое подключение моделей, при котором все элементы имеют два общих узла схождения или разветвления проводников. То есть, в каком бы месте и последовательности не происходило соединение выводов солнечных батарей, все минусовые и плюсовые клеммы сойдутся в двух основных точках: соответственно плюс и минус.

Последовательное соединение солнечных модулей дает возможность соединить элементы таким образом, чтобы для протекания электрического тока остался единственно возможный путь, по которому и будет происходить передача энергоносителя от источника к потребителю. Схема выглядит как цепочка нескольких солнечных батарей, соединенных через один проводник таким образом, чтобы выходной конец одной батареи соединялся с входной клеммой другой, и так от первой до последней панели.

Смешанная схема соединения позволяет соединять солнечные батареи одновременно двумя способами. При таком совмещении вариантов некоторые панели формируются в отдельные блоки, имеющие параллельное соединение, а затем эти блоки соединяются между собой последовательно или наоборот.

Отличия в работе модулей соединенных разными схемами

Каждая схема подключения солнечных батарей обеспечивает их бесперебойную работу. Но есть интересные особенности, которые помогут более разумно распорядиться не только самой солнечной электроэнергией, но и сэкономить на отдельных составных элементах всей цепочки автономного электропитания.

На практике это выглядит следующим образом. К примеру, необходимая - 360 Вт. Для набора этой мощности, помимо самих солнечных панелей, можно приобрести пару инверторов напряжением 12 В и мощностью 180 Вт. Соединив эти приборы с помощью параллельного соединения можно выйти на заданную мощность.

Конечно, 360 Вт крайне не достаточно для обеспечения жилой площади достаточным количеством электричества. Поэтому применяются несколько инверторов необходимой мощности.

Но следует помнить, что повышение мощности приведет к увеличению нагрузки на проводящие элементы.

Все это пагубно сказывается на пожарной безопасности, так как неверно рассчитанное сечение провода может привести к плачевным последствиям. Именно поэтому необходимо перед установкой нужны теоретические расчеты о количестве инверторов и их мощности.

Что касается последовательно соединенных солнечных батарей, то тут экономическая составляющая заключается в том, что один инвертор на 24 В, стоит дороже чем два по 12 В. Но установив последние инверторы параллельно, невозможно добиться схемы с напряжением 24 В или 36 В. Зато при последовательной конфигурации можно использовать несколько относительно дешёвых модулей по 12 В.

По такому же принципу выполняется соединение всех элементов солнечных батарей, начиная от самих панелей и заканчивая накопителями, то есть аккумуляторами.

В настоящее время существует множество поставщиков составляющих электросетей для сборки солнечных модулей. Достаточно широкий спектр поможет найти необходимые элементы, которые могут работать по любой из описанных схем.