Системы открытого испарения компьютера. Компьютерные системы охлаждения. Недостатки открытой системы отопления

  • 07.03.2020

Любой компьютер не обходится без установки в него системы охлаждения. В этой статье мы поговорим о них, ведь этих систем существует довольно много.


Системы воздушного охлаждения

Самый распространенная на данный момент система охлаждения. Принцип работы этой системы заключается в том, что с помощью тепловых трубок, тепло передается от элемента, который требуется охладить, до радиатора. После, радиатор излучает полученное тепло в окружающее его пространство, вызывая циркуляцию воздуха.Для увеличения излучаемого тепла, радиатор придают в черный цвет. После шлифовки, поверхности нагревающегося элемента и радиатора имеют небольшие шероховатости, которые при стыковке образуют воздушную прослойку, имеющую низкую теплопроводность. Для ее увеличения используют теплопроводные пасты.

Системы жидкостного охлаждения


Принцип работы этой системы в передаче тепла от элемента компьютера к радиатору с жидкостью. Чаще всего в качестве этой жидкости используют дистиллированную воду с антигальваническими добавками. Также используют масло и антифриз, но гораздо реже. Системы жидкостного охлаждения состоят из помпы, которая перекачивает жидкость, теплосъемника, который находится между радиатором и рабочим элементом, он «отбирает» тепло у радиатора и «отдает» его жидкости. Также в конструкции предусмотрен радиатор, охлаждающий саму жидкость. Эта жидкость находится в резервуаре, для предотвращения последствий теплового расширения жидкости. В некоторых моделях также устанавливается датчик потока жидкости.

Фреоновые установки

Данная система принадлежит к «семейству» холодильных установок. Она устанавливается прямо на охлаждаемый элемент и позволяет достичь отрицательных температур при непрерывной работе, что очень полезно при экстремальной работе процессора. Однако, эта система имеет массу недостатков: необходимость изоляции охлаждающей части установки, необходимость в системе по борьбе с конденсатом, повышенное энергопотребление и высокая цена.

Ватерчиллеры


Это некий гибрид фреоновой установки и системы жидкостного охлаждения. В этом тандеме антифриз в системе жидкостного охлаждения по трубкам проходит через фреоновую установку, тем самым охлаждаясь до отрицательных температур. Эта система очень полезна для охлаждения нескольких нагревающихся компонентов, так как в обычной фреоновой установке охлаждение нескольких элементов очень затруднено. К недостаткам можно отнести сложность, высокую цену и необходимость теплоизоляции всей системы охлаждения.


Системы охлаждения с элементами Пелетье




Элемент Пелетье

Для справки: принцип работы элемента Пелетье в возникновении разности температур при протекании через него электрического тока. Элемент Пелетье устанавливают поверх нагревающегося элемента, а другую его сторону охлаждают с помощью других систем охлаждения. Однако, как и во фреоновых установках необходима система по борьбе с конденсатом, так как при охлаждении достигаются отрицательные температуры. Но по сравнению с фреоновыми установками, элементы Пелетье намного эргономичнее и тише, но менее эффективнее.

Системы каскадного охлаждения


Эти системы включают в себя две или более последовательно установленных фреоновых установок. Предназначаются для получения более низких температур, нежели в однокаскадных системах, в которых приходится использовать мощные компрессоры для увеличения давления, так как требуется фреон с температурой кипения, превышающую ее же в обычных фреоновых системах. Другим решение является установка еще одной «фреонки» над радиатором, с целью охлаждения, за счет чего значительно сокращается необходимое давление и появляется возможность использования более слабых компрессоров. Такие системы очень сложно изготовить и наладить.

Системы открытого испарения

В системе открытого испарения, в качестве активного материала используется сухой лед, жидкий азот или гелий. Они испаряются в особой емкости, называемой стаканом, установленной на нагревающемся элементе. Данные системы используются в основном компьютерными экспериментаторами, использующие свои компьютеры в режиме оверклокинга, то есть в режиме экстремального разгона аппаратуры. Из недостатков существует ограниченное время службы-емкость регулярно необходимо пополнять рабочим материалом.

Система охлаждения компьютера - набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Тепло в конечном итоге может утилизироваться:

  1. В атмосферу (радиаторные системы охлаждения):
    1. Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)
    2. Активное охлаждение (отвод тепла от радиатора осуществляется излучением (радиацией) тепла и принудительной конвекцией (обдув вентиляторами))
  2. Вместе с теплоносителем (системы жидкостного охлаждения)
  3. За счет фазового перехода теплоносителя (системы открытого испарения)

По способу отвода тепла от нагревающихся элементов системы охлаждения делятся на:

  1. Системы воздушного (аэрогенного) охлаждения
  2. Системы жидкостного охлаждения
  3. Фреоновая установка
  4. Системы открытого испарения

Также существуют комбинированные системы охлаждения, сочетающие элементы систем различных типов:

  1. Ватерчиллер
  2. Системы с использованием элементов Пельтье

Системы воздушного охлаждения

Пассивная

Если плотность теплового потока (тепловой поток, проходящий через единицу поверхности) не превышает 0,5 мВт/см², перегрев поверхности устройства относительно окружающей среды не превысит 0,5 °C (обычно - макс. до 50-60 °C), такая аппаратура считается нетеплонагруженной и не требует специальных схем охлаждения. На компоненты с превышением этого параметра, но с относительно низким тепловыделением (чипсеты , транзисторы , модули оперативной памяти), как правило, устанавливаются только пассивные радиаторы . Также, при не очень большой мощности чипа или при ограниченной вычислительной ёмкости задач, достаточно бывает только радиатора, без вентилятора.

Оригинальный текст (англ.)

Intel’s reference boundary conditions for ICH10 in an ATX system are 60 °C inlet ambient temperature and 0.25 m/s of airflow. See Figure 5 below for more details on the ATX boundary conditions.

In the ATX boundary conditions listed above, the ICH10 will not require a heatsink when power dissipation is at or below 4.45 W. This value is referred to as the Package Thermal Capability, or PTC. Note that the power level at which a heatsink is required will also change depending on system local operating ambient conditions and system configuration.

Intel® I/O Controller Hub 10 (ICH10) Family Thermal and Mechanical Design Guidelines. June 2008. Document Number: 319975-001

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких, как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью - радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока.

Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки - около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью. Для увеличения теплопроводности промежуток заполняют теплопроводными пастами .

Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных (и довольно больших) радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера .

Активная

Для увеличения проходящего воздушного потока дополнительно применяют вентиляторы (совокупность его и радиатора именуют кулером). На центральный и графический процессоры устанавливаются преимущественно кулеры.

Также, на некоторые компьютерные компоненты, в частности, жёсткие диски , установить радиатор затруднительно, поэтому они принудительно охлаждаются за счёт обдува вентилятором.

Системы жидкостного охлаждения

Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода , часто с добавками, имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз , жидкий металл , или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

  • Помпы - насоса для циркуляции рабочей жидкости;
  • Теплосъёмника (ватерблока , водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости;
  • Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным;
  • Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости;
  • Шлангов или труб;
  • (опционально) Датчика потока жидкости.

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка , испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

  • Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения, работающих при температурах ниже температуры окружающей среды);
  • Трудности охлаждения нескольких компонентов;
  • Повышенное электропотребление;
  • Сложность и дороговизна.

Ватерчиллеры

Системы, совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий , испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга »). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры, чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако они являются и наиболее сложными в изготовлении и наладке.

Системы с элементами Пельтье

Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой активной системы охлаждения.

См. также

  • Разгон компьютеров (Оверклокинг)
  • Дросселирование тактов (троттлинг)

Напишите отзыв о статье "Система охлаждения компьютера"

Примечания

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М .: «Вильямс» , 2007. - С. 1299-1328 . - ISBN 0-7897-3404-4 .

Ссылки

Отрывок, характеризующий Система охлаждения компьютера

Пьер, не заезжая домой, взял извозчика и поехал к главнокомандующему.
Граф Растопчин только в это утро приехал в город с своей загородной дачи в Сокольниках. Прихожая и приемная в доме графа были полны чиновников, явившихся по требованию его или за приказаниями. Васильчиков и Платов уже виделись с графом и объяснили ему, что защищать Москву невозможно и что она будет сдана. Известия эти хотя и скрывались от жителей, но чиновники, начальники различных управлений знали, что Москва будет в руках неприятеля, так же, как и знал это граф Растопчин; и все они, чтобы сложить с себя ответственность, пришли к главнокомандующему с вопросами, как им поступать с вверенными им частями.
В то время как Пьер входил в приемную, курьер, приезжавший из армии, выходил от графа.
Курьер безнадежно махнул рукой на вопросы, с которыми обратились к нему, и прошел через залу.
Дожидаясь в приемной, Пьер усталыми глазами оглядывал различных, старых и молодых, военных и статских, важных и неважных чиновников, бывших в комнате. Все казались недовольными и беспокойными. Пьер подошел к одной группе чиновников, в которой один был его знакомый. Поздоровавшись с Пьером, они продолжали свой разговор.
– Как выслать да опять вернуть, беды не будет; а в таком положении ни за что нельзя отвечать.
– Да ведь вот, он пишет, – говорил другой, указывая на печатную бумагу, которую он держал в руке.
– Это другое дело. Для народа это нужно, – сказал первый.
– Что это? – спросил Пьер.
– А вот новая афиша.
Пьер взял ее в руки и стал читать:
«Светлейший князь, чтобы скорей соединиться с войсками, которые идут к нему, перешел Можайск и стал на крепком месте, где неприятель не вдруг на него пойдет. К нему отправлено отсюда сорок восемь пушек с снарядами, и светлейший говорит, что Москву до последней капли крови защищать будет и готов хоть в улицах драться. Вы, братцы, не смотрите на то, что присутственные места закрыли: дела прибрать надобно, а мы своим судом с злодеем разберемся! Когда до чего дойдет, мне надобно молодцов и городских и деревенских. Я клич кликну дня за два, а теперь не надо, я и молчу. Хорошо с топором, недурно с рогатиной, а всего лучше вилы тройчатки: француз не тяжеле снопа ржаного. Завтра, после обеда, я поднимаю Иверскую в Екатерининскую гошпиталь, к раненым. Там воду освятим: они скорее выздоровеют; и я теперь здоров: у меня болел глаз, а теперь смотрю в оба».
– А мне говорили военные люди, – сказал Пьер, – что в городе никак нельзя сражаться и что позиция…
– Ну да, про то то мы и говорим, – сказал первый чиновник.
– А что это значит: у меня болел глаз, а теперь смотрю в оба? – сказал Пьер.
– У графа был ячмень, – сказал адъютант, улыбаясь, – и он очень беспокоился, когда я ему сказал, что приходил народ спрашивать, что с ним. А что, граф, – сказал вдруг адъютант, с улыбкой обращаясь к Пьеру, – мы слышали, что у вас семейные тревоги? Что будто графиня, ваша супруга…
– Я ничего не слыхал, – равнодушно сказал Пьер. – А что вы слышали?
– Нет, знаете, ведь часто выдумывают. Я говорю, что слышал.
– Что же вы слышали?
– Да говорят, – опять с той же улыбкой сказал адъютант, – что графиня, ваша жена, собирается за границу. Вероятно, вздор…
– Может быть, – сказал Пьер, рассеянно оглядываясь вокруг себя. – А это кто? – спросил он, указывая на невысокого старого человека в чистой синей чуйке, с белою как снег большою бородой, такими же бровями и румяным лицом.
– Это? Это купец один, то есть он трактирщик, Верещагин. Вы слышали, может быть, эту историю о прокламации?
– Ах, так это Верещагин! – сказал Пьер, вглядываясь в твердое и спокойное лицо старого купца и отыскивая в нем выражение изменничества.
– Это не он самый. Это отец того, который написал прокламацию, – сказал адъютант. – Тот молодой, сидит в яме, и ему, кажется, плохо будет.
Один старичок, в звезде, и другой – чиновник немец, с крестом на шее, подошли к разговаривающим.
– Видите ли, – рассказывал адъютант, – это запутанная история. Явилась тогда, месяца два тому назад, эта прокламация. Графу донесли. Он приказал расследовать. Вот Гаврило Иваныч разыскивал, прокламация эта побывала ровно в шестидесяти трех руках. Приедет к одному: вы от кого имеете? – От того то. Он едет к тому: вы от кого? и т. д. добрались до Верещагина… недоученный купчик, знаете, купчик голубчик, – улыбаясь, сказал адъютант. – Спрашивают у него: ты от кого имеешь? И главное, что мы знаем, от кого он имеет. Ему больше не от кого иметь, как от почт директора. Но уж, видно, там между ними стачка была. Говорит: ни от кого, я сам сочинил. И грозили и просили, стал на том: сам сочинил. Так и доложили графу. Граф велел призвать его. «От кого у тебя прокламация?» – «Сам сочинил». Ну, вы знаете графа! – с гордой и веселой улыбкой сказал адъютант. – Он ужасно вспылил, да и подумайте: этакая наглость, ложь и упорство!..
– А! Графу нужно было, чтобы он указал на Ключарева, понимаю! – сказал Пьер.
– Совсем не нужно», – испуганно сказал адъютант. – За Ключаревым и без этого были грешки, за что он и сослан. Но дело в том, что граф очень был возмущен. «Как же ты мог сочинить? – говорит граф. Взял со стола эту „Гамбургскую газету“. – Вот она. Ты не сочинил, а перевел, и перевел то скверно, потому что ты и по французски, дурак, не знаешь». Что же вы думаете? «Нет, говорит, я никаких газет не читал, я сочинил». – «А коли так, то ты изменник, и я тебя предам суду, и тебя повесят. Говори, от кого получил?» – «Я никаких газет не видал, а сочинил». Так и осталось. Граф и отца призывал: стоит на своем. И отдали под суд, и приговорили, кажется, к каторжной работе. Теперь отец пришел просить за него. Но дрянной мальчишка! Знаете, эдакой купеческий сынишка, франтик, соблазнитель, слушал где то лекции и уж думает, что ему черт не брат. Ведь это какой молодчик! У отца его трактир тут у Каменного моста, так в трактире, знаете, большой образ бога вседержителя и представлен в одной руке скипетр, в другой держава; так он взял этот образ домой на несколько дней и что же сделал! Нашел мерзавца живописца…

В середине этого нового рассказа Пьера позвали к главнокомандующему.
Пьер вошел в кабинет графа Растопчина. Растопчин, сморщившись, потирал лоб и глаза рукой, в то время как вошел Пьер. Невысокий человек говорил что то и, как только вошел Пьер, замолчал и вышел.
– А! здравствуйте, воин великий, – сказал Растопчин, как только вышел этот человек. – Слышали про ваши prouesses [достославные подвиги]! Но не в том дело. Mon cher, entre nous, [Между нами, мой милый,] вы масон? – сказал граф Растопчин строгим тоном, как будто было что то дурное в этом, но что он намерен был простить. Пьер молчал. – Mon cher, je suis bien informe, [Мне, любезнейший, все хорошо известно,] но я знаю, что есть масоны и масоны, и надеюсь, что вы не принадлежите к тем, которые под видом спасенья рода человеческого хотят погубить Россию.
– Да, я масон, – отвечал Пьер.
– Ну вот видите ли, мой милый. Вам, я думаю, не безызвестно, что господа Сперанский и Магницкий отправлены куда следует; то же сделано с господином Ключаревым, то же и с другими, которые под видом сооружения храма Соломона старались разрушить храм своего отечества. Вы можете понимать, что на это есть причины и что я не мог бы сослать здешнего почт директора, ежели бы он не был вредный человек. Теперь мне известно, что вы послали ему свой. экипаж для подъема из города и даже что вы приняли от него бумаги для хранения. Я вас люблю и не желаю вам зла, и как вы в два раза моложе меня, то я, как отец, советую вам прекратить всякое сношение с такого рода людьми и самому уезжать отсюда как можно скорее.
– Но в чем же, граф, вина Ключарева? – спросил Пьер.
– Это мое дело знать и не ваше меня спрашивать, – вскрикнул Растопчин.
– Ежели его обвиняют в том, что он распространял прокламации Наполеона, то ведь это не доказано, – сказал Пьер (не глядя на Растопчина), – и Верещагина…
– Nous y voila, [Так и есть,] – вдруг нахмурившись, перебивая Пьера, еще громче прежнего вскрикнул Растопчин. – Верещагин изменник и предатель, который получит заслуженную казнь, – сказал Растопчин с тем жаром злобы, с которым говорят люди при воспоминании об оскорблении. – Но я не призвал вас для того, чтобы обсуждать мои дела, а для того, чтобы дать вам совет или приказание, ежели вы этого хотите. Прошу вас прекратить сношения с такими господами, как Ключарев, и ехать отсюда. А я дурь выбью, в ком бы она ни была. – И, вероятно, спохватившись, что он как будто кричал на Безухова, который еще ни в чем не был виноват, он прибавил, дружески взяв за руку Пьера: – Nous sommes a la veille d"un desastre publique, et je n"ai pas le temps de dire des gentillesses a tous ceux qui ont affaire a moi. Голова иногда кругом идет! Eh! bien, mon cher, qu"est ce que vous faites, vous personnellement? [Мы накануне общего бедствия, и мне некогда быть любезным со всеми, с кем у меня есть дело. Итак, любезнейший, что вы предпринимаете, вы лично?]
– Mais rien, [Да ничего,] – отвечал Пьер, все не поднимая глаз и не изменяя выражения задумчивого лица.

Значительный рост производительности ПК повлек за собой необходимость совершенствовать и системы охлаждения. Если раньше об охлаждении системного блока знали только как о наборе кулеров и радиаторов, то сегодня на рынке можно встретить фрионовые и комбинированные системы с элементами Пельтье. Правильное охлаждение - залог стабильной работы Вашего компьютера , особенно в жаркое время года, когда обычный набор кулеров давно не справляется.

Все разработки в области СВО в последнее время относились к совершенствованию самого хладагента и ускорению процесса охлаждения за счет оптимизации системы движения жидкости. Причем, диапазон цен на такие системы весьма растянут : можно найти бюджетный вариант с небольшой охладительной цепочкой, где в качестве хладагента выступает дистиллированная вода, а можно натолкнуться и на сложные многоуровневые СВО, с дорогими брендовыми радиаторами и вставками из углеродного волокна. Выбор подходящего варианта будет зависеть от условий эксплуатации Вашего ПК и от финансовых возможностей, но сама по себе такая система весьма эффективна и стоит потраченных на ее установку средств.

Превосходство СВО над остальными системами заключается в высоком уровне теплопроводности рабочей жидкости в отличии от аэрогенных охладителей и гораздо более длительной эксплуатацией по сравнению с системами открытого испарения. Также существует множество видеоуроков и инструкций, как сконструировать надежную водяную систему своими руками. Зачастую СВО сделанные самостоятельно ничем не хуже готовых решений от производителей компьютерных комплектующих.

Принцип работы водяного охлаждения

Сам процесс охлаждения представляет собой термодинамическую систему с участием проводящей тепло жидкости и нагревающихся элементов. Отвод тепла от процессора, чипсета, видеокарты, жесткого диска и пр. происходит за счет передачи тепла жидкости через герметичный теплообменник, именуемый ватерблоком. В сложных системах все ватерблоки подсоединены к рассеивающему радиатору, поступая на который вода охлаждается, передавая ему тепло. В воздушных системах охлаждения излишки тепла переносит воздух, теплопроводность которого намного ниже воды, а рассеивание тепла происходит все тем-же способом – через радиатор. Система теплообменников может быть как последовательной, так и параллельной: оба варианта достаточно эффективны. Также возможно смешанное подключение, если в нем есть необходимость ввиду конструкции ПК.

Чаще всего в типовых СВО используют дистиллированную воду, иногда с примесями красителей или люминесцирующих компонент. Вода проходит свой цикл в системе за счет давления, создаваемого помпой. За время прохождения она успевает нагреться (забрать тепло) и остыть, вернувшись в резервуар для повторного цикла.

Основные элементы СВО:

  • теплоообменник (ватерблок) – не менее 1
  • радиатор
  • водяная помпа
  • фитинги
  • шланги
  • дистиллированная вода
  • датчики температуры

В более продвинутых системах используются также специальные контроллеры для помпы для управления потоком, температурой и расходом воды. Помимо управляющего звена, в СВО также применяют датчики температуры, которые опрашивает контроллер, краны для слива жидкости, фильтры и отсек для воды.

Итак, ватерблок или теплообменник – это, по сути, основное звено в охлаждении элементов ПК. Он состоит из металлического блока (чаще всего медного), который в свою очередь имеет различную конструкцию, начиная с мультиканальной и заканчивая простым плоским дном. От вариаций структуры ватерблока зависит эффективность охлаждения – чем больше площадь касания и теплопроводность металла блока и элемента ПК – тем быстрее нагревающийся элемент, например, процессор, передаст тепловую энергию теплообменнику, а он в свою очередь воде. Обычно ватерблоки ставятся на наиболее важные, сильно греющиеся элементы системного блока: процессор, северный мост, видеокарта и пр.

Вода – основной проводник в СВО. Важно использовать только очищенную от примесей воду: дистиллированную либо деионизированную. Это обеспечит долгий срок службы системы и в разы снизит вероятность загнивания и цветения воды. Также, дистиллированная вода хуже проводит электрический ток, что тоже важно при применении жидкости в устройстве, работающем от электросети.

В качестве движущей силы в СВО выступает помпа – это мини-насос, перекачивающий воду из резервуара в ватерблоки и обратно по циклу. Классифицируются помпы только по виду питания: от 220 либо от 12 В. Сегодня существует огромный выбор таких устройств, ориентированных на любую СВО, поэтому собрать систему самостоятельно не составит особого труда.

Естественно, чтобы создать замкнутую систему, понадобятся специальные трубки, соединяющие помпу, ватерблоки и остальные компоненты СВО. Обычно трубки сделаны из термопластичных полимеров. Они присоединяются к системе с помощью фитингов . Выбор подходящего фитинга важен для герметичности и удобства монтажа.

Когда вода в ватерблоке достаточно нагрелась, помпа перегоняет ее к радиатору . Он служит элементом, который рассеивает тепло, переданное водой. Среди рассеивающих элементов СВО существует 2 вида: активный и пассивный. Активный имеет дополнительное звено охлаждения в виде вентилятора, который помогает воде быстрее принять температуру окружающей среды. Пассивный радиатор намного медленнее охлаждается, но у него есть существенный плюс – бесшумность.
Важно, чтобы все элементы СВО были подобраны правильно: не обязательно брать высокомощную помпу и самый лучший, дорогостоящий ватерблок из тонкой медной пластины. Достаточно рассчитать параметры оптимальной СВО (или взять готовую) с учетом особенностей тепловых процессов в Вашем ПК и скоростью рассеивания тепла отдельных элементов. Если выбор СВО будет сделан удачно, она прослужит не один год. Более того, существуют системы с типовыми универсальными элементами, которые могут подойти ко многим другим комплектующим ПК, если есть необходимость в апгрейде и нужно заменить старые модули на новые.

Сложности, с которыми можно встретиться при эксплуатации СВО ограничиваются периодической заменой воды (специалисты всегда приводят разные цифры, но в среднем воду необходимо менять не реже 1 раза в год, если система без фильтров) и возможная потеря диэлектрических качеств, то есть повышение электропроводности. Последнее может возникнуть опять же при недостаточной частоте замены жидкости в СВО, т.к. в самой дистиллированной воде при эксплуатации системы могут появиться примеси, повышающие проводимость электрического тока.

В целом, СВО имеет много преимуществ перед другими способами охлаждения, так как её надёжность гораздо выше той же системы с открытым испарением , а эффективность в разы больше, чем у обычных кулеров. При использовании водяной системы на промышленных ПК есть не только польза от стабильной работы машины, но и положительный экономический эффект.

Если выбирать среди готовых СВО, то цены на них могут быть достаточно высокими. Но зная физические параметры Вашего компьютера и пользуясь советами специалиста, Вы сможете избежать больших трат, если в них нет необходимости и выбрать экономичную, эффективную систему охлаждения.

Аппараты с открытой поверхностью испарения -это окрасочные ванны, ванны для пропитки тканей и бумаги растворенными смолами, ванны для промывки и сушки деталей, открытые резервуары, емкости и т. п.

Горючая концентрация смеси паров с воздухом над поверхностью такого аппарата образуется, если температура жидкости Т выше температуры вспышки ее паров:

Т≥Т ВСП, (2.1)

Количество жидкости, испаряющейся со свободной поверхности, зависит от физических свойств этой жидкости, температурных условий, площади и времени испарения, а также подвижности воздуха. Различают испарение в неподвижную и движущуюся среду.

При испарении в неподвижную среду рассеивание паров затруднено. Практический интерес представляет закон изменения кон­центраций пара по высоте над поверхностью испаряющейся жидкости, возможные размеры зоны взрывооласности, количество испаряющейся жидкости.

Над открытой поверхностью испарения жидкости закон измене­ния концентрации пара (по высоте) можно представить параболой n-го порядка (рис. 2.1). Концентрация пара изменяется от насы-

Рис. 2.1. Изменение концентрации пара по верти­кали при испарении жидкости в неподвижную среду

щенной концентрации φ s (у поверхности жидкости) до нуля (на некотором расстоянии от нее). Совместим начало координатной си­стемы с точкой, где концентрация паров равна нулю. Тогда

φ=ау n , (2.2)

где у - координата точки, в которой определяется концентрации пара; а- постоянная, определяемая из граничного условия φ=φ s при y=h. При a-φ s /h n закон распределения концентрации пара по высоте будет иметь вид:

φ=φ s (у/h) n , (2-3)

откуда средняя концентрация паров жидкости

. (2.4)

Расстояние h изменяется в зависимости от длительности испа­рения. Чтобы связать концентрацию φ и расстояние h с временем τ составим дифференциальное уравнение материального баланса по парам горючей жидкости при условии, что не происходит их рассеивания за пределы вертикального цилиндра с зеркалом испаряющейся жидкости в его основании. Тогда

dG исп =dG a кк, . (2.5)

где. (Gисп - количество испарившейся жидкости; G a кк - количество паров, находящихся (аккумулированных) в воздухе.

Количество испаряющейся жидкости со свободной поверхности можно определить по закону Фика с учетом поправки Стефана на конвективную диффузию:

, (2.6)

где D - коэффициент диффузии паров жидкости в воздухе; dφ>/dy - градиент концентрации; р - плотность паров жидкости.

Значение градиента концентрации получим как производную выражения (2.3):

, (2.7)

У поверхности жидкости, где y = h,

, (2.8)

Подставив (2.8) в (2.6), получим:

, (2.9)

За время" высота зоны распространения паров изменяется на dh. Тогда количество паров жидкости, находящихся в воздухе, будет равно:

, (2.10)

Подставив (2.9) и (2.10) в (2.5) и проинтегрировав, получим

Исследованиями испаряемости нефти и нефтепродуктов установлено, что показатель степени п кривой изменения концентрации паров (при испарении в условиях молекулярной диффузии) близок 2. Такую же закономерность принимаем и для других жидкостей. Тогда

Подставив найденное значение h в (2.3), получим уравнение для определения концентрации пара в любой точке над поверхностью жидкости (в зависимости от продолжительности испарения):

откуда может быть определена координата у точки с любой заданной концентрацией.

Тогда высота опасной зоны над поверхностью жидкости будет

Количество испарившейся в неподвижный воздух жидкости за любой промежуток времени можно определить, подставив (2.13)

Характер испарения в движущуюся среду резко отличается от испарения в неподвижную среду. При конвенктивной диффузии над поверхностью жидкости образуется небольшой толщины пограничный слой с насыщенной концентрацией пара. Затем происходит резкий перепад концентрации. В слоях, лежащих выше пограничного слоя (вследствие интенсивного перемешивания среды при движении), концентрация пара становится примерно одинаковой. Количество испаряющейся жидкости G исп с площади F за время τ определяют по уравнению

где ΔG X - средняя движущая сила массопередачи; К х - коэффициент массопередачи.

Методы определения коэффициента массопередачи К х и средней движущей силы массопередачи Δφ х изучаются в курсе «Термодинамика и теплопередача в пожарном деле».

Снижение пожаровзрывоопасности производств при наличии аппаратов с открытой поверхностью испарения обеспечивают следующие технические решения.

1. Изменение технологических схем (с наличием промывочных, окрасочных ванн и других подобных аппаратов с открытой поверхностью испарения) таким образом, что весь процесс, в том числе загрузка и выгрузка материала, осуществляется изолированно от окружающего воздуха.

2. Замена легковоспламеняющихся жидкостей негорючими или менее пожароопасными жидкостями или составами (см. главу 10 данного учебника).

3. Выбор наиболее рациональной формы открытого аппарата, позволяющей иметь минимальную величину поверхности испарения.

4. Устройство систем отсоса и улавливания выделяющихся при испарении паров жидкости непосредственно у аппаратов.

5. Наличие специальных устройств защиты на случай пожара (крышки для закрывания аппаратов, аварийный слив жидкости, локальная установка пожаротушения).

Следует иметь в виду, что аппараты с открытой поверхностью, испарения, где только позволяет технология, должны быть замене­ны закрытыми аппаратами. Однако это не всегда приводит к сни­жению пожарной опасности. Примером могут служить мазутохранилища. При свободном выходе газов из мазута в атмосферу он сохраняет высокую температуру вспышки и в производственных условиях может быть пожаробезопасным. Перевод же мазутохранилищ из открытых в закрытые резервуары существенно повысил бы их пожаровзрывоопасность.

Компьютерная система состоит из таких электронных компонентов, как центральный процессор, оперативная память, материнская плата и многое другое. Этими электронными компонентами вырабатывается много тепла, особенно центральным процессором, что всегда является поводом для беспокойства, т.к. избыток тепла может негативно сказаться на работе центрального процессора, привести к серьезным неисправностям и даже повреждению. Рассеивая избыточное тепло путем охлаждения и вентиляции, вы поддерживаете работу компонентов в безопасных рабочих температурах (безопасный тепловой диапазон у каждого производителя свой). Перегрев сокращает срок службы компьютерных компонентов и периферийных устройств и может привести к потере данных, нанеся непоправимый ущерб.
Для охлаждения компьютерных компонентов используются различные системы охлаждения.

Системы открытого испарения

Системы открытого испарения применяются редко, хотя при этом достигаются более низкие температуры. В качестве хладагента используются жидкий азот, гелий, сухой лед, установленные в специальном стакане на охлаждаемом компоненте. Системы открытого испарения очень эффективны, но приходится часто закупать хладагент, что является дополнительной статьей расхода. Более распространены системы воздушного и жидкостного охлаждения.

Системы воздушного охлаждения

В системах с воздушным охлаждением тепло от компьютерного компонента передается на радиатор, который излучает его и отдает воздуху посредством теплопроводности. Устанавливаются радиаторы на нагревающийся компонент, место соединения заполняется теплопроводной пастой, чтобы исключить воздушную прослойку, имеющую низкую теплопроводность.
Радиаторные системы охлаждения бывают активные и пассивные. Активные используют вентилятор для обдува и охлаждения системы (устанавливаются на компонентах с большим тепловыделением), а пассивные радиаторы отводят тепло путем естественной конвекции (устанавливаются на компонентах, выделяющих не много тепла). Чтобы получить наилучший эффект от активного охлаждения, нужно выбрать качественный вентилятор с подшипниками, а для эффективной работы системы пассивного охлаждения радиаторы должны быть размещены в местах, где имеется постоянный поток воздуха. Эффект охлаждения зависит от площади рассеивания тепла радиатора и скорости проходящего воздуха. Воздушное охлаждение с вентиляторами является широко практикуемым способом отвода тепла в компьютерах. Наиболее распространенные размеры вентиляторов 60мм, 80мм, 92мм и 120мм.
Увеличить срок службы компонентов и повысить их надежность (во избежание перегрева) можно, поддерживая чистой, без пыли среду для вашего компьютера. Пыль препятствует теплоотдаче, действует как изоляция, приводит к перегреву. Раз в шесть месяцев следует чистить радиатор процессора, фильтр вентилятора, расположенного на верхней части блока питания, и кулер на видеокарте.

Системы водяного охлаждения

В системах жидкостного охлаждения тепло от компьютерного компонента передается радиатору (активному или пассивному) через рабочую жидкость (чаще всего дистиллированную воду), т.е. теплоносителем является вода. Т.к. вода по сравнению с воздухом имеет большую теплопроводность и теплоемкость, эти системы более эффективны, что заключается в лучшем охлаждении компонентов и низком уровне шума. Тепло, выделяемое процессором или другим компонентом, через теплообменник (ватерблок) передается воде. Вода в системе по силиконовым (или из ПВХ) трубкам циркулирует с помощью помпы. Далее она проходит на другой теплообменник (радиатор), где происходит ее охлаждение путем передачи тепла воздуху (пассивно или активно). Системы жидкостного охлаждения актуальны для мощных компьютеров, бывают внешними и внутренними. Обязательный набор их компонентов (ватерблок, радиатор, насос, трубки, фитинги, вода) можно расширить для удобства, например, датчиками, измерителями, фильтром, сливным краном и т.д. Системы жидкостного охлаждения имеют и свои минусы, а это высокая стоимость и сложность сборки.