Общее количество битов в сообщении. Вероятностный подход к определению количества информации "Формула Шеннона. Применение ЭТ Excel для решения задач на нахождение количества информации"

  • 28.08.2019

Материал разработан на 2 спаренных урока.

Цели уроков: Сформировать у учащихся понимание вероятности, равновероятных событий и событий с различными вероятностями. Научить находить количество информации, используя вероятностный подход. Создать в Excel информационную модель для автоматизации процесса вычислений в задачах на нахождение количества информации, используя формулу Шеннона.

Требования к знаниям и умениям:

Учащиеся должны знать:

  • какие события являются равновероятными, какие неравновероятными;
  • как найти вероятность события;
  • как найти количество информации в сообщении, что произошло одно из неравновероятных событий;
  • как найти количество информации в сообщении, когда возможные события имеют различные вероятности реализации.

Учащиеся должны уметь:

  • различать равновероятные и неравновероятные события;
  • находить количество информации в сообщении, что произошло одно из равновероятных событий или одно из не равновероятных событий;
  • создать информационную модель для автоматизации процесса решения задач на нахождение количества информации с помощью прикладных программ.

Оборудование: доска, компьютер, мультимедийный проектор, карточки с заданиями, карточки-памятки, справочный материал.

Урок 1. Вероятностный подход к определению количества информации. Формула Шеннона

Ход урока

I. Организационный момент.

II. Проверка домашнего задания.

III. Постановка цели урока.

Задача: Какое сообщение содержит большее количество информации?

  • Отв.: 3 бит.)
  • Вася получил за экзамен оценку 4 (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)
  • Отв.: 1 бит.)
  • Бабушка испекла 8 пирожков с капустой, 16 пирожков с повидлом. Маша съела один пирожок.

Первые три варианта учащиеся решают без затруднения. События равновероятны, поэтому можно применить для решения формулу Хартли. Но третье задание вызывает затруднение. Делаются различные предположения. Роль учителя: подвести учащихся к осмыслению, что в четвертом варианте мы сталкиваемся с ситуацией, когда события неравновероятны. Не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или "правило бутерброда".

Сегодня на уроке мы должны ответить на вопрос: как вычислить количество информации в сообщении о неравновероятном событии.

IV. Объяснение нового материала.

Для вычисления количества информации в сообщении о неравновероятном событии используют следующую формулу: I= log 2 (1/ p)

где I – это количество информации, р – вероятность события.

Вероятность события выражается в долях единицы и вычисляется по формуле: р= K/ N,

где К – величина, показывающая сколько раз произошло интересующее нас событие, N – общее число возможных исходов какого-то процесса.

Вернемся к нашей задаче.

Пусть К 1 – это количество пирожков с повидлом, К 1 =24

К 2 – количество пирожков с капустой, К 2 =8

N – общее количество пирожков, N = К 1 +К 2 =24+8=32

Вычислим вероятность выбора пирожка с разной начинкой и количество информации, которое при этом было получено.

Вероятность выбора пирожка с повидлом: р 1 =24/32=3/4=0,75.

Вероятность выбора пирожка с капустой: р 2 =8/32=1/4=0,25.

Обращаем внимание учащихся на то, что в сумме все вероятности дают 1.

Вычислим количество информации, содержащееся в сообщении, что Маша выбрала пирожок с повидлом: I 1 = log 2 (1/ p 1)= log 2 (1/0,75)= log 2 1,3=1,15470 бит.

Вычислим количество информации, содержащееся в сообщении, если был выбран пирожок с капустой: I 2 = log 2 (1/ p 2)= log 2 (1/0,25)= log 2 4=2 бит.

Пояснение: если учащиеся не умеют вычислять значение логарифмической функции, то можно использовать при решении задач этого урока следующие приемы:

  • Ответы давать примерные, задавая ученикам следующий вопрос: «В какую степень необходимо возвести число 2, чтобы получилось число, стоящее под знаком логарифма?».
  • Применить таблицу из задачника-практикума под редакцией Семакина И.Г. и др.

Приложение 1. «Количество информации в сообщении об одном из N равновероятных событий: I= log 2 N». (Приложение вы можете получить у автора статьи. )

При сравнении результатов вычислений получается следующая ситуация: вероятность выбора пирожка с повидлом больше, чем с капустой, а информации при этом получилось меньше. Это не случайность, а закономерность.

Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить так: чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.

Вернемся к нашей задаче с пирожками. Мы еще не ответили на вопрос: сколько получим информации при выборе пирожка любого вида?

Ответить на этот вопрос нам поможет формула вычисления количества информации для событий с различными вероятностями, которую предложил в 1948 г. американский инженер и математик К.Шеннон.

Если I -количество информации, N -количество возможных событий, р i - вероятности отдельных событий, где i принимает значения от 1 до N, то количество информации для событий с различными вероятностями можно определить по формуле:

можно расписать формулу в таком виде:

Рассмотрим формулу на нашем примере:

I = - (р 1 ∙log 2 p 1 + р 2 ∙log 2 p 2)= - (0,25∙ log 2 0,25+0,75∙ log 2 0,75)≈-(0,25∙(-2)+0,75∙(-0,42))=0,815 бит

Теперь мы с вами можем ответить на вопрос задачи, которая была поставлена в начале урока. Какое сообщение содержит большее количество информации?

  1. В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу; (Отв.: 3 бит.)
  2. Вася получил за экзамен 3 балла (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)
  3. Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок. (Отв.: 1 бит.)
  4. Бабушка испекла 8 пирожков с капустой, 16 пирожков с повидлом. Маша съела один пирожок. (Отв.: 0,815 бит.)

Ответ : в 1 сообщении.

Обратите внимание на 3 и 4 задачу. Сравните количество информации.

Мы видим, что количество информации достигает максимального значения, если события равновероятны.

Интересно, что рассматриваемые нами формулы классической теории информации первоначально были разработаны для технических систем связи, призванных служить обмену информацией между людьми. Работа этих систем определяется законами физики т.е. законами материального мира. Задача оптимизации работы таких систем требовала, прежде всего, решить вопрос о количестве информации, передаваемой по каналам связи. Поэтому вполне естественно, что первые шаги в этом направлении сделали сотрудники Bell Telephon Companie – X. Найквист, Р. Хартли и К. Шеннон. Приведенные формулы послужили К. Шеннону основанием для исчисления пропускной способности каналов связи и энтропии источников сообщений, для улучшения методов кодирования и декодирования сообщений, для выбора помехоустойчивых кодов, а также для решения ряда других задач, связанных с оптимизацией работы технических систем связи. Совокупность этих представлений, названная К. Шенноном “математической теорией связи”, и явилась основой классической теории информации. (Дополнительный материал можно найти на сайте http://polbu.ru/korogodin_information или прочитав книгу В.И. Корогодин, В.Л. Корогодина. Информация как основа жизни. Формула Шеннона. )

Можно ли применить формулу К. Шеннона для равновероятных событий?

Если p 1 =p 2 =..=p n =1/N, тогда формула принимает вид:

Мы видим, что формула Хартли является частным случаем формулы Шеннона.

V . Закрепление изучаемого материала.

Задача: В корзине лежат 32 клубка красной и черной шерсти. Среди них 4 клубка красной шерсти.

Сколько информации несет сообщение, что достали клубок красной шерсти? Сколько информации несет сообщение, что достали клубок шерсти любой окраски?

Дано: К к =4;N=32

Найти: I к, I

Решение:

Ответ : I к =3 бит; I=0,547 бит

VI . Подведение итогов урока.

  • Объясните на конкретных примерах отличие равновероятного события от неравновероятного?
  • С помощью какой формулы вычисляется вероятность события.
  • Объясните качественную связь между вероятностью события и количеством информации в сообщении об этом событии.
  • В каких случаях применяется формула Шеннона для измерения количества информации.
  • В каком случае количество информации о событии достигает максимального значения.

Урок 2. Применение ЭТ Excel для решения задач на нахождение количества информации

Пояснение: При решении задач на нахождение количества информации учащиеся не вычисляли значение логарифма, т.к. не знакомы с логарифмической функцией. Урок строился таким образом: сначала решались однотипные задачи с составлением формул, затем разрабатывалась табличная модель в Excel, где учащиеся делали вычисления. В конце урока озвучивались ответы к задачам.

Ход урока

I . Постановка целей урока

На этом уроке мы будем решать задачи на нахождение количества информации в сообщении о неравновероятных событиях и автоматизируем процесс вычисления задач данного типа.

Для решения задач на нахождение вероятности и количества информации используем формулы, которые вывели на прошлом уроке:

р i =K i /N; I i =log 2 (1/p i);

II . Решение задач.

Ученикам дается список задач, которые они должны решить.

Задачи решаются только с выводами формул, без вычислений.

Задача №1

В озере обитает 12500 окуней, 25000 пескарей, а карасей и щук по 6250. Какое количество информации несет сообщение о ловле рыбы каждого вида. Сколько информации мы получим, когда поймаем какую-нибудь рыбу?

Дано: К о =12500; К п =25000; К к = К щ =6250

Найти: I о , I п , I к , I щ , I

Решение:

  1. Найдем общее количество рыбы: N = К о +К п +К к +К щ.
  2. Найдем вероятность ловли каждого вида рыбы: p о = К о / N ; p п = К п / N ; p к = p щ = К к / N .
  3. Найдем количество информации о ловле рыбы каждого вида: I о = log 2 (1/ p о ); I п = log 2 (1/ p п ); I к = I щ = log 2 (1/ p к )
  4. Найдем количество информации о ловле рыбы любого вида: I = p о log 2 p о + p п log 2 p п + p к log 2 p к + p щ log 2 p щ

III . Объяснение нового материала.

Задается вопрос ученикам:

1. Какие трудности возникают при решении задач данного типа? (Отв. : Вычисление логарифмов).

2. Нельзя ли автоматизировать процесс решения данных задач? (Отв. : можно, т.к. алгоритм вычислений в этих задачах один и тот же).

3. Какие программы используются для автоматизации вычислительного процесса? (Отв.: ЭТ Excel).

Давайте попробуем сделать табличную модель для вычисления задач данного типа.

Нам необходимо решить вопрос, что мы будем вычислять в таблице. Если вы внимательно присмотритесь к задачам, то увидите, что в одних задачах надо вычислить только вероятность событий, в других количество информации о происходящих событиях или вообще количество информации о событии.

Мы сделаем универсальную таблицу, где достаточно занести данные задачи, а вычисление результатов будет происходить автоматически.

Структура таблицы обсуждается с учениками. Роль учителя обобщить ответы учащихся.

При составлении таблицы мы должны учитывать:

  1. Ввод данных (что дано в условии).
  2. Подсчет общего количества числа возможных исходов (формула N=K 1 +K 2 +…+K i).
  3. Подсчет вероятности каждого события (формула p i = К i /N).
  4. Подсчет количества информации о каждом происходящем событии (формула I i = log 2 (1/p i)).
  5. Подсчет количества информации для событий с различными вероятностями (формула Шеннона).

Прежде чем демонстрировать заполнение таблицы, учитель повторяет правила ввода формул, функций, операцию копирования (домашнее задание к этому уроку).

При заполнении таблицы показывает как вводить логарифмическую функцию. Для экономии времени учитель демонстрирует уже готовую таблицу, а ученикам раздает карточки-памятки по заполнению таблицы.

Рассмотрим заполнение таблицы на примере задачи №1.

Рис. 1. Режим отображения формул

Рис. 2. Отображение результатов вычислений

Результаты вычислений занести в тетрадь.

Если в решаемых задачах количество событий больше или меньше, то можно добавить или удалить строчки в таблице.

VI . Практическая работа .

1 . Сделать табличную модель для вычисления количества информации.

2 . Используя табличную модель, сделать вычисления к задаче №2 (рис.3), результат вычисления занести в тетрадь.

Рис. 3

3 . Используя таблицу-шаблон, решить задачи №3,4 (рис.4, рис.5), решение оформить в тетради.

Рис. 4

Задача №2

В классе 30 человек. За контрольную работу по информатике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации несет сообщение о том, что Андреев получил пятерку?

Задача№3

В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.

Задача№4

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

VII . Подведение итогов урока.

Учитель оценивает работу каждого ученика. Оценивается не только практическая работа на компьютере, но и оформление решения задачи в тетради.

VIII. Домашняя работа.

1. Параграф учебника «Формула Шеннона», компьютерный практикум после параграфа.

2. Доказать, что формула Хартли – частный случай формулы Шеннона.

Литература:

  1. Соколова О.Л. «Универсальные поурочные разработки по информатике. 10-й класс.» – М.: ВАКО, 2007.
  2. Угринович Н.Д. «Информатика и ИКТ. Профильный уровень. 10 класс» - Бином, Лаборатория знаний, 2007 г.
  3. Семакин И.Г., Хеннер Е.К. «Информатика. Задачник – практикум.» 1 том, - Бином, Лаборатория знаний, 2008 г.

Основное содержание темы: Известны два подхода к измерению информации: содержательный и алфавитный. Алфавитный подход используется для измерения количества информации в тексте, представленном в виде последовательности символов некоторого алфавита. Такой подход не связан с содержанием текста. Количество информации в этом случае называется информационным объемом текста. С позиции содержательного подхода к измерению информации решается вопрос о количестве информации в сообщении, получаемом человеком.

Практическая работа 2. Решение задач с применением формулы Хартли

Цель работы: определение количества информации при содержательном подходе.

1) человек получает сообщение о некотором событии; при этом заранее известна неопределенность знания человека об ожидаемом событии. Неопределенность знания может быть выражена либо числом возможных вариантов события, либо вероятностью ожидаемых вариантов события;

2) в результате получения сообщения неопределенность знания снимается: из некоторого возможного количества вариантов оказался выбранным один;

3) по формуле вычисляется количество информации в полученном сообщении, выраженное в битах.

Формула, используемая для вычисления количества информации, зависит от ситуаций, которых может быть две:

1. Все возможные варианты события равновероятны. Их число конечно и равно N.

2. Вероятности (p) возможных вариантов события разные и они заранее известны: {p i }, i = 1..N.

Если равновероятные события, то величины i и N связаны между собой формулой Хартли:

2 i = N (1), где

i – количество информации в сообщении о том, что произошло одно из N равновероятных событий, измеряется в битах.

N - число возможных вариантов события.

Формула Хартли - это показательное уравнение. Если i - неизвестная величина, то решением уравнения (1) будет:

Формулы (1) и (2) тождественны друг другу.

Оборудование:

1. Разберите ниже приведенные примеры задач с решениями. Запишите в тетрадь.

Задача 1. Найти количество информации в однозначном сообщении.

Решение :

N=1 => 2 i =1 => i=0 бит

Задача 2. Измерить количество информации при ответе на вопрос: «Какие завтра намечаются осадки?»

Решение:

N=4 => 2 i =4 => i=2 бит

Задача 3. Получено сообщение, объемом 10 бит. Какое количество сообщений возможно составить из полученных данных?

Решение:

i=10 => 2 10 =1024 => N=1024 сообщения

1. Сколько информации содержит сообщение о том, что из колоды карт достали даму пик?

2. Сколько информации содержит сообщение о выпадении грани с числом 3 на шестигранном игральном кубике?

3. Некто задумал натуральное число в диапазоне от 1 до 32. Какое минимальное число вопросов надо задать, чтобы гарантированно угадать задуманное (выделенное) число. Ответы могут быть только «да» или «нет».

4. (Задача о фальшивой монете). Имеется 27 монет, из которых 26 настоящих и одна фальшивая. Каково минимальное число взвешиваний на рычажных весах, за которое можно гарантированно определить одну фальшивую монету из 27, используя то, что фальшивая монета легче настоящей. Рычажные весы имеют две чашки и с их помощью можно лишь установить, одинаково ли по весу содержимое чашек, и если нет, то содержимое какой из чашек тяжелее.

5. Сколько вопросов следует задать и как их нужно сформулировать, чтобы узнать с какого из 16 путей отправляется ваш поезд?

6. Какое количество информации получит первый игрок после первого хода второго игрока в игре "крестики - нолики" на поле 4 х 4?

7. После реализации одного из возможных событий получили количество информации равное 15 бит. Какое количество возможных событий было первоначально?

8. Определить стратегию угадывания одной карты из колоды из 32 игральных карт (все четыре шестерки отсутствуют), если на вопросы будут даны ответы "да" или "нет".

9. При игре в кости используется кубик с шестью гранями. Сколько бит информации получает игрок при каждом бросании кубика?

10. Сообщение о том, что ваш друг живет на 6 этаже несет 4 бита информации. Сколько этажей в доме.

11. Информационная емкость сообщения о том, что из корзины, где лежало некоторое количество разноцветных шаров, достали зеленый шар, несет в себе 0, 375 байта информации. Сколько в корзине было шаров.

12. В библиотеке 16 стеллажей. На каждом стеллаже по 8 полок Библиотекарь сказал Оле, что интересующая ее книга находится на 3 стеллаже, на 2-й сверху полке. Какое количество информации получила Оля?

13. В мешке находятся 30 шаров, из них 10 белых и 20 черных. Какое количество информации несет сообщение о том, что достали белый шар, черный шар?

14. В классе 30 человек. За контрольную работу по математике получено 6 пятерок, 15 четверок, 8 троек и 1 двойка. Какое количество информации в сообщении о том, что Иванов полу­чил четверку?



15. В корзине лежат 32 клубка шерсти. Среди них – 4 красных. Сколько информации несет сообщение о том, что достали клубок красной шерсти?

16. В коробке лежат 64 цветных карандаша. Сообщение о том, что достали белый карандаш, несет 4 бита информации. Сколько белых карандашей было в корзине?

17. В ящике лежат перчатки (белые и черные). Среди них – 2 пары черных. Сообщение о том, что из ящика достали пару черных перчаток, несет 4 бита информации. Сколько всего пар перчаток было в ящике?

Контрольные вопросы:

1. Какой принцип положен в основу измерения количества информации?

2. Каким образом определяется единица количества информации при кибернетическом подходе?

3. Что принимается за минимальную единицу количества информации с точки зрения уменьшения неопределенности знаний в 2 раза?

4. В каких случаях применяют формулу Хартли?

Практическая работа 3. Вычисление количества информации на основе вероятностного подхода

Цель работы: совершенствование навыка по определению количества информации на основе вероятностного подхода

Краткое теоретическое обоснование: см. практическую работу 2.

Оборудование: дидактические материалы по теме «Определение количества информации»

Последовательность выполнения:

Задача 1. В языке племени Мумбо-Юмбо всего 20 разных слов. Сколько бит нужно, чтобы закодировать любое из этих слов?

Решение .

· По условию задачи у нас имеется 20 различных вариантов.

· Количество бит информации, необходимое для задания 20 равновероятных (одинаково принимаемых в расчет) вариантов можно рассчитать по формуле:

h=log 2 20» 4,32 бит

или при выборе двухсимвольного алфавита для кодирования достаточно составить слово из 5 бит.

Задача 2. В доме 14 окон. Сколько различных сигналов можно подать, зажигая свет в окнах? Сколько бит информации несет в себе каждый такой сигнал?

Решение .

· Каждое окно несет в себе 1 бит информации: горит - не горит.

· Количество различных равновероятных сигналов, передаваемое с помощью 14 бит равно 2 14 = 16 384.

· Каждый из 16 384 сигналов несет в себе 14 бит информации.

2. Решите следующие задачи. Результат оформите в тетради.

1. В корзине лежат шары. Все разного цвета. Сообщение о том, что достали синий шар, несет 5 бит информации. Сколько всего шаров в корзине?

2. В соревновании участвуют 4 команды. Сколько информации в сообщении, что выиграла 3-я команда?

3. Группа школьников пришла в бассейн, в котором 4 дорожки для плавания. Тренер сообщил, что группа будет плавать на дорожке номер 3. Сколько информации получили школьники из этого сообщения?

4. В коробке 5 синих и 15 красных шариков. Какое количество информации несет сообщение, что из коробки достали синий шарик?

5. В коробке находятся кубики трех цветов: красного, желтого и зеленого, причем желтых в два раза больше красных, а зеленых на 6 больше, чем желтых. Сообщение о том, что из коробки случайно вытащили желтый кубик, содержало 2 бита информации. Сколько было зеленых кубиков?

6. Студенты группы изучают один из трех языков: английский, немецкий или французский, причем 12 студентов не учат английский. Сообщение, что случайно выбранный студент Петров изучает английский, несет log23 бит информации, а что Иванов изучает французский – 1 бит. Сколько студентов изучают немецкий язык?

7. В составе 16 вагонов, среди которых К – купейные, П – плацкартные и СВ – спальные. Сообщение о том, что ваш друг приезжает в СВ, несет 3 бита информации. Сколько в поезде вагонов СВ?

8. Студенческая группа состоит из 21 человека, которые изучают немецкий или французский языки. Сообщение о том, что студент A изучает немецкий язык, несет log 2 3 бит информации. Сколько человек изучают французский язык?

9. Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

10. Для дистанционной передачи роботу различных команд применяются сигналы в 6 бит, причем сигнала в 5 бит недостаточно для передачи всех команд. Может ли общее количество всех команд для этого робота быть равно:

42 командам? 70 командам?

28 командам? 55 командам?

Какое наименьшее и какое наибольшее количество команд может получать робот?

11. Одиннадцать одноклассников решают голосованием, куда пойти после уроков. При голосовании каждый может быть либо “за” либо “против”. Сколько различных вариантов голосования может быть? Сколько бит потребуется, чтобы закодировать результаты голосования?

12. Какое минимальное количество бит информации требуется для кодирования всех букв русского алфавита?

13. Друзья в соседних домах договорились передавать друг другу сообщения в виде световых сигналов. Сколько лампочек им понадобиться для кодирования 10 различных слов?

14. В компьютерной игре распознаются 65 различных команд управления. Сколько бит требуется отвести в блоке памяти для кодирования каждой команды? Достаточно ли отведенных бит для кодирования 100 команд?

Контрольные вопросы:

1. Какие события являются равновероятностными?

2. Приведите примеры из жизни равновероятностных событий.

3. Какая формула связывает между собой количество возможных событий и количествоинформации?

4. Как зависит количество информации от количества возможных событий?

5. Верно ли высказывание о том что, чем больше количество возможных событий, тем меньше количество информации будет содержать сообщение о результатах опыта.

Ответ обоснуйте.

Практическая работа 4 . Решение задач с применением формулы Шеннона

Цель работы: приобретение навыка по определению количества информации на основе вероятностного подхода

Краткое теоретическое обоснование:

Степень неопределенности – одна из характеристик случайного события, которую назвали энтропией. Обозначается - Н(α). За единицу энтропии принимается неопределенность, содержащаяся в опыте, имеющем два равновероятностных исхода. Существуют множества ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета не симметрична (одна сторона тяжелее другой), то при её бросании вероятности выпадения «орла» и «решки» будут различаться. Формулу для вычисления количества информации в случае различных вероятностей событий предложил К.Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

P i log 2 p i , где I –количество информации, N –количество возможных событий, p i –вероятности отдельных событий. Вероятность события p i =1/N.

Для решения задач такого типа нам необходимо знать формулу расчета вероятности исхода. Она выглядит так:

где M – это величина, показывающая сколько раз произошло событие, N – это общее число возможных исходов какого-то процесса.

Необходимо знать, что в сумме все вероятности дают единицу или в процентном выражении 100%.

Оборудование: дидактические материалы по теме «Определение количества информации».

Последовательность выполнения:

Задача 1. Из колоды выбрали 16 карт (все “картинки” и тузы) и положили на стол рисунком вниз. Верхнюю карту перевернули. Верхняя перевернутая карта оказалась черной дамой. Сколько информации будет заключено в сообщении о том, какая именно карта оказалась сверху?

Решение .

В результате сообщения об исходе случайного события не наступает полной определенности: выбранная карта может иметь одну из двух черных мастей.

Так как информация есть уменьшение неопределенности знаний:

До переворота карты неопределенность (энтропия) составляла

H1 = log 2 N1, после него – H2 = log 2 N2.

(причем в условиях задачи N1 = 16, а N2 = 2).

В итоге информация вычисляется следующим образом:

I = H1 – H2 = log 2 N1 – log 2 N2 = log 2 N1/N2 = log 2 16/2 = 3 бита.

Задача 2. Вероятность перового события составляет 0,5, а второго и третьего 0,25. Какое количество информации мы получим после реализации одного из них?

Решение .

Р 1 =0,5; Р 2 =Р 3 =0,25 Þ бита.

Задача 3. Определить количество информации, получаемое при реализации одного из событий, если бросают

а) несимметричную четырехгранную пирамидку;

б) симметричную и однородную четырехгранную пирамидку.

Решение .

а) Будем бросать несимметричную четырехгранную пирамидку.

Вероятность отдельных событий будет такова:

тогда количество информации, получаемой после реализации одного из этих событий, рассчитывается по формуле Шеннона т.к. неравновероятностные события:

I = -(1 / 2 log 2 1/2 + 1 / 4 log 2 1/4 + 1 / 8 log 2 1/8 + 1 / 8 log 2 1/8) = 1 / 2 + 2 / 4 + + 3 / 8 + 3 / 8 = 14/8 = 1,75 (бит).

б) Теперь рассчитаем количество информации, которое получится при бросании симметричной и однородной четырехгранной пирамидки, т.е. равновероятностные события:

I = log 2 4 = 2 (бит).

2. Решите следующие задачи. Результат оформите в тетради.

1. В классе 30 человек. За контрольную работу по информатике получено 15 пятерок, 6 четверок, 8 троек и 1 двойка. Какое количество информации несет сообщение о том, что Андреев получил пятерку?

2. В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

3. За контрольную работу по информатике получено 8 пятерок, 13 четверок, 6 троек и 2 двойки. Какое количество информации получил Васечкин при получении тетради с оценкой?

4. Известно, что в ящике лежат 20 шаров. Из них 10 - черных, 4 - белых, 4 - желтых и 2 - красный. Какое количество информации несёт сообщения о цвете вынутого шара?

5. В сейфе банкира Богатеева лежат банкноты достоинством 1, 10 или 100 талеров каждая. Банкир раскрыл свой сейф и наугад вытащил из него одну банкноту. Информационный объем сообщения "Из сейфа взята банкнота достоинством в 10 талеров" равен 3 бита. Количество информации, содержащееся в сообщении "Из сейфа взята банкнота достоинством не в 100 талеров", равно 3-log25 бит. Определите информационный объем зрительного сообщения о достоинстве вынутой банкноты.

3. Выполните упражнение

Ниже приведены 11 событий:

1. Первый встречный человек мужского пола.

2. За понедельником будет вторник.

3. За контрольную работу можно получить «отлично».

4. К телефону из пяти членов семьи подойдет младший сын.

6. После лета буде зима.

7. Каждый из 15 учеников, посещающих данные занятия, поступит на математическую специальность.

8. В лотерее победит билет с номером 777777.

9. Подброшенная монетка упадет гербом вверх.

10. На подброшенном кубике выпадет шесть очков.

11. Из выбираемых наугад карточек с цифрами выберем карточку с цифрой 5.

Задание среди 11 событий записать номера тех, которые:

1. Достоверные _________________________________________________

2. Невозможные ________________________________________________

3. Неопределенные______________________________________________

4. Среди неопределенных указать те, которые имеют 2 равновозможных исхода ______________________________________________________

5. Неопределенные события расставить в порядке возрастания числа равновероятных исходов _______________________________________

6. Назвать событие более неопределенное____________________________

7. Назвать событие менее неопределенное. ___________________________

8. Учитывая задания № 6 и № 7, установить зависимость степени неопределенности от числа равновероятных исходов. ____________________________________________________________

9. Сделать тот же вывод, используя понятие вероятности. ____________________________________________________________

Контрольные вопросы:

1. Какие бывают события?

2. Приведите примеры равновероятных и неравновероятных событий?

3. Как определить вероятность выполнения определенного события?

4. При каких событиях применяют формулу Шеннона для определения количества информационного сообщения?

5. При каком условии формула Хартли становится частным случаем формулы Шеннона?

Практическая работа 5 . Решение задач на определение количества информации

Цель работы: приобретение навыка по определению количества информации на основе вероятностного и содержательного подхода

Краткое теоретическое обоснование: В качестве основной характеристики сообщения теория информации принимает величину, называемую количеством информации. Это понятие не затрагивает смысла и важности передаваемого сообщения, а связано со степенью его неопределенности.

Клод Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу количества информации принял то, что впоследствии назвали битом (bit). Количество информации, приходящееся на один элемент сообщения (знак, букву), называется энтропией. Энтропия и количество информации измеряются в одних и тех же единицах – в битах.

Так как современная информационная техника базируется на элементах, имеющих два устойчивых состояния, то обычно выбирают основание логарифма равным двум, т.е. энтропию выражают как: H0 = log 2 m.

В общем случае количество энтропии H произвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 , x 2 , … x m c вероятностями p 1 , p 2 , … p m , вычисляют по формуле Шеннона.

Оборудование: дидактические материалы по теме «Определение количества информации».

Последовательность выполнения:

1. Разберите примеры решения задач

Задача 1. Определите количество информации, которое содержится в телевизионном сигнале, соответствующем одному кадру развертки. Пусть в кадре 625 строк, а сигнал, соответствующий одной строке, представляет собой последовательность из 600 случайных по амплитуде импульсов, причем амплитуда импульса может принять любое из 8 значений с шагом

Решение.

В рассматриваемом случае длина сообщения, соответствующая одной строке, равна числу случайных по амплитуде импульсов в ней: n = 600.

Количество элементов сообщения (знаков) в одной строке равно числу значений, которое может принять амплитуда импульсов в строке m = 8.

Количество информации в одной строке: I = n log m = 600 log 8, а количество информации

в кадре: I = 625 I = 625 600 log 8 = 1,125 =106 бит

Задача 2. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

1) 70 бит 2) 70 байт 3) 490 бит 4) 119 байт

Решение.

1) велосипедистов было 119, у них 119 разных номеров, то есть, нам нужно закодировать 119 вариантов;

2) по таблице степеней двойки находим, что для этого нужно минимум 7 бит (при этом можно закодировать 128 вариантов, то есть, еще есть запас); итак, 7 бит на один отсчет;

3) когда 70 велосипедистов прошли промежуточный финиш, в память устройства записано 70 отсчетов;

4) поэтому в сообщении 70*7 = 490 бит информации (ответ 3).

2. Решите следующие задачи. Результат оформите в тетради.

1. В зоопарке 32 обезьяны живут в двух вольерах, А и Б. Одна из обезьян – альбинос (вся белая). Сообщение «Обезьяна-альбинос живет в вольере А» содержит 4 бита информации. Сколько обезьян живут в вольере Б?

2. В корзине лежат 32 клубка шерсти, из них 4 красных. Сколько бит информации несет сообщение о том, что достали клубок красной шерсти?

3. Двое играют в «крестики-нолики» на поле 4 на 4 клетки. Какое количество информации получил второй игрок, узнав ход первого игрока?

4. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

5. В велокроссе участвуют 678 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 200 велосипедистов?

Контрольные вопросы:

1. Дайте определение энтропии.

2. Как связаны между собой понятия количества информации и энтропии?

3. Какие подходы к определению количества информации вам известны?

4. В чем смысл каждого из подходов к определению количества информации?

5. Что называется измерением информации?

6. Какие способы определения количества информации существуют?

7. Дайте определение количества информации.

Практическая работа 6 . Решение задач на определение объема информации

Цель работы: приобретение навыка по определению количества информации на основе алфавитного подхода

Краткое теоретическое обоснование:

Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита.

Алфавит – упорядоченный набор символов, используемый для кодирования сообщений на некотором языке.

Мощность алфавита – количество символов алфавита. Двоичный алфавит содержит 2 символа, его мощность равна двум. Сообщения, записанные с помощью символов ASCII, используют алфавит из 256 символов. Сообщения, записанные по системе UNICODE, используют алфавит из 65 536 символов.

Чтобы определить объем информации в сообщении при алфавитном подходе, нужно последовательно решить задачи:

1. Определить количество информации (i) в одном символе по формуле

2 i = N, где N - мощность алфавита.

2. Определить количество символов в сообщении (m).

3. Вычислить объем информации по формуле: I = i * K.

Количество информации во всем тексте (I), состоящем из K символов, равно произведению информационного веса символа на К:

I = i * К.

Эта величина является информационным объемом текста.

Единицы измерения информации

Основная единица измерения информации –бит. 8 бит составляют 1 байт . Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт = 2 10 байт = 1024 байта;

1 Мбайт = 2 10 Кбайт = 1024 Кбайт;

1 Гбайт = 2 10 Мбайт = 1024 Мбайт.

1 Терабайт (Тб) = 1024 Гбайт = 2 40 байта,

1 Петабайт (Пб) = 1024 Тбайта = 2 50 байта.

Оборудование: дидактические материалы по теме «Определение количества информации».

Последовательность выполнения:

1. Разберите примеры решения задач и запишите их в тетрадь.

Задача 1. Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 32 строки по 64 символа в строке. Какой объем информации содержат 5 страниц этого текста?

Решение:

N=256, => 2 i = 256, => i=8 bit

k=32*64*5 символов

I=i*k=8*32*64*5 bit = 8*32*64*5/8 b = 32*64*5/1024 kb = 10 kb

Задача 2. Можно ли уместить на одну дискету книгу, имеющую 432 страницы, причем на каждой странице этой книги 46 строк, а в каждой строке 62 символа?

Решение :

Т.к. речь идет о книге, напечатанной в электронном виде, то мы имеем дело с компьютерным языком. Тогда N=256, => 2 i = 256, => i=8 bit

k = 46*62*432 символов

I = i*k = 8*46*62*432 bit = 8*46*62*432/8 b = 46*62*432/1024 kb = 1203,1875 kb = 1,17 Mb

Т.к. объем дискеты 1,44 Mb, а объем книги 1,17 Mb, то она на дискету уместится.

Задача 3 . Скорость информационного потока – 20 бит/с. Сколько минут потребуется для передачи информации объемом в 10 килобайт.

Решение :

t = I/v = 10 kb/ 20 бит/c = 10*1024 бит/ 20 бит/c = 512 c = 8,5 мин

Задача 4 . Лазерный принтер печатает со скоростью в среднем 7 Кбит в секунду. Сколько времени понадобится для распечатки 12-ти страничного документа, если известно, что на одной странице в среднем по 45 строк, в строке 60 символов.

Решение :

Т.к. речь идет о документе в электронном виде, готовым к печати на принтере, то мы имеем дело с компьютерным языком. Тогда N=256, => 2 i = 256, => i=8 bit

K = 45*60*12 символов

I = i*k = 8*45*60*12 bit = 8*45*60*12/8 b = 45*60*12/1024 kb = 31,6 kb

t = I/v = 31,6 kb/ 7 Кбит/c = 31,6*8 kбит/ 7 Кбит/c = 36 c

Задача 5. Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке, из кодировки Unicode, в кодировку КОИ-8. При этом информационное сообщение уменьшилось на 480 бит. Какова длина сообщения?

Решение :

Объем 1 символа вкодировке КОИ-8 равен 1 байту, а в кодировке Unicode – 2 байтам.

Пусть x – длина сообщения, тогда I КОИ-8 = 1*x b, а I Unicode = 2*x b.

Получаем 2*x8 bит – 1*x*8 бит = 480 бит, 8x = 480, х = 60 символов в сообщении.

2. Решите следующие задачи. Результат оформите в тетради.

1. Некоторый алфавит содержит 128 символов. Сообщение содержит 10 символов. Определите объем сообщения.

2. Считая, что один символ кодируется 8-ю битами, оцените информационный объем следующей поговорки в кодировке КОИ-8: Верный друг лучше сотни слуг.

3. Один и тот же текст на русском языке записан в различных кодировках. Текст, записанный в 16-битной кодировке Unicode, на 120 бит больше текста, записанного в 8-битной кодировке КОИ-8. Сколько символов содержит текст?

4. Сколько гигабайт содержит файл объемом 235 бит?

5. Текстовый файл copia.txt имеет объем 40960 байт. Сколько таких файлов можно записать на носитель объемом 5 Мбайт?

6. К текстовому сообщению объемом 46080 байт добавили рисунок объемом 2,5 Мбайт. Сколько кбайт информации содержит полученное сообщение?

7. В алфавите некоторого языка два символа Х и О. Слово состоит из четырех символов, например: ООХО, ХООХ. Укажите максимально возможное количество слов в этом языке.

8. Для записи текста использовался 64-символьный алфавит. Сколько символов в тексте, если его объем равен 8190 бита?

9. Укажите наибольшее натуральное число, которое можно закодировать 8 битами (если все числа кодируется последовательно, начиная с единицы).

10. Некоторый алфавит содержит 2 символа. Сообщение занимает 2 страницы, на каждой по 16 строк, и в каждой строке по 32 символа. Определите объем сообщения.

11. Сколько бит информации содержится в сообщении объемом 1/4 килобайта?

12. Найдите х из следующего соотношения: 8х бит = 16 Мбайт.

13. Цветное растровое графическое изображение с палитрой 256 цветов имеет размер 64х128 пикселей. Какой информационный объем имеет изображение?

14. Для хранения растрового изображения размером 64х128 пикселей отвели 4 Кбайта памяти. Каково максимально возможное количество цветов в палитре изображения?

Контрольные вопросы:

1. Как измеряется информация при содержательном подходе?

2. В чем заключается алфавитный подход к определению количества информации?

3. Что такое алфавит? Что называется мощностью алфавита? Что называется объемом информации?

4. Чему равен информационный вес символа компьютерного алфавита?

6. Почему информационная емкость русской буквы «а» больше информационной ёмкости английской буквы?

7. Какие единицы измерения информации существуют?

Практическая работа7 . Комплексная работа по определению количества информации

Цель работы: контроль навыков определения количества информации.

Краткое теоретическое обоснование: см.практические работы 1-6.

Оборудование: Контрольные материалы из КОС по дисциплине «Основы теории информации»

Последовательность выполнения:

· Выполните ТЗ№1. Тест 3. Единицы измерения информации. В тесте необходимо выбрать только один ответ из предложенных вариантов. Выполнять тест лучше самостоятельно, без применения конспектов, учебников и прочей вспомогательной литературы.

· Выполните ПЗ№2. Задачи 1-10.

Количество информации - это числовая характеристика сигнала, отражающая ту степень неопределенности (неполноту знаний), которая исче-зает после получения сообщения в виде данного сигнала.
Эту меру неопределённости в теории информации называют энтропией. Если в результате получения сообщения достигается полная ясность в каком-то вопросе, говорят, что была получена полная или исчерпывающая информация и необходимости в получении дополнительной информации нет. И, наоборот, если после получения сообщения неопределённость осталась прежней, значит, информации получено не было (нулевая информация).
Приведённые рассуждения показывают, что между понятиями информация, неопределённость и возможность выбора существует тесная связь. Так, любая неопределённость предполагает возможность выбора, а любая информация, уменьшая неопределённость, уменьшает и возможность выбора. При полной информации выбора нет. Частичная информация уменьшает число вариантов выбора, сокращая тем самым неопределённость.
Рассмотрим пример. Человек бросает монету и наблюдает, какой стороной она упадёт. Обе стороны монеты равноправны, поэтому одинаково вероятно, что выпадет одна или другая сторона. Такой ситуации приписывается начальная неопределённость, характеризуемая двумя возможностями. После того, как монета упадёт, достигается полная ясность, и неопределённость исчезает (становится равной нулю).
Приведённый пример относится к группе событий, применительно к которым может быть поставлен вопрос типа «да-нет».
Количество информации, которое можно получить при ответе на вопрос типа «да-нет», называемся битом (англ. bit - сокращённое от binary digit - двоичная единица).
Бит - минимальная единица количества информации, ибо получить информацию меньшую, чем 1 бит, невозможно. При получении информации в 1 бит неопределенность уменьшается в 2 раза. Таким образом, каждое бросание монеты дает нам информацию в 1 бит.
Рассмотрим систему из двух электрических лампочек, которые независимо друг от друга могут быть включены или выключены. Для такой системы возможны следующие состояния:
Лампа А: 0 0 1 1 ;
Лампа В: 0 1 0 1 .
Чтобы получить полную информацию о состоянии системы, необходимо задать два вопроса типа «да-нет» по лампочке А и лампочке В, соответственно. В этом случае количество информации, содержащейся в данной системе, определяется уже в 2 бита, a число возможных состояний системы - 4. Если взять три лампочки, то необходимо задать уже три вопроса и получить 3 бита информации. Количество состояний такой системы равно 8 и т. д.
Связь между количеством информации и числом состояний системы устанавливается формулой Хартли.
i= log 2N,
где i - количество информации в битах; N -число возможных состояний. Ту же формулу можно представить иначе:
N=2i.
Группа из 8 битов информации называется байтом.
Если бит - минимальная единица информации, то байт - ее основная единица. Существуют производные единицы информации: килобайт (Кбайт, Кб), мегабайт (Мбайт, Мб) и гигабайт (Гбайт, Гб).
Таким образом, между понятиями «информация», «неопределённость» и «возможность выбора» существует тесная связь. Любая неопределённость предполагает возможность выбора, а любая информация, уменьшая неопределённость, уменьшает и возможность выбора. Частичная информация уменьшает число вариантов выбора, сокращая тем самым неопределённость.
Количество информации - это числовая характеристика сигнала, отражающая ту степень неопределённости (неполноту знаний), которая исчезает после получения сообщения в виде данного сигнала.

Еще по теме Понятие количества информации:

  1. Понятие, виды информации и принципы правового регулирования отношений в сфере информации
  2. Журналистика как массово-информационная деятельность. Понятия «информация» и «массовая информация». Массовая информация как продукт массово-информационной деятельности. Массовая информация и социальная информация.

























































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: закрепление навыков решения задач с помощью алфавитного и содержательного подходов.

Задачи урока:

  • Воспитательная – формировать информационную культуру учащихся, внимательность, аккуратность, дисциплинированность, усидчивость, терпимость, умение работать в группе.
  • Образовательная – повторить алфавитный и содержательный подходы на нахождение количества информации, сформировать навыки решения задач с помощью формулы Хартли, решить несколько задач.
  • Развивающая – развивать логическое мышление, внимательность, самоконтроль.

Тип урока: Комбинированный урок. Работа в группах.

Формы учебной деятельности учащихся: индивидуальная, групповая.

Средства обучения: компьютерный класс, интерактивная доска.

План урока:

  • Мотивация (2 минуты).
  • Актуализация опорных знаний (5 минут).
  • Совместное решение задач по теме (10 минут).
  • Физминутка (3 минуты).
  • Организация групповой работы, определение групп (1 минута).
  • Решение задач в группах на оценку, самоконтроль (15 минут).
  • (5 минут).
  • (1 минута).
  • Домашнее задание (1 минута).
  • Рефлексия (2 минуты).

Ход урока

Мотивация. Определение цели и задач урока.

Здравствуйте!

В настоящее время на экзаменах по информатике, в том числе ЕГЭ (часть А, B) есть много заданий по теме “Определение количества информации”. Цель данного урока – закрепление навыков решения задач с помощью алфавитного и содержательного подходов .

Для того чтобы хорошо понять решение задач на нахождение количества информации, необходимо прорешать задачи разного типа. Для этого давайте вспомним…

Актуализация опорных знаний (повторение).

С помощью какой формулы мы определяем количество информации в различных сообщениях, событиях? (Используется одна и та же формула Хартли, выведенная из вероятностно-статистического подхода К.-Э. Шеннона N=2 i , i=log 2 N, где i – количество информации (в битах), N – количество информационных сообщений (событий). В одном случае рассматриваются равновероятностные события, в другом – мощность алфавита).

Чем отличается алфавитный и содержательный подходы для определения количества информации? (При алфавитном подходе рассматривается текст как совокупность символов, а при содержательном – содержание происходящих событий. Первый подход более объективен, так как позволяет избежать двусмысленности происходящих событий.). При содержательном подходе рассматриваются равновероятностные события, поэтому для решения задач необходимо знать количество всех возможных событий. Для нахождения количества информации с использованием алфавитного подхода необходимо знать мощность используемого алфавита. Так как определяем информационную емкость не одного символа, а нескольких взаимосвязанных символов в слове, предложении, тексте, то необходимо знать и количество символов в слове.

Совместное решение задач.

Давайте решим несколько задач по данной теме.

1. Сообщение, записанное буквами 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Решение:

Один символ алфавита несет в себе 6 бит информации (2^6=64),
Соответственно сообщение из 20 символов несет 6 х 20 = 120 бит.
Ответ: 120 бит.

2. Жители планеты Принтер используют алфавит из 256 знаков, а жители планеты Плоттер - из 128 знаков. Для жителей какой планеты сообщение из 10 знаков несет больше информации и на сколько?

Решение:

Один символ алфавита жителей планеты Принтер несет в себе 8 бит информации (2^8=256), а жителей планеты Плоттер - 7 бит информации (2^7=128). Соответственно сообщение из 10 знаков для жителей Принтер несет 10 х 8 = 80 бит, а для жителей Плоттер - 10 х 7 = 70 бит
80 - 70 = 10 бит.
Ответ: Больше для жителей Принтер на 10 бит.

3. Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения, состоящего из 180 нот?

Решение:

Каждая нота кодируется 3 битами (2^2=4<7<2^3=8).
Информационный объем сообщения равен 180 х 3 = 540 бит.
Ответ: 540 бит.

4. Цветное растровое графическое изображение, палитра которого включает в себя 65 536 цветов, имеет размер 100Х100 точек (пикселей). Какой объем видеопамяти компьютера (в Кбайтах) занимает это изображение в формате BMP?

Решение:

65536 =2^16, I = 16 бит на кодирование 1 цвета. Все изображение состоит из 10х10=10 000 точек. Следовательно, количество информации, необходимое для хранения изображения целиком 16*10 000=160 000 бит = 20 000 байт = 19,5 Кб.
Ответ: 19,5 килобайт.

5. В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

Решение:

N=119 (2^6=64<7<2^7=128), I ≈7 бит необходимо для кодирования одного спортсмена, поскольку была записана информация о 70 спортсменах, объем сообщения составил: 7 х 70 = 490 бит.
Ответ: 490 бит.

Сложная задача

6. Словарный запас некоторого языка составляет 256 слов, каждое из которых состоит точно из 4 букв. Сколько букв в алфавите языка?

Решение:

При алфавитном подходе к измерению количества информации известно, что если мощность алфавита N (количество букв в алфавите), а максимальное количество букв в слове, записанном с помощью этого алфавита – m, то максимально возможное количество слов определяется по формуле L=N m . Из условия задачи известно количество слов (L=256) и количество букв в каждом слове (m=4). Надо найти N из получившегося уравнения 256=N 4 . Следовательно, N=4.
Ответ: 4 буквы.

Физминутка

(дети сели ровно, расслабились, закрыли глаза, звучит спокойная музыка , учитель комментирует):

Более тысячи биологически активных точек на ухе известно в настоящее время, поэтому, массируя их, можно опосредованно воздействовать на весь организм. Нужно стараться так помассировать ушные раковины, чтобы уши «горели». Давайте выполним несколько массажных движений:

  1. потяните за мочки сверху вниз;
  2. потяните ушные раковины вверх;
  3. потяните ушные раковины к наружи;
  4. выполните круговые движения ушной раковины по часовой стрелке и против.

Далее массажируем определенные места на голове, что активизирует кровообращение в кончиках пальчиков, предотвращает застой крови не только в руках, но и во всем теле, так как кончики пальцев непосредственно связаны с мозгом. Массаж проводится в следующей последовательности:

  1. найдите точку на лбу между бровями («третий глаз») и помассируйте ее;
  2. далее парные точки по краям крыльев носа (помогает восстановить обоняние);
  3. точку посередине верхнего края подбородка;
  4. парные точки в височных ямках;
  5. три точки на затылке в углублениях;
  6. парные точки в области козелка уха.

Нужно помнить, что любое упражнение может принести пользу, не оказать никакого воздействия, принести вред. Поэтому нужно выполнять его очень старательно, обязательно в хорошем настроении.

Организация групповой работы, определение групп.

Размещение обучающихся за компьютеры, где у всех открыто задание (Презентация задач) не более 3 человек за каждый ПК. С собой дети берут только тетрадь и ручку для решения. Здесь необходимо объяснить, что в презентации нужно будет ориентироваться по ссылкам, в том числе и выбрав правильный вариант ответа, всего задач – 5 (по 3 минуты на задачу). В конце автоматически выйдет результат на экран монитора в виде отметки за урок. Детей можно ознакомить с критериями выставления отметок за решение данного типа задач:

1 верная задача – отметка «2»
2 верные задачи – отметка «3»
3 верные задачи – отметка «4»
4 верные задачи – отметка «4»
5 верных задач – отметка «5».

Совместное обсуждение типичных ошибок .

– проверка, разрешение вопросов по решению задач:

1. Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

Решение:

811-684=128 (включая число 684), N=128, i=7 бит (2^7=128).
Ответ: 7 бит информации.

2. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

Решение:

всего используется 26 букв + 10 цифр = 36 символов для кодирования 36 вариантов необходимо использовать 6 бит, так как 2^5=32<36<2^6=64, т.е. пяти бит не хватит (они позволяют кодировать только 32 варианта), а шести уже достаточно таким образом, на каждый символ нужно 6 бит (минимально возможное количество бит).
полный номер содержит 7 символов, каждый по 6 бит, поэтому на номер требуется 6 x 7 = 42 бита.
По условию каждый номер кодируется целым числом байт (в каждом байте – 8 бит), поэтому требуется 6 байт на номер (5x8=40<42<6x8=48), пяти байтов не хватает, а шесть – минимально возможное количество на 20 номеров нужно выделить 20x6=120 байт.
Ответ: 120 байт.

3. Каждая клетка поля 8×8 кодируется минимально возможным и одинаковым количеством бит. Решение задачи о прохождении "конем" поля записывается последовательностью кодов посещенных клеток. Каков объем информации после 11 сделанных ходов? (Запись решения начинается с начальной позиции коня).

Решение:

Всего клеток 8х8 = 64. Для кодирования 1 клетки необходимо 6 бит (2^6=64). В записи решения будет описано 12 клеток (11 ходов+начальная позиция). Объем информации записи 12х6 = 72 бита = 72:8 = 9 байт.
Ответ: 9 байт.

4. Информационное сообщение объемом 1,5 килобайта содержит 3072 символа. Сколько символов содержит алфавит, с помощью которого было записано это сообщение?

Решение:

1,5 Кбайта = 1,5*1024*8 = 12288 бит. 12288/3072 = 4 бита - информационный вес одного символа. Мощность алфавита равна 2^4=16 символов. Ответ: 16 символов.

5. Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

Решение:

Всего требуется сохранить 128 х 256 = 32768 символов.
Информационный вес 1 символа 6 бит (2^6=64). Чтобы сохранить весь текст, потребуется 32768 х 6 = 196608 бит = 196608: 8 =24576 байт = 24576: 1024 = 24 Кб.
Ответ: 24 Кб.

Подведение итогов, выставление отметок .

объявление оценок за урок.

Домашнее задание:

к следующему уроку составить 1 задачу на нахождение количества информации, используя алфавитный или содержательный подход и решить ее в тетради.

Рефлексия

(раздать заготовленные листочки – Приложение 1 )

ПРАВИЛА НАПИСАНИЯ СИНКВЕЙНА

(Синквейн – это способ на любом этапе урока, изучения темы, проверить, что находится у обучающихся на уровне ассоциаций).

1 строчка – одно слово – название стихотворения, тема, обычно существительное.
2 строчка – два слова (прилагательные или причастия). Описание темы, слова можно соединять союзами и предлогами.
3 строчка – три слова (глаголы). Действия, относящиеся к теме.
4 строчка – четыре слова – предложение. Фраза, которая показывает отношение автора к теме в 1-ой строчке.
5 строчка – одно слово – ассоциация, синоним, который повторяет суть темы в 1-ой строчке, обычно существительное.

Данный вид рефлексии будет полезен учителю для проведения самоанализа.

ВСЕМ СПАСИБО!

Задачи были взяты из разных источников сети Интернет.

Объемный способ измерения информации

Технический способ измерения количества информации (или, точнее, информационного объема сообщения) основан на подсчета количества символов, из которых образовано сообщение. При этом не учитывается смысловое содержание сообщения. Например, многократное повторение одного и того же текста не несет новой информации, однако в результате занимает больший объем памяти, требует большего времени для передачи и т.п. Поэтому этот способ удобен в технических расчетах.

Мера К. Шеннона

Американский математик и инженер К. Шеннон в 1948 г. получил формулу для расчета количества информации, содержащейся в системе, обладающей произвольным набором неравновероятных (в общем случае) состояний

где n - число возможных состояний системы, pi - вероятность i-го состояния (причем pi = 1)

Чем меньше вероятность наступления события, тем большую информацию это событие несет.

Рассмотрим пример:

На книжном стеллаже восемь полок. Книга может быть поставлена на любую из них. Сколько информации содержит сообщение о том, где находится книга?

Применим метод половинного деления. Зададим несколько вопросов уменьшающих неопределенность знаний в два раза.

Задаем вопросы:

Книга лежит выше четвертой полки?

Книга лежит ниже третьей полки? -Да.

Книга - на второй полке?

Ну теперь все ясно! Книга лежит на первой полке! Каждый ответ уменьшал неопределенность в два раза.

Всего было задано три вопроса. Значит набрано 3 бита информации. И если бы сразу было сказано, что книга лежит на первой полке, то этим сообщением были бы переданы те же 3 бита информации.

Если обозначить возможное количество событий, или, другими словами, неопределенность знаний N, а буквой I количество информации в сообщении о том, что произошло одно из N событий, то можно записать формулу:

Количество информации, содержащееся в сообщении о том, что произошло одно из N равновероятных событий, определяется из решения показательного уравнения:

А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.


Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.

В каждой очередной позиции текста может появиться любой из N символов. Тогда, согласно известной нам формуле, каждый такой символ несет I бит информации, которое можно определить из решения уравнения: 2I = 54. Получаем: I = 5.755 бит.

Вот сколько информации несет один символ в русском тексте! А теперь для того, чтобы найти количество информации во всем тексте, нужно посчитать число символов в нем и умножить на I.

Посчитаем количество информации на одной странице книги. Пусть страница содержит 50 строк. В каждой строке - 60 символов. Значит, на странице умещается 50x60=3000 знаков. Тогда объем информации будет равен: 5,755 х 3000 = 17265 бит.

При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.

Пусть небольшая книжка, сделанная с помощью компьютера, содержит 150 страниц; на каждой странице - 40 строк, в каждой строке - 60 символов. Значит страница содержит 40x60=2400 байт информации. Объем всей информации в книге: 2400 х 150 = 360 000 байт.

В любой системе единиц измерения существуют основные единицы и производные от них.

Для измерения больших объемов информации используются следующие производные от байта единицы:

1 килобайт = 1Кб = 210 байт = 1024 байта.

1 мегабайт = 1Мб = 210 Кб = 1024 Кб.

1 гигабайт = 1Гб = 210 Мб = 1024 Мб.

Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.

Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.

Вопросы для самопроверки

Вопросы для самопроверки

1. Формальная и неформальная постановка задачи.

2. Дайте определение «модель» и требования к моделированию.

3. Характеристика стадий построения информационной модели.

4. Классификация моделей.

5. Виды форм представления информационных моделей.

6. Этапы разработки компьютерных моделей.

7. Информация, классификация информации.

8. Методы получения и использования информации.

9. Носитель информации.

10. Способы измерения информации.

11. Алфавитный подход к измерения информации.