Какой метод сжатия дает наилучший результат. Пример набора данных. Сжатие с потерей информации

  • 29.04.2019

Цель лекции : изучить основные виды и алгоритмы сжатия данных и научиться решать задачи сжатия данных по методу Хаффмана и с помощью кодовых деревьев.

Основоположником науки о сжатии информации принято считать Клода Шеннона. Его теорема об оптимальном кодировании показывает, к чему нужно стремиться при кодировании информации и насколько та или иная информация при этом сожмется. Кроме того, им были проведены опыты по эмпирической оценке избыточности английского текста. Шенон предлагал людям угадывать следующую букву и оценивал вероятность правильного угадывания. На основе ряда опытов он пришел к выводу, что количество информации в английском тексте колеблется в пределах 0,6 – 1,3 бита на символ. Несмотря на то, что результаты исследований Шеннона были по-настоящему востребованы лишь десятилетия спустя, трудно переоценить их значение .

Сжатие данных – это процесс, обеспечивающий уменьшение объема данных путем сокращения их избыточности. Сжатие данных связано с компактным расположением порций данных стандартного размера. Сжатие данных можно разделить на два основных типа:

  • Сжатие без потерь (полностью обратимое) – это метод сжатия данных, при котором ранее закодированная порция данных восстанавливается после их распаковки полностью без внесения изменений. Для каждого типа данных, как правило, существуют свои оптимальные алгоритмы сжатия без потерь.
  • Сжатие с потерями – это метод сжатия данных, при котором для обеспечения максимальной степени сжатия исходного массива данных часть содержащихся в нем данных отбрасывается. Для текстовых, числовых и табличных данных использование программ, реализующих подобные методы сжатия, является неприемлемыми. В основном такие алгоритмы применяются для сжатия аудио- и видеоданных, статических изображений.

Алгоритм сжатия данных (алгоритм архивации) – это алгоритм , который устраняет избыточность записи данных.

Введем ряд определений, которые будут использоваться далее в изложении материала.

Алфавит кода – множество всех символов входного потока. При сжатии англоязычных текстов обычно используют множество из 128 ASCII кодов. При сжатии изображений множество значений пиксела может содержать 2, 16, 256 или другое количество элементов.

Кодовый символ – наименьшая единица данных, подлежащая сжатию. Обычно символ – это 1 байт , но он может быть битом, тритом {0,1,2}, или чем-либо еще.

Кодовое слово – это последовательность кодовых символов из алфавита кода. Если все слова имеют одинаковую длину (число символов), то такой код называется равномерным (фиксированной длины) , а если же допускаются слова разной длины, то – неравномерным (переменной длины) .

Код – полное множество слов.

Токен – единица данных, записываемая в сжатый поток некоторым алгоритмом сжатия. Токен состоит из нескольких полей фиксированной или переменной длины.

Фраза – фрагмент данных, помещаемый в словарь для дальнейшего использования в сжатии.

Кодирование – процесс сжатия данных.

Декодирование – обратный кодированию процесс, при котором осуществляется восстановление данных.

Отношение сжатия – одна из наиболее часто используемых величин для обозначения эффективности метода сжатия.

Значение 0,6 означает, что данные занимают 60% от первоначального объема. Значения больше 1 означают, что выходной поток больше входного (отрицательное сжатие, или расширение).

Коэффициент сжатия – величина, обратная отношению сжатия.

Значения больше 1 обозначают сжатие, а значения меньше 1 – расширение.

Средняя длина кодового слова – это величина, которая вычисляется как взвешенная вероятностями сумма длин всех кодовых слов.

L cp =p 1 L 1 +p 2 L 2 +...+p n L n ,

где – вероятности кодовых слов;

L 1 ,L 2 ,...,L n – длины кодовых слов.

Существуют два основных способа проведения сжатия.

Статистические методы – методы сжатия, присваивающие коды переменной длины символам входного потока, причем более короткие коды присваиваются символам или группам символам, имеющим большую вероятность появления во входном потоке. Лучшие статистические методы применяют кодирование Хаффмана.

Словарное сжатие – это методы сжатия, хранящие фрагменты данных в "словаре" (некоторая структура данных ). Если строка новых данных, поступающих на вход, идентична какому-либо фрагменту, уже находящемуся в словаре, в выходной поток помещается указатель на этот фрагмент. Лучшие словарные методы применяют метод Зива-Лемпела.

Рассмотрим несколько известных алгоритмов сжатия данных более подробно.

Метод Хаффмана

Этот алгоритм кодирования информации был предложен Д.А. Хаффманом в 1952 году. Хаффмановское кодирование (сжатие) – это широко используемый метод сжатия, присваивающий символам алфавита коды переменной длины, основываясь на вероятностях появления этих символов.

Идея алгоритма состоит в следующем: зная вероятности вхождения символов в исходный текст, можно описать процедуру построения кодов переменной длины, состоящих из целого количества битов. Символам с большей вероятностью присваиваются более короткие коды. Таким образом, в этом методе при сжатии данных каждому символу присваивается оптимальный префиксный код , основанный на вероятности его появления в тексте.

Префиксный код – это код, в котором никакое кодовое слово не является префиксом любого другого кодового слова. Эти коды имеют переменную длину.

Оптимальный префиксный код – это префиксный код , имеющий минимальную среднюю длину.

Алгоритм Хаффмана можно разделить на два этапа.

  1. Определение вероятности появления символов в исходном тексте.

    Первоначально необходимо прочитать исходный текст полностью и подсчитать вероятности появления символов в нем (иногда подсчитывают, сколько раз встречается каждый символ). Если при этом учитываются все 256 символов, то не будет разницы в сжатии текстового или файла иного формата.

  2. Нахождение оптимального префиксного кода.

    Далее находятся два символа a и b с наименьшими вероятностями появления и заменяются одним фиктивным символом x , который имеет вероятность появления, равную сумме вероятностей появления символов a и b . Затем, используя эту процедуру рекурсивно, находится оптимальный префиксный код для меньшего множества символов (где символы a и b заменены одним символом x ). Код для исходного множества символов получается из кодов замещающих символов путем добавления 0 или 1 перед кодом замещающего символа, и эти два новых кода принимаются как коды заменяемых символов. Например, код символа a будет соответствовать коду x с добавленным нулем перед этим кодом, а для символа b перед кодом символа x будет добавлена единица.

Коды Хаффмана имеют уникальный префикс , что и позволяет однозначно их декодировать, несмотря на их переменную длину.

Пример 1 . Программная реализация метода Хаффмана.

#include "stdafx.h" #include using namespace std; void Expectancy(); long MinK(); void SumUp(); void BuildBits(); void OutputResult(char **Result); void Clear(); const int MaxK = 1000; long k, a, b; char bits; char sk; bool Free; char *res; long i, j, n, m, kj, kk1, kk2; char str; int _tmain(int argc, _TCHAR* argv){ char *BinaryCode; Clear(); cout << "Введите строку для кодирования: "; cin >> str; Expectancy(); SumUp(); BuildBits(); OutputResult(&BinaryCode); cout << "Закодированная строка: " << endl; cout << BinaryCode << endl; system("pause"); return 0; } //описание функции обнуления данных в массивах void Clear(){ for (i = 0; i < MaxK + 1; i++){ k[i] = a[i] = b[i] = 0; sk[i] = 0; Free[i] = true; for (j = 0; j < 40; j++) bits[i][j] = 0; } } /*описание функции вычисления вероятности вхождения каждого символа в тексте*/ void Expectancy(){ long *s = new long; for (i = 0; i < 256; i++) s[i] = 0; for (n = 0; n < strlen(str); n++) s]++; j = 0; for (i = 0; i < 256; i++) if (s[i] != 0){ j++; k[j] = s[i]; sk[j] = i; } kj = j; } /*описание функции нахождения минимальной частоты символа в исходном тексте*/ long MinK(){ long min; i = 1; while (!Free[i] && i < MaxK) i++; min = k[i]; m = i; for (i = m + 1; i <= kk2; i++) if (Free[i] && k[i] < min){ min = k[i]; m = i; } Free[m] = false; return min; } //описание функции подсчета суммарной частоты символов void SumUp(){ long s1, s2, m1, m2; for (i = 1; i <= kj; i++){ Free[i] = true; a[i] = 0; b[i] = 0; } kk1 = kk2 = kj; while (kk1 > 2){ s1 = MinK(); m1 = m; s2 = MinK(); m2 = m; kk2++; k = s1 + s2; a = m1; b = m2; Free = true; kk1--; } } //описание функции формирования префиксных кодов void BuildBits(){ strcpy(bits,"1"); Free = false; strcpy(bits],bits); strcat(bits] , "0"); strcpy(bits],bits); strcat(bits] , "1"); i = MinK(); strcpy(bits[m],"0"); Free[m] = true; strcpy(bits],bits[m]); strcat(bits] , "0"); strcpy(bits],bits[m]); strcat(bits] , "1"); for (i = kk2 - 1; i > 0; i--) if (!Free[i]) { strcpy(bits],bits[i]); strcat(bits] , "0"); strcpy(bits],bits[i]); strcat(bits] , "1"); } } //описание функции вывода данных void OutputResult(char **Result){ (*Result) = new char; for (int t = 0; i < 1000 ;i++) (*Result)[t] = 0; for (i = 1; i <= kj; i++) res] = bits[i]; for (i = 0; i < strlen(str); i++) strcat((*Result) , res]); } Листинг.

Алгоритм Хаффмана универсальный, его можно применять для сжатия данных любых типов, но он малоэффективен для файлов маленьких размеров (за счет необходимости сохранения словаря). В настоящее время данный метод практически не применяется в чистом виде, обычно используется как один из этапов сжатия в более сложных схемах. Это единственный алгоритм , который не увеличивает размер исходных данных в худшем случае (если не считать необходимости хранить таблицу перекодировки вместе с файлом).

Современные пользователи довольно часто сталкиваются с проблемой нехватки свободного пространства на жестком диске. Многие, в попытке освободить хоть немного свободного пространства, пытаются удалить с жесткого диска всю ненужную информацию. Более продвинутые пользователи используют для уменьшения объема данных особые алгоритмы сжатия. Несмотря на эффективность этого процесса, многие пользователи никогда о нем даже не слышали. Давайте же попробуем разобраться, что подразумевается под сжатием данных, какие алгоритмы для этого могут использоваться.

На сегодняшний день сжатие информации является достаточно важной процедурой, которая необходима каждому пользователю ПК. Сегодня любой пользователь может позволить себе приобрести современный накопитель данных, в котором предусмотрена возможность использования большого объема памяти. Подобные устройства, как правило, оснащаются высокоскоростными каналами для транслирования информации. Однако, стоит отметить, что с каждым годом объем необходимой пользователям информации становится все больше и больше. Всего $10$ лет назад объем стандартного видеофильма не превышал $700$ Мб. В настоящее время объем фильмов в HD-качестве может достигать нескольких десятков гигабайт.

Когда необходимо сжатие данных?

Не стоит многого ждать от процесса сжатия информации. Но все-таки встречаются ситуации, в которых сжатие информации бывает просто необходимым и крайне полезным. Рассмотрим некоторые из таких случаев.

    Передача по электронной почте.

    Очень часто бывают ситуации, когда нужно переслать большой объем данных по электронной почте. Благодаря сжатию можно существенно уменьшить размер передаваемых файлов. Особенно оценят преимущества данной процедуры те пользователи, которые используют для пересылки информации мобильные устройства.

    Публикация данных на интернет -сайтах и порталах.

    Процедура сжатия часто используется для уменьшения объема документов, используемых для публикации на различных интернет-ресурсах. Это позволяет значительно сэкономить на трафике.

    Экономия свободного места на диске.

    Когда нет возможности добавить в систему новые средства для хранения информации, можно использовать процедуру сжатия для экономии свободного пространства на диске. Бывает так, что бюджет пользователя крайне ограничен, а свободного пространства на жестком диске не хватает. Вот тут-то на помощь и приходит процедура сжатия.

Кроме перечисленных выше ситуаций, возможно еще огромное количество случаев, в которых процесс сжатия данных может оказаться очень полезным. Мы перечислили только самые распространенные.

Способы сжатия информации

Все существующие способы сжатия информации можно разделить на две основные категории. Это сжатие без потерь и сжатие с определенными потерями. Первая категория актуальна только тогда, когда есть необходимость восстановить данные с высокой точностью, не потеряв ни одного бита исходной информации. Единственный случай, в котором необходимо использовать именно этот подход, это сжатие текстовых документов.

В том случае, если нет особой необходимости в максимально точном восстановлении сжатой информации, необходимо предусмотреть возможность использования алгоритмов с определенными потерями при сжатии.

Сжатие без потери информации

Данные методы сжатия информации интересуют прежде всего, так как именно они применяются при передаче больших объемов информации по электронной почте, при выдаче выполненной работы заказчику или при создании резервных копий информации, хранящейся на компьютере. Эти методы сжатия информации не допускают потерю информации, поскольку в их основу положено лишь устранение ее избыточности, информация же имеет избыточность практически всегда, если бы последней не было, нечего было бы и сжимать.

Пример 1

Приведем простой пример. Русский язык включает в себя $33$ буквы, $10$ цифр и еще примерно $15$ знаков препинания и других специальных символов. Для текста, записанного только прописными русскими буквами (например как в телеграммах) вполне хватило бы $60$ разных значений. Тем не менее, каждый символ обычно кодируется байтом, содержащим, как нам известно, 8 битов, и может выражаться $256$ различными кодами. Это один из первых факторов, характеризующих избыточность. Для телеграфного текста вполне хватило бы и $6$ битов на символ.

Пример 2

Рассмотрим другой пример. В международной кодировке символов ASCII для кодирования любого символа выделяется одинаковое количество битов ($8$), в то время, как всем давно и хорошо известно, что наиболее часто встречающиеся символы имеет смысл кодировать меньшим количеством знаков. Так, к примеру, в азбуке Морзе буквы «Е» и «Т», которые встречаются очень часто, кодируются $1$ знаком (соответственно это точка и тире). А такие редкие буквы, как «Ю» ($ - -$) и «Ц» ($- - $), кодируются $4$ знаками.

Замечание 1

Неэффективная кодировка является вторым фактором, характеризующим избыточность. Программы, благодаря которым выполняется сжатие информации, могут вводить свою кодировку, причем она может быть разной для разных файлов, и приписывать ее к сжатому файлу в виде таблицы (словаря), из которой распаковывающая программа будет считывать информацию о том, как в данном файле закодированы те или иные символы или их группы.

Алгоритмы, в основу которых положено перекодирование информации, называются алгоритмами Хаффмана.

Алгоритм Хаффмана

В данном алгоритме сжатие информации осуществляется путем статистического кодирования или на основе словаря, который предварительно был создан. Согласно статистическому алгоритму Хаффмана каждому входному символу присваивается определенный код. При этом наиболее часто используемому символу - наиболее короткий код, а наиболее редко используемому - более длинный. В качестве примера на диаграмме приведено распределение частоты использования отдельных букв английского алфавита (рис.1). Такое распределение может быть построено и для русского языка. Таблицы кодирования создаются заранее и имеют ограниченный размер. Этот алгоритм обеспечивает наибольшее быстродействие и наименьшие задержки. Для получения высоких коэффициентов сжатия статистический метод требует больших объемов памяти.

Рисунок 1. Распределение английских букв по их частоте использования

Величина сжатия определяется избыточностью обрабатываемого массива бит. Каждый из естественных языков обладает определенной избыточностью. Среди европейских языков русский имеет самый высокий уровней избыточности. Об этом можно судить по размерам русского перевода английского текста. Обычно он примерно на $30\%$ больше. Если речь идет о стихотворном тексте, избыточность может быть до $2$ раз выше.

Замечание 2

Самая большая сложность с кодами заключается в необходимости иметь таблицы вероятностей для каждого типа сжимаемых данных. Это не представляет проблемы, если известно, что сжимается английский или русский текст. В этом случае мы просто предоставляем кодеру и декодеру подходящее для английского или русского текста кодовое дерево. В общем же случае, когда вероятность символов для входных данных неизвестна, статические коды Хаффмана работают неэффективно.

Решением этой проблемы является статистический анализ кодируемых данных, выполняемый в ходе первого прохода по данным, и составление на его основе кодового дерева. Собственно кодирование при этом выполняется вторым проходом.

Еще одним недостатком кодов является то, что минимальная длина кодового слова для них не может быть меньше единицы, тогда как энтропия сообщения вполне может составлять и $0,1$, и $0,01$ бит/букву. В этом случае код становится существенно избыточным. Проблема решается применением алгоритма к блокам символов, но тогда усложняется процедура кодирования/декодирования и значительно расширяется кодовое дерево, которое нужно в конечном итоге сохранять вместе с кодом.

Данные коды никак не учитывают взаимосвязей между символами, которые присутствуют практически в любом тексте.

Замечание 3

Сегодня, в век информации, несмотря на то, что практически каждому пользователю доступны высокоскоростные каналы для передачи данных и носители больших объемов, вопрос сжатия данных остается актуальным. Существуют ситуации, в которых сжатие данных является просто необходимой операцией. В частности, это касается пересылки данных по электронной почте и размещения информации в Интернете.

Методы сжатия данных имеют достаточно длинную историю развития, которая началась задолго до появления первого компьютера. В этой статье будет произведена попытка дать краткий обзор основных теорий, концепций идей и их реализаций, не претендующий, однако, на абсолютную полноту. Более подробные сведения можно найти, например, в Кричевский Р.Е. , Рябко Б.Я. , Witten I.H. , Rissanen J. , Huffman D.A., Gallager R.G. , Knuth D.E. , Vitter J.S. и др.

Сжатие информации - проблема, имеющая достаточно давнюю историю, гораздо более давнюю, нежели история развития вычислительной техники, которая (история) обычно шла параллельно с историей развития проблемы кодирования и шифровки информации. Все алгоритмы сжатия оперируют входным потоком информации, минимальной единицей которой является бит, а максимальной - несколько бит, байт или несколько байт. Целью процесса сжатия, как правило, есть получение более компактного выходного потока информационных единиц из некоторого изначально некомпактного входного потока при помощи некоторого их преобразования. Основными техническими характеристиками процессов сжатия и результатов их работы являются:

Степень сжатия (compress rating) или отношение (ratio) объемов исходного и результирующего потоков;

Скорость сжатия - время, затрачиваемое на сжатие некоторого объема информации входного потока, до получения из него эквивалентного выходного потока;

Качество сжатия - величина, показывающая на сколько сильно упакован выходной поток, при помощи применения к нему повторного сжатия по этому же или иному алгоритму.

Существует несколько различных подходов к проблеме сжатия информации. Одни имеют весьма сложную теоретическую математическую базу, другие основаны на свойствах информационного потока и алгоритмически достаточно просты. Любой способ подход и алгоритм, реализующий сжатие или компрессию данных, предназначен для снижения объема выходного потока информации в битах при помощи ее обратимого или необратимого преобразования. Поэтому, прежде всего, по критерию, связанному с характером или форматом данных, все способы сжатия можно разделить на две категории: обратимое и необратимое сжатие.

Под необратимым сжатием подразумевают такое преобразование входного потока данных, при котором выходной поток, основанный на определенном формате информации, представляет, с некоторой точки зрения, достаточно похожий по внешним характеристикам на входной поток объект, однако отличается от него объемом. Степень сходства входного и выходного потоков определяется степенью соответствия некоторых свойств объекта (т.е. сжатой и несжатой информации, в соответствии с некоторым определенным форматом данных), представляемого данным потоком информации. Такие подходы и алгоритмы используются для сжатия, например, данных растровых графических файлов с низкой степенью повторяемости байтов в потоке. При таком подходе используется свойство структуры формата графического файла и возможность представить графическую картинку приблизительно схожую по качеству отображения (для восприятия человеческим глазом) несколькими (а точнее n) способами. Поэтому, кроме степени или величины сжатия, в таких алгоритмах возникает понятие качества, т.к. исходное изображение в процессе сжатия изменяется, то под качеством можно понимать степень соответствия исходного и результирующего изображения, оцениваемая субъективно, исходя из формата информации. Для графических файлов такое соответствие определяется визуально, хотя имеются и соответствующие интеллектуальные алгоритмы и программы. Необратимое сжатие невозможно применять в областях, в которых необходимо иметь точное соответствие информационной структуры входного и выходного потоков. Данный подход реализован в популярных форматах представления видео и фото информации, известных как JPEG и JFIF алгоритмы и JPG и JIF форматы файлов.

Обратимое сжатие всегда приводит к снижению объема выходного потока информации без изменения его информативности, т.е. - без потери информационной структуры. Более того, из выходного потока, при помощи восстанавливающего или декомпрессирующего алгоритма, можно получить входной, а процесс восстановления называется декомпрессией или распаковкой, и только после процесса распаковки данные пригодны для обработки в соответствии с их внутренним форматом.

В обратимых алгоритмах кодирование как процесс можно рассматривать со статистической точки зрения, что еще более полезно, не только для построения алгоритмов сжатия, но и для оценки их эффективности. Для всех обратимых алгоритмов существует понятие стоимости кодирования. Под стоимостью кодирования понимается средняя длина кодового слова в битах. Избыточность кодирования равна разности между стоимостью и энтропией кодирования, а хороший алгоритм сжатия всегда должен минимизировать избыточность (напомним, что под энтропией информации понимают меру ее неупорядоченности.). Фундаментальная теорема Шеннона о кодировании информации говорит о том, что "стоимость кодирования всегда не меньше энтропии источника, хотя может быть сколь угодно близка к ней". Поэтому, для любого алгоритма, всегда имеется некоторый предел степени сжатия, определяемый энтропией входного потока.

Перейдем теперь непосредственно к алгоритмическим особенностям обратимых алгоритмов и рассмотрим важнейшие теоретические подходы к сжатию данных, связанные с реализацией кодирующих систем и способы сжатия информации.

Сжатие способом кодирования серий

Наиболее известный простой подход и алгоритм сжатия информации обратимым путем - это кодирование серий последовательностей (Run Length Encoding - RLE). Суть методов данного подхода состоит в замене цепочек или серий повторяющихся байтов или их последовательностей на один кодирующий байт и счетчик числа их повторений. Проблема всех аналогичных методов заключается лишь в определении способа, при помощи которого распаковывающий алгоритм мог бы отличить в результирующем потоке байтов кодированную серию от других - некодированных последовательностей байтов. Решение проблемы достигается обычно простановкой меток в начале кодированных цепочек. Такими метками могут быть, например, характерные значения битов в первом байте кодированной серии, значения первого байта кодированной серии и т.п. Данные методы, как правило, достаточно эффективны для сжатия растровых графических изображений (BMP, PCX, TIF, GIF), т.к. последние содержат достаточно много длинных серий повторяющихся последовательностей байтов. Недостатком метода RLE является достаточно низкая степень сжатия или стоимость кодирования файлов с малым числом серий и, что еще хуже - с малым числом повторяющихся байтов в сериях.

Сжатие без применения метода RLE

Процесс сжатия данных без применения метода RLE можно разбить на два этапа: моделирование (modelling) и, собственно, кодирование (encoding). Эти процессы и их реализующие алгоритмы достаточно независимы и разноплановы.

Процесс кодирования и его методы

Под кодированием обычно понимают обработку потока символов (в нашем случае байтов или полубайтов) в некотором алфавите, причем частоты появления символов в потоке различны. Целью кодирования является преобразование этого потока в поток бит минимальной длины, что достигается уменьшением энтропии входного потока путем учета частот символов. Длина кода, представляющего символы из алфавита потока должна быть пропорциональна объему информации входного потока, а длина символов потока в битах может быть не кратна 8 и даже переменной. Если распределение вероятностей частот появления символов из алфавита входного потока известно, то можно построить модель оптимального кодирования. Однако, ввиду существования огромного числа различных форматов файлов задача значительно усложняется т.к. распределение частот символов данных заранее неизвестно. В таком случае, в общем виде, используются два подхода.

Первый заключается в просмотре входного потока и построении кодирования на основании собранной статистики (при этом требуется два прохода по файлу - один для просмотра и сбора статистической информации, второй - для кодирования, что несколько ограничивает сферу применения таких алгоритмов, т.к., таким образом, исключается возможность однопроходного кодирования "на лету", применяемого в телекоммуникационных системах, где и объем данных, подчас, не известен, а их повторная передача или разбор может занять неоправданно много времени). В таком случае, в выходной поток записывается статистическая схема использованного кодирования. Данный метод известен как статическое кодирование Хаффмена .

Введение.

Сжатие сокращает объем пространства, тpебуемого для хранения файлов в ЭВМ, и

количество времени, необходимого для передачи информации по каналу установленной

ширины пропускания. Это есть форма кодирования. Другими целями кодирования

являются поиск и исправление ошибок, а также шифрование. Процесс поиска и

исправления ошибок противоположен сжатию - он увеличивает избыточность данных,

когда их не нужно представлять в удобной для восприятия человеком форме. Удаляя

из текста избыточность, сжатие способствует шифpованию, что затpудняет поиск

шифpа доступным для взломщика статистическим методом.

Рассмотpим обратимое сжатие или сжатие без наличия помех, где первоначальный

текст может быть в точности восстановлен из сжатого состояния. Необратимое или

ущербное сжатие используется для цифровой записи аналоговых сигналов, таких как

человеческая речь или рисунки. Обратимое сжатие особенно важно для текстов,

записанных на естественных и на искусственных языках, поскольку в этом случае

ошибки обычно недопустимы. Хотя первоочередной областью применения

рассматриваемых методов есть сжатие текстов, что отpажает и наша терминология,

однако, эта техника может найти применение и в других случаях, включая обратимое

кодирование последовательностей дискретных данных.

Существует много веских причин выделять ресурсы ЭВМ в pасчете на сжатое

представление, т.к. более быстрая передача данных и сокpащение пpостpанства для

их хpанения позволяют сберечь значительные средства и зачастую улучшить

показатели ЭВМ. Сжатие вероятно будет оставаться в сфере внимания из-за все

возрастающих объемов хранимых и передаваемых в ЭВМ данных, кроме того его можно

использовать для преодоления некотоpых физических ограничений, таких как,

напpимеp, сравнительно низкая шиpину пpопускания телефонных каналов.

ПРИМЕНЕНИЕ РАСШИРЯЮЩИХСЯ ДЕРЕВЬЕВ ДЛЯ СЖАТИЯ ДАННЫХ.

Алгоритмы сжатия могут повышать эффективность хранения и передачи данных

посредством сокращения количества их избыточности. Алгоритм сжатия берет в

качестве входа текст источника и производит соответствующий ему сжатый текст,

когда как разворачивающий алгоритм имеет на входе сжатый текст и получает из

него на выходе первоначальный текст источника. Большинство алгоритмов сжатия

рассматривают исходный текст как набор строк, состоящих из букв алфавита

исходного текста.

Избыточность в представлении строки S есть L(S) - H(S), где L(S) есть длина

представления в битах, а H(S) - энтропия - мера содержания информации, также

выраженная в битах. Алгоритмов, которые могли бы без потери информации сжать

строку к меньшему числу бит, чем составляет ее энтропия, не существует. Если из

исходного текста извлекать по одной букве некоторого случайного набоpа,

использующего алфавит А, то энтропия находится по формуле:

H(S) = C(S) p(c) log ---- ,

где C(S) есть количество букв в строке, p(c) есть статическая вероятность

появления некоторой буквы C. Если для оценки p(c) использована частота появления

каждой буквы c в строке S, то H(C) называется самоэнтропией строки S. В этой

статье H (S) будет использоваться для обозначения самоэнтропии строки, взятой из

статичного источника.

Расширяющиеся деревья обычно описывают формы лексикографической упорядоченности

деpевьев двоичного поиска, но деревья, используемые при сжатии данных могут не

иметь постоянной упорядоченности. Устранение упорядоченности приводит к

значительному упрощению основных операций расширения. Полученные в итоге

алгоритмы предельно быстры и компактны. В случае применения кодов Хаффмана,

pасширение приводит к локально адаптированному алгоритму сжатия, котоpый

замечательно прост и быстр, хотя и не позволяет достигнуть оптимального сжатия.

Когда он применяется к арифметическим кодам, то результат сжатия близок к

оптимальному и приблизительно оптимален по времени.

КОДЫ ПРЕФИКСОВ.

Большинство широко изучаемых алгоритмов сжатия данных основаны на кодах

Хаффмана. В коде Хаффмана каждая буква исходного текста представляется в архиве

кодом переменной длины. Более частые буквы представляются короткими кодами,

менее частые - длинными. Коды, используемые в сжатом тексте должны подчиняться

свойствам префикса, а именно: код, использованный в сжатом тексте не может быть

префиксом любого другого кода.

Коды префикса могут быть найдены посредством дерева, в котором каждый лист

соответствует одной букве алфавита источника. Hа pисунке 1 показано дерево кода

префикса для алфавита из 4 букв. Код префикса для буквы может быть прочитан при

обходе деpева от корня к этой букве, где 0 соответствует выбору левой его ветви,

а 1 - правой. Дерево кода Хаффмана есть дерево с выравненным весом, где каждый

лист имеет вес, равный частоте встречаемости буквы в исходном тексте, а

внутренние узлы своего веса не имеют. Дерево в примере будет оптимальным, если

частоты букв A, B, C и D будут 0.125, 0.125, 0.25 и 0.5 соответственно.

Обычные коды Хаффмана требуют предварительной информации о частоте встречаемости

букв в исходном тексте, что ведет к необходимости его двойного просмотра - один

для получения значений частот букв, другой для проведения самого сжатия. В

последующем, значения этих частот нужно объединять с самим сжатым текстом, чтобы

в дальнейшем сделать возможным его развертывание. Адаптивное сжатие выполняется

за один шаг, т.к. код, используемый для каждой буквы исходного текста, основан

на частотах всех остальных кpоме нее букв алфавита. Основы для эффективной

реализации адаптивного кода Хаффмана были заложены Галлагером, Кнут опубликовал

практическую версию такого алгоритма, а Уиттер его pазвил.

Оптимальный адаптированный код Уиттера всегда лежит в пределах одного бита на

букву источника по отношению к оптимальному статичному коду Хаффмана, что обычно

составляет несколько процентов от H . К тому же, статичные коды Хаффмана всегда

лежат в пределах одного бита на букву исходного текста от H (они достигают этот

предел только когда для всех букв p(C) = 2). Существуют алгоритмы сжатия

которые могут преодолевать эти ограничения. Алгоритм Зива-Лемпелла, например,

присваивает слова из аpхива фиксированной длины строкам исходного текста

пеpеменной длины, а арифметическое сжатие может использовать для кодирования

букв источника даже доли бита.

Применение расширения к кодам префикса.

Расширяющиеся деревья были впервые описаны в 1983 году и более подpобно

рассмотрены в 1985. Первоначально они понимались как вид самосбалансиpованных

деpевьев двоичного поиска, и было также показано, что они позволяют осуществить

самую быструю реализацию приоритетных очередей. Если узел расширяющегося дерева

доступен, то оно является расширенным. Это значит, что доступный узел становится

корнем, все узлы слева от него образуют новое левое поддерево, узлы справа -

новое правое поддерево. Расширение достигается при обходе дерева от старого

корня к целевому узлу и совершении пpи этом локальных изменений, поэтому цена

расширения пропорциональна длине пройденного пути.

Тарьян и Слейтон показали, что расширяющиеся деревья статично оптимальны.

Другими словами, если коды доступных узлов взяты согласно статичному

распределению вероятности, то скорости доступа к расширяющемуся дереву и

статично сбалансированному, оптимизированному этим распределением, будут

отличаться друг от друга на постоянный коэффициент, заметный при достаточно

длинных сериях доступов. Поскольку дерево Хаффмана представляет собой пример

статично сбалансированного дерева, то пpи использовании расширения для сжатия

данных, pазмер сжатого текста будет лежать в пределах некоторого коэффициента от

размера архива, полученного при использовании кода Хаффмана.

Как было первоначально описано, расширение применяется к деревьям, хранящим

данные во внутренних узлах, а не в листьях. Деревья же кодов префикса несут все

свои данные только в листьях. Существует, однако, вариант расширения, называемый

полурасширением, который применим для дерева кодов префикса. При нем целевой

узел не перемещается в корень и модификация его наследников не производится,

взамен путь от корня до цели просто уменьшается вдвое. Полурасширение достигает

тех же теоретических границ в пределах постоянного коэффициента, что и

расширение.

В случае зигзагообразного обхода лексикографического дерева, проведение как

расширения, так и полурасширения усложняется, в отличие от прямого маршрута по

левому или правому краю дерева к целевому узлу. Этот простой случай показан на

рисунке 2. Воздействие полурасширения на маршруте от корня (узел w) до листа

узла A заключается в перемене местами каждой пары внутренних следующих друг за

другом узлов, в результате чего длина пути от корня до узла-листа сокращается в

2 раза. В процессе полурасширения узлы каждой пары, более далекие от корня,

включаются в новый путь (узлы x и z), а более близкие из него

исключаются (узлы w и y).

Сохранение операцией полурасширения лексикографического порядка в деревьях кода

префикса не является обязательным. Единственно важным в операциях с кодом

префикса является точное соответствие дерева, используемого процедурой сжатия

дереву, используемому процедурой развертывания. Любое его изменение, допущенное

между последовательно идущими буквами, производится только в том случае, если

обе процедуры осуществляют одинаковые изменения в одинаковом порядке.

Hенужность поддержки лексикографического порядка значительно упрощает проведение

операции полурасширения за счет исключения случая зигзага. Это может быть

При записи или передаче данных часто бывает полезно сократить размер обрабатываемых данных. Технология, позволяющая достичь этой цели, называется сжатием данных. Существует множество методов сжатия данных, каждый из которых характеризуется собственной областью применения, в которой он дает наилучшие или, наоборот, наихудшие результаты.

Метод кодирования длины серий

Метод кодирования длины серий дает наилучшие результаты, если сжимаемые данные состоят из длинных последовательностей одних и тех же значений. В сущности, такой метод кодирования как раз и состоит в замене подобных последовательностей кодовым значением, определяющим повторяющееся значение и количество его повторений в данной серии. Например, для записи кодированной информации о том, что битовая последовательность состоит из 253 единиц, за которыми следуют 118 нулей и еще 87 единиц, потребуется существенно меньше места, чем для перечисления всех этих 458 бит.

Пример. Используя метод кодирования длины серий последовательность: 111111111100000000000000000 - можно представить в следующем виде: 10.

Метод относительного кодирования

В некоторых случаях информация может состоять из блоков данных, каждый из которых лишь немного отличается от предыдущего. Примером могут служить последовательные кадры видеоизображения. Для таких случаев используется метод относительного кодирования. Данный подход предполагает запись отличий, существующих между последовательными блоками данных, вместо записи самих этих блоков, т.е. каждый блок кодируется с точки зрения его взаимосвязи с предыдущим блоком.

Пример. Используя метод относительного кодирования, последовательность цифр: 1476; 1473; 1480; 1477 - можно представить в следующем виде: 1476; -3; +7; -3.

Частотно-зависимое кодирование

Этот метод сжатия данных предполагает применение частотно-зависимого кодирования, при котором длина битовой комбинации, представляющей элемент данных, обратно пропорциональна частоте использования этого элемента. Такие коды входят в группу кодов переменной длины, т.е. элементы данных в этих кодах представляются битовыми комбинациями различной длины. Если взять английский текст, закодированный с помощью частотно-зависимого метода, то чаще всего встречающиеся символы [е, t, а, i] будут представлены короткими битовыми комбинациями, а те знаки, которые встречаются реже , - более длинными битовыми комбинациями. В результате мы получим более короткое представление всего текста, чем при использовании обычного кода, подобного Unicode или ASCII. Построение алгоритма, который обычно используется при разработке частотно-зависимых кодов, приписывают Девиду Хаффману , поэтому такие коды часто называются кодами Хаффмана. Большинство используемых сегодня частотно-зависимых кодов является кодами Хаффмана.

Пример. Пусть требуется закодировать частотно-зависимым методом последовательность: αγααβααγααβαλααβαβαβαβαα, которая состоит из четырех символов α, β, γ и λ. Причем в этой последовательности α встречается 15 раз, β - 6 раз, γ - 2 раза и λ - 1 раз.

Выберем в соответствии с методом Хаффмана следующий двоичный код для представления символов:

α - 1
β - 01
γ - 001
λ - 000

Метод Лемпеля-Зива

Данный метод назван в честь его создателей, Абрахама Лемпеля и Джэкоба Зива . Системы кодирования по методу Лемпеля-Зива используют технологию кодирования с применением адаптивного словаря. В данном контексте термин словарь означает набор строительных блоков, из которых создается сжатое сообщение. Если сжатию подвергается английский текст, то строительными блоками могут быть символы алфавита. Если потребуется уменьшить размер данных, которые хранятся в компьютере, то компоновочными блоками могут стать нули и единицы. В процессе адаптивного словарного кодирования содержание словаря может изменяться. Например, при сжатии английского текста может оказаться целесообразным добавить в словарь окончание ing и артикль the. В этом случае место, занимаемое будущими копиями окончания ing и артикля the, может быть уменьшено за счет записи их как одиночных ссылок вместо сочетания из трех разных ссылок. Системы кодирования по методу Лемпеля-Зива используют изощренные и весьма эффективные методы адаптации словаря в процессе кодирования или сжатия. В частности, в любой момент процесса кодирования словарь будет состоять из тех комбинаций, которые уже были закодированы [сжаты].

В качестве примера рассмотрим, как можно выполнить сжатие сообщения с использованием конкретной системы метода Лемпеля-Зива, известной как LZ77. Процесс начинается практически с переписывания начальной части сообщения, однако в определенный момент осуществляется переход к представлению будущих сегментов с помощью триплетов, каждый из которых будет состоять из, двух целых чисел и следующего за ними одного символа текста. Каждый триплет описывает способ построения следующей части сообщения. Например, пусть распакованный текст имеет следующий вид:

αβααβλβ

Строка αβααβλβ является уже распакованной частью сообщения. Для того чтобы разархивировать остальной текст сообщения, необходимо сначала расширить строку, присоединив к ней ту часть, которая в ней уже встречается. Первый номер в триплете указывает, сколько символов необходимо отсчитать в обратном направлении в строке, чтобы найти первый символ добавляемого сегмента. В данном случае необходимо отсчитать в обратном направлении 5 символов, и мы попадем на второй слева символ а уже распакованной строки. Второе число в триплете задает количество последовательных символов справа от начального, которые составляют добавляемый сегмент. В нашем примере это число 4, и это означает, что добавляемым сегментом будет ααβλ. Копируем его в конец строки и получаем новое значение распакованной части сообщения: αβααβλβααβλ.

Наконец, последний элемент [в нашем случае это символ α] должен быть помещен в конец расширенной строки, в результате чего получаем полностью распакованное сообщение: αβααβλβααβλα.

Сжатие изображений

Растровый формат, используемый в современных цифровых преобразователях изображений, предусматривает кодирование изображения в формате по три байта на пиксель, что приводит к созданию громоздких, неудобных в работе растровых файлов. Специально для этого формата было разработано множество схем сжатия, предназначенных для уменьшения места, занимаемого подобными файлами на диске. Одной из таких схем является формат GIF , разработанный компанией CompuServe. Используемый в ней метод заключается в уменьшении количества цветовых оттенков пикселя до 256, в результате чего цвет каждого пикселя может быть представлен одним байтом вместо трех. С помощью таблицы, называемой цветовой палитрой, каждый из допустимых цветовых оттенков пикселя ассоциируется с некоторой комбинацией цветов "красный-зеленый-синий". Изменяя используемую палитру, можно изменять цвета, появляющиеся в изображении.

Обычно один из цветов палитры в формате GIF воспринимается как обозначение "прозрачности". Это означает, что в закрашенных этим цветом участках изображения отображается цвет того фона, на котором оно находится. Благодаря этому и относительной простоте использования изображений формат GIF получил широкое распространение в тех компьютерных играх, где множество различных картинок перемещается по экрану.

Другим примером системы сжатия изображений является формат JPEG. Это стандарт, разработанный ассоциацией Joint Photographic Experts Group [отсюда и название этого стандарта] в рамках организации ISO. Формат JPEG показал себя как эффективный метод представления цветных фотографий. Именно по этой причине данный стандарт используется производителями современных цифровых фотокамер. Следует ожидать, что он окажет немалое влияние на область цифрового представления изображений и в будущем.

В действительности стандарт JPEG включает несколько способов представления изображения, каждый из которых имеет собственное назначение. Например, когда требуется максимальная точность представления изображения, формат JPEG предлагает режим "без потерь", название которого прямо указывает, что процедура кодирования изображения будет выполнена без каких-либо потерь информации. В этом режиме экономия места достигается посредством запоминания различий между последовательными пикселями, а не яркости каждого пикселя в отдельности. Согласно теории, в большинстве случаев степень различия между соседними пикселями может быть закодирована более короткими битовыми комбинациями, чем собственно значения яркости отдельных пикселей. Существующие различия кодируются с помощью кода переменной длины, который применяется в целях дополнительного сокращения используемой памяти.

К сожалению, при использовании режима "без потерь" создаваемые файлы растровых изображений настолько велики, что они с трудом обрабатываются методами современной технологии, а потому и применяются на практике крайне редко. Большинство существующих приложений использует другой стандартный метод формата JPEG - режим "базовых строк". В этом режиме каждый из пикселей также представляется тремя составляющими, но в данном случае это уже один компонент яркости и два компонента цвета. Грубо говоря, если создать изображение только из компонентов яркости, то мы увидим черно-белый вариант изображения, так как эти компоненты отражают только уровень освещенности пикселя.

Смысл подобного разделения между цветом и яркостью объясняется тем, что человеческий глаз более чувствителен к изменениям яркости, чем цвета. Рассмотрим, например, два равномерно окрашенных синих прямоугольника, которые абсолютно идентичны, за исключением того, что на один из них нанесена маленькая яркая точка, тогда как на другой - маленькая зеленая точка той же яркости, что и синий фон. Глазу проще будет обнаружить яркую точку, а не зеленую. Режим "базовых строк" стандарта JPEG использует эту особенность, кодируя компонент яркости каждого пикселя, но усредняя значение цветовых компонентов для блоков, состоящих из четырех пикселей, и записывая цветовые компоненты только для этих блоков. В результате окончательное представление изображения сохраняет внезапные перепады яркости, однако оставляет размытыми резкие изменения цвета. Преимущество этой схемы состоит в том, что каждый блок из четырех пикселей представлен только шестью значениями [четыре показателя яркости и два - цвета], а не двенадцатью, которые необходимы при использовании схемы из трех показателей на каждый пиксель.