Методология и практика тестирования по. Виды Тестирования ПО. Полный Список

  • 04.09.2019

Тестирование программного обеспечения (ПО) выявляет недоработки, изъяны и ошибки в коде, которые необходимо устранить. Его также можно определить как процесс оценки функциональных возможностей и корректности ПО с помощью анализа. Основные методы интеграции и тестирования программных продуктов обеспечивают качество приложений и заключаются в проверке спецификации, дизайна и кода, оценке надежности, валидации и верификации.

Методы

Главная цель тестирования ПО - подтверждение качества программного комплекса путем систематической отладки приложений в тщательно контролируемых условиях, определение их полноты и корректности, а также обнаружение скрытых ошибок.

Методы можно разделить на статические и динамические.

К первым относятся неформальное, контрольное и техническое рецензирование, инспекция, пошаговый разбор, аудит, а также статический анализ потока данных и управления.

Динамические техники следующие:

  1. Тестирование методом белого ящика. Это подробное исследование внутренней логики и структуры программы. При этом необходимо знание исходного кода.
  2. Тестирование методом черного ящика. Данная техника не требует каких-либо знаний о внутренней работе приложения. Рассматриваются только основные аспекты системы, не связанные или мало связанные с ее внутренней логической структурой.
  3. Метод серого ящика. Сочетает в себе предыдущие два подхода. Отладка с ограниченным знанием о внутреннем функционировании приложения сочетается со знанием основных аспектов системы.

Прозрачное тестирование

В методе белого ящика используются тестовые сценарии контрольной структуры процедурного проекта. Данная техника позволяет выявить ошибки реализации, такие как плохое управление системой кодов, путем анализа внутренней работы части программного обеспечения. Данные методы тестирования применимы на интеграционном, модульном и системном уровнях. Тестировщик должен иметь доступ к исходному коду и, используя его, выяснить, какой блок ведет себя несоответствующим образом.

Тестирование программ методом белого ящика обладает следующими преимуществами:

  • позволяет выявить ошибку в скрытом коде при удалении лишних строк;
  • возможность использования побочных эффектов;
  • максимальный охват достигается путем написания тестового сценария.

Недостатки:

  • высокозатратный процесс, требующий квалифицированного отладчика;
  • много путей останутся неисследованными, поскольку тщательная проверка всех возможных скрытых ошибок очень сложна;
  • некоторая часть пропущенного кода останется незамеченной.

Тестирование методом белого ящика иногда еще называют тестированием методом прозрачного или открытого ящика, структурным, логическим тестированием, тестированием на основе исходных текстов, архитектуры и логики.

Основные разновидности:

1) тестирование управления потоком - структурная стратегия, использующая поток управления программой в качестве модели и отдающая предпочтение большему количеству простых путей перед меньшим числом более сложных;

2) отладка ветвления имеет целью исследование каждой опции (истинной или ложной) каждого оператора управления, который также включает в себя объединенное решение;

3) тестирование основного пути, которое позволяет тестировщику установить меру логической сложности процедурного проекта для выделения базового набора путей выполнения;

4) проверка потока данных - стратегия исследования потока управления путем аннотации графа информацией об объявлении и использовании переменных программы;

5) тестирование циклов - полностью сосредоточено на правильном выполнении циклических процедур.

Поведенческая отладка

Тестирование методом черного ящика рассматривает ПО как «черный ящик» - сведения о внутренней работе программы не учитываются, а проверяются только основные аспекты системы. При этом тестировщику необходимо знать системную архитектуру без доступа к исходному коду.

Преимущества такого подхода:

  • эффективность для большого сегмента кода;
  • простота восприятия тестировщиком;
  • перспектива пользователя четко отделена от перспективы разработчика (программист и тестировщик независимы друг от друга);
  • более быстрое создание теста.

Тестирование программ методами черного ящика имеет следующие недостатки:

  • в действительности выполняется избранное число тестовых сценариев, результатом чего является ограниченный охват;
  • отсутствие четкой спецификации затрудняет разработку тестовых сценариев;
  • низкая эффективность.

Другие названия данной техники - поведенческое, непрозрачное, функциональное тестирование и отладка методом закрытого ящика.

1) эквивалентное разбиение, которое может уменьшить набор тестовых данных, так как входные данные программного модуля разбиваются на отдельные части;

2) краевой анализ фокусируется на проверке границ или экстремальных граничных значений - минимумах, максимумах, ошибочных и типичных значениях;

3) фаззинг - используется для поиска погрешностей реализации с помощью ввода искаженных или полуискаженных данных в автоматическом или полуавтоматическом режиме;

4) графы причинно-следственных связей - методика, основанная на создании графов и установлении связи между действием и его причинами: тождественность, отрицание, логическое ИЛИ и логическое И - четыре основных символа, выражающие взаимозависимость между причиной и следствием;

5) проверка ортогональных массивов, применяемая к проблемам с относительно небольшой областью ввода, превышающей возможности исчерпывающего исследования;

6) тестирование всех пар - техника, набор тестовых значений которой включает все возможные дискретные комбинации каждой пары входных параметров;

Тестирование методом черного ящика: примеры

Техника основана на спецификациях, документации, а также описаниях интерфейса программного обеспечения или системы. Кроме того, возможно использование моделей (формальных или неформальных), представляющих ожидаемое поведение ПО.

Обычно данный метод отладки применяется для пользовательских интерфейсов и требует взаимодействия с приложением путем введения данных и сбора результатов - с экрана, из отчетов или распечаток.

Тестировщик, таким образом, взаимодействует с ПО путем ввода, воздействуя на переключатели, кнопки или другие интерфейсы. Выбор входных данных, порядок их введения или очередность действий могут привести к гигантскому суммарному числу комбинаций, как это видно на следующем примере.

Какое количество тестов необходимо произвести, чтобы проверить все возможные значения для 4 окон флажка и одного двухпозиционного поля, задающего время в секундах? На первый взгляд расчет прост: 4 поля с двумя возможными состояниями - 24 = 16, которые необходимо умножить на число возможных позиций от 00 до 99, то есть 1600 возможных тестов.

Тем не менее этот расчет ошибочен: мы можем определить, что двухпозиционное поле может также содержать пробел, т. е. оно состоит из двух буквенно-цифровых позиций и может включать символы алфавита, специальные символы, пробелы и т. д. Таким образом, если система представляет собой 16-битный компьютер, то получится 216 = 65 536 вариантов для каждой позиции, результирующих в 4 294 967 296 тестовых случаев, которые необходимо умножить на 16 комбинаций для флажков, что в общей сложности дает 68 719 476 736. Если их выполнить со скоростью 1 тест в секунду, то общая продолжительность тестирования составит 2 177,5 лет. Для 32 или 64-битных систем, длительность еще больше.

Поэтому возникает необходимость уменьшить этот срок до приемлемого значения. Таким образом, должны применяться приемы для сокращения количества тестовых случаев без уменьшения охвата тестирования.

Эквивалентное разбиение

Эквивалентное разбиение представляет собой простой метод, применимый для любых переменных, присутствующих в программном обеспечении, будь то входные или выходные значения, символьные, числовые и др. Он основан на том принципе, что все данные из одного эквивалентного разбиения будут обрабатываться тем же образом и теми же инструкциями.

Во время тестирования выбирается по одному представителю от каждого определенного эквивалентного разбиения. Это позволяет систематически сокращать число возможных тестовых случаев без потери охвата команд и функций.

Другим следствием такого разбиения является сокращение комбинаторного взрыва между различными переменными и связанное с ними сокращение тестовых случаев.

Например, в (1/x) 1/2 используется три последовательности данных, три эквивалентных разбиения:

1. Все положительные числа будут обрабатываться таким же образом и должны давать правильные результаты.

2. Все отрицательные числа будут обрабатываться так же, с таким же результатом. Это неверно, так как корень из отрицательного числа является мнимым.

3. Ноль будет обрабатываться отдельно и даст ошибку «деление на ноль». Это раздел с одним значением.

Таким образом, мы видим три различных раздела, один из которых сводится к единственному значению. Есть один «правильный» раздел, дающий достоверные результаты, и два «неправильных», с некорректными результатами.

Краевой анализ

Обработка данных на границах эквивалентного разбиения может выполняться иначе, чем ожидается. Исследование граничных значений - хорошо известный способ анализа поведения ПО в таких областях. Эта техника позволяет выявить такие ошибки:

  • неправильное использование операторов отношения (<,>, =, ≠, ≥, ≤);
  • единичные ошибки;
  • проблемы в циклах и итерациях,
  • неправильные типы или размер переменных, используемых для хранения информации;
  • искусственные ограничения, связанные с данными и типами переменных.

Полупрозрачное тестирование

Метод серого ящика увеличивает охват проверки, позволяя сосредоточиться на всех уровнях сложной системы путем сочетания методов белого и черного.

При использовании этой техники тестировщик для разработки тестовых значений должен обладать знаниями о внутренних структурах данных и алгоритмах. Примерами методики тестирования серого ящика являются:

  • архитектурная модель;
  • унифицированный язык моделирования (UML);
  • модель состояний (конечный автомат).

В методе серого ящика для разработки тестовых случаев изучаются коды модулей по технике белого, а фактическое испытание выполняется на интерфейсах программы по технологии черного.

Такие методы тестирования обладают следующими преимуществами:

  • сочетание преимуществ техник белого и черного ящиков;
  • тестировщик опирается на интерфейс и функциональную спецификацию, а не на исходный код;
  • отладчик может создавать отличные тестовые сценарии;
  • проверка производится с точки зрения пользователя, а не дизайнера программы;
  • создание настраиваемых тестовых разработок;
  • объективность.

Недостатки:

  • тестовое покрытие ограничено, так как отсутствует доступ к исходному коду;
  • сложность обнаружения дефектов в распределенных приложениях;
  • многие пути остаются неисследованными;
  • если разработчик программного обеспечения уже запускал проверку, то дальнейшее исследование может быть избыточным.

Другое название техники серого ящика - полупрозрачная отладка.

1) ортогональный массив - использование подмножества всех возможных комбинаций;

2) матричная отладка с использованием данных о состоянии программы;

3) проводимая при внесении новых изменений в ПО;

4) шаблонный тест, который анализирует дизайн и архитектуру добротного приложения.

тестирования ПО

Использование всех динамических методов приводит к комбинаторному взрыву количества тестов, которые должны быть разработаны, воплощены и проведены. Каждую технику следует использовать прагматично, принимая во внимание ее ограничения.

Единственно верного метода не существует, есть только те, которые лучше подходят для конкретного контекста. Структурные техники позволяют найти бесполезный или вредоносный код, но они сложны и неприменимы к крупным программам. Методы на основе спецификации - единственные, которые способны выявить недостающий код, но они не могут идентифицировать посторонний. Одни техники больше подходят для конкретного уровня тестирования, типа ошибок или контекста, чем другие.

Ниже приведены основные отличия трех динамических техник тестирования - дана таблица сравнения между тремя формами отладки ПО.

Аспект

Метод черного ящика

Метод серого ящика

Метод белого ящика

Наличие сведений о составе программы

Анализируются только базовые аспекты

Частичное знание о внутреннем устройстве программы

Полный доступ к исходному коду

Степень дробления программы

Кто производит отладку?

Конечные пользователи, тестировщики и разработчики

Конечные пользователи, отладчики и девелоперы

Разработчики и тестировщики

Тестирование базируется на внешних внештатных ситуациях.

Диаграммы БД, диаграммы потока данных, внутренние состояния, знание алгоритма и архитектуры

Внутреннее устройство полностью известно

Степень охвата

Наименее исчерпывающая и требует минимума времени

Потенциально наиболее исчерпывающая. Требует много времени

Данные и внутренние границы

Отладка исключительно методом проб и ошибок

Могут проверяться домены данных и внутренние границы, если они известны

Лучшее тестирование доменов данных и внутренних границ

Пригодность для тестирования алгоритма

Автоматизация

Автоматические методы тестирования программных продуктов намного упрощают процесс проверки независимо от технической среды или контекста ПО. Их используют в двух случаях:

1) для автоматизации выполнение утомительных, повторяющихся или скрупулезных задач, таких как сравнение файлов в нескольких тысяч строк с целью высвобождения времени тестировщика для концентрации на более важных моментах;

2) для выполнения или отслеживания задач, которые не могут быть легко осуществимы людьми, таких как проверка производительности или анализ времени отклика, которые могут измеряться в сотых долях секунды.

Тестовые инструменты могут быть классифицированы по-разному. Следующее деление основано на поддерживаемых ими задачах:

  • управление тестированием, которое включает поддержку управления проектом, версиями, конфигурациями, риск-анализ, отслеживание тестов, ошибок, дефектов и инструменты создания отчетов;
  • управление требованиями, которое включает хранение требований и спецификаций, их проверку на полноту и многозначность, их приоритет и отслеживаемость каждого теста;
  • критический просмотр и статический анализ, включая мониторинг потока и задач, запись и хранение комментариев, обнаружение дефектов и плановых коррекций, управление ссылками на проверочные списки и правила, отслеживание связи исходных документов и кода, статический анализ с обнаружением дефектов, обеспечением соответствия стандартам написания кода, разбором структур и их зависимостей, вычислением метрических параметров кода и архитектуры. Кроме того, используются компиляторы, анализаторы связей и генераторы кросс-ссылок;
  • моделирование, которое включает инструменты моделирования бизнес-поведения и проверки созданных моделей;
  • разработка тестов обеспечивает генерацию ожидаемых данных исходя из условий и интерфейса пользователя, моделей и кода, управление ими для создания или изменения файлов и БД, сообщений, проверки данных исходя из правил управления, анализа статистики условий и рисков;
  • критический просмотр путем ввода данных через графический интерфейс пользователя, API, командные строки с использованием компараторов, помогающих определить успешные и неудавшиеся тесты;
  • поддержка сред отладки, которая позволяет заменить отсутствующее оборудование или ПО, в т. ч. симуляторы оборудования на основе подмножества детерминированного выхода, эмуляторы терминалов, мобильных телефонов или сетевого оборудования, среды для проверки языков, ОС и аппаратного обеспечения путем замены недостающих компонентов драйверами, фиктивными модулями и др., а также инструменты для перехвата и модификации запросов ОС, симуляции ограничений ЦПУ, ОЗУ, ПЗУ или сети;
  • сравнение данных файлов, БД, проверка ожидаемых результатов во время и по окончании тестирования, в т. ч. динамическое и пакетное сравнение, автоматические «оракулы»;
  • измерение покрытия для локализации утечек памяти и некорректного управления ею, оценки поведения системы в условиях симулированной нагрузки, генерации нагрузки приложений, БД, сети или серверов по реалистичным сценариям ее роста, для измерения, анализа, проверки и отчета о системных ресурсах;
  • обеспечение безопасности;
  • тестирование производительности, нагрузки и динамический анализ;
  • другие инструменты, в т. ч. для проверки правописания и синтаксиса, сетевой безопасности, наличия всех страниц веб-сайта и др.

Перспектива

С изменением тенденций в индустрии ПО процесс его отладки также подвержен изменениям. Существующие новые методы тестирования программных продуктов, такие как сервис-ориентированнае архитектура (SOA), беспроводные технологии, мобильные услуги и т. д., открыли новые способы проверки ПО. Некоторые из изменений, которые ожидаются в этой отрасли в течение следующих нескольких лет, перечислены ниже:

  • тестировщики будут предоставлять легковесные модели, с помощью которых разработчики смогут проверять свой код;
  • разработка методов тестирования, включающих просмотр и моделирование программ на раннем этапе, позволит устранить многие противоречия;
  • наличие множества тестовых перехватов сократит время обнаружения ошибок;
  • статический анализатор и средства обнаружения будут применяться более широко;
  • применение полезных матриц, таких как охват спецификации, охват модели и покрытие кода, будет определять разработку проектов;
  • комбинаторные инструменты позволят тестировщикам определять приоритетные направления отладки;
  • тестировщики будут предоставлять более наглядные и ценные услуги на протяжении всего процесса разработки ПО;
  • отладчики смогут создавать средства и методы тестирования программного обеспечения, написанные на и взаимодействующие с различными языками программирования;
  • специалисты по отладке станут более профессионально подготовленными.

На смену придут новые бизнес-ориентированные методы тестирования программ, изменятся способы взаимодействия с системами и предоставляемой ими информацией с одновременным снижением рисков и ростом преимуществ от бизнес-изменений.

— процесс выявления ошибок в программном обеспечении (ПО). Существующие на сегодняшний день методы тестирования ПО не позволяют однозначно и полностью устранить все дефекты и ошибки и установить корректность функционирования анализируемой программы особенно в закрытых частных программах. Поэтому все существующие методы тестирования действуют в рамках формального процесса проверки исследуемого или разрабатываемого ПО.

Такой процесс формальной проверки или верификации может доказать, что дефекты отсутствуют, с точки зрения используемого метода. (То есть нет никакой возможности точно установить или гарантировать отсутствие дефектов в программном продукте с учётом человеческого фактора, присутствующего на всех этапах жизненного цикла ПО).

Существует множество подходов к решению задачи тестирования и верификации ПО, но эффективное тестирование сложных программных продуктов — это процесс в высшей степени творческий, не сводящийся к следованию строгим и чётким процедурам или созданию таковых.

Тестирование ПО — попытка определить, выполняет ли программа то, что от неё ожидают. Как правило, никакое тестирование не может дать абсолютной гарантии работоспособности программы в будущем.

Для наглядности: почти все производители коммерческого ПО исправляют ошибки в своих продуктах.

Например: Корпорация Microsoft выпускает пакеты обновлений («Service Pack»), для своих операционных систем. Разработчики игр регулярно выпускают «патчи» для своих продуктов. Большинство разработчиков ПО после устранения ошибок выпускают обновлённую (новую) версию своей программы.

Тестирование программного обеспечения

Существует несколько признаков по которым принято производить классификацию видов тестирования. Обычно выделяют следующие признаки:

По объекту тестирования:

  • Функциональное тестирование (functional testing)
  • Нагрузочное тестирование
    • Тестирование производительности (perfomance/stress testing)
    • Тестирование стабильности (stability/load testing)
  • Тестирование удобства использования (usability testing)
  • Тестирование интерфейса пользователя (UI testing)
  • Тестирование безопасности (security testing)
  • Тестирование локализации (localization testing)
  • Тестирование совместимости (compatibility testing)

По знанию системы:

  • Тестирование чёрного ящика (black box)
  • Тестирование белого ящика (white box)
  • Тестирование серого ящика (gray box)

По степени автоматизированности:

  • Ручное тестирование (manual testing)
  • Автоматизированное тестирование (automated testing)
  • Полуавтоматизированное тестирование (semiautomated testing)

По степени изолированности компонентов:

  • Компонентное (модульное) тестирование (component/unit testing)
  • Интеграционное тестирование (integration testing)
  • Системное тестирование (system/end-to-end testing)

По времени проведения тестирования:

  • Альфа тестирование (alpha testing)
    • Тестирование при приёмке (smoke testing)
    • Тестирование новых функциональностей (new feature testing)
    • Регрессионное тестирование (regression testing)
    • Тестирование при сдаче (acceptance testing)
  • Бета тестирование (beta testing)

По признаку позитивности сценариев:

  • Позитивное тестирование (positive testing)
  • Негативное тестирование (negative testing)

По степени подготовленности к тестированию:

  • Тестирование по документации (formal testing)
  • Эд Хок (интуитивное) тестирование (ad hoc testing)

Уровни тестирования

  • Модульное тестирование (юнит-тестирование) — тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто модульное тестирование осуществляется разработчиками ПО.
  • Интеграционное тестирование — тестируются интерфейсы между компонентами, подсистемами. При наличии резерва времени на данной стадии тестирование ведётся итерационно, с постепенным подключением последующих подсистем.
  • Системное тестирование — тестируется интегрированная система на её соответствие требованиям.
    • Альфа-тестирование — имитация реальной работы с системой штатными разработчиками, либо реальная работа с системой потенциальными пользователями/заказчиком. Чаще всего альфа-тестирование проводится на ранней стадии разработки продукта, но в некоторых случаях может применяться для законченного продукта в качестве внутреннего приёмочного тестирования. Иногда альфа-тестирование выполняется под отладчиком или с использованием окружения, которое помогает быстро выявлять найденные ошибки. Обнаруженные ошибки могут быть переданы тестировщикам для дополнительного исследования в окружении, подобном тому, в котором будет использоваться ПО.
    • Бета-тестирование — в некоторых случаях выполняется распространение версии с ограничениями (по функциональности или времени работы) для некоторой группы лиц, с тем чтобы убедиться, что продукт содержит достаточно мало ошибок. Иногда бета-тестирование выполняется для того, чтобы получить обратную связь о продукте от его будущих пользователей.

Часто для свободного/открытого ПО стадия Альфа-тестирования характеризует функциональное наполнение кода, а Бета тестирования — стадию исправления ошибок. При этом как правило на каждом этапе разработки промежуточные результаты работы доступны конечным пользователям.

Тестирование «белого ящика» и «чёрного ящика»

В терминологии профессионалов тестирования (программного и некоторого аппаратного обеспечения), фразы «тестирование белого ящика» и «тестирование чёрного ящика» относятся к тому, имеет ли разработчик тестов доступ к исходному коду тестируемого ПО, или же тестирование выполняется через пользовательский интерфейс либо прикладной программный интерфейс, предоставленный тестируемым модулем.

При тестировании белого ящика (англ. white-box testing , также говорят — прозрачного ящика ), разработчик теста имеет доступ к исходному коду программ и может писать код, который связан с библиотеками тестируемого ПО. Это типично для юнит-тестирования (англ. unit testing ), при котором тестируются только отдельные части системы. Оно обеспечивает то, что компоненты конструкции — работоспособны и устойчивы, до определённой степени. При тестировании белого ящика используются метрики покрытия кода.

При тестировании чёрного ящика, тестировщик имеет доступ к ПО только через те же интерфейсы, что и заказчик или пользователь, либо через внешние интерфейсы, позволяющие другому компьютеру либо другому процессу подключиться к системе для тестирования. Например, тестирующий модуль может виртуально нажимать клавиши или кнопки мыши в тестируемой программе с помощью механизма взаимодействия процессов, с уверенностью в том, все ли идёт правильно, что эти события вызывают тот же отклик, что и реальные нажатия клавиш и кнопок мыши. Как правило, тестирование чёрного ящика ведётся с использованием спецификаций или иных документов, описывающих требования к системе. Как правило, в данном виде тестирования критерий покрытия складывается из покрытия структуры входных данных, покрытия требований и покрытия модели (в тестировании на основе моделей).

Если «альфа-» и «бета-тестирование» относятся к стадиям до выпуска продукта (а также, неявно, к объёму тестирующего сообщества и ограничениям на методы тестирования), тестирование «белого ящика» и «чёрного ящика» имеет отношение к способам, которыми тестировщик достигает цели.

Бета-тестирование в целом ограничено техникой чёрного ящика (хотя постоянная часть тестировщиков обычно продолжает тестирование белого ящика параллельно бета-тестированию). Таким образом, термин «бета-тестирование» может указывать на состояние программы (ближе к выпуску чем «альфа»), или может указывать на некоторую группу тестировщиков и процесс, выполняемый этой группой. Итак, тестировщик может продолжать работу по тестированию белого ящика, хотя ПО уже «в бете» (стадия), но в этом случае он не является частью «бета-тестирования» (группы/процесса).

Статическое и динамическое тестирование

Описанные выше техники — тестирование белого ящика и тестирование чёрного ящика — предполагают, что код исполняется, и разница состоит лишь в той информации, которой владеет тестировщик. В обоих случаях это динамическое тестирование .

При статическом тестировании программный код не выполняется — анализ программы происходит на основе исходного кода, который вычитывается вручную, либо анализируется специальными инструментами. В некоторых случаях, анализируется не исходный, а промежуточный код (такой как байт-код или код на MSIL).

Также к статическому тестированию относят тестирование требований, спецификаций, документации.

Регрессионное тестирование

После внесения изменений в очередную версию программы, регрессионные тесты подтверждают, что сделанные изменения не повлияли на работоспособность остальной функциональности приложения. Регрессионное тестирование может выполняться как вручную, так и средствами автоматизации тестирования.

Тестовые скрипты

Тестировщики пишут и используют тестовые скрипты в юнит-, системном и регрессионном тестировании. Тестовые скрипты нужно писать для модулей с наивысшим риском появления отказов и наибольшей вероятностью того что этот риск станет проблемой.

Покрытие кода

Покрытие кода, по своей сути, является тестированием методом белого ящика. Тестируемое ПО собирается со специальными настройками или библиотеками и/или запускается в особом окружении, в результате чего для каждой используемой (выполняемой) функции программы определяется местонахождение этой функции в исходном коде. Этот процесс позволяет разработчикам и специалистам по обеспечению качества определить части системы, которые, при нормальной работе, используются очень редко или никогда не используются (такие как код обработки ошибок и т.п.). Это позволяет сориентировать тестировщиков на тестирование наиболее важных режимов.

Тестировщики могут использовать результаты теста покрытия кода для разработки тестов или тестовых данных, которые расширят покрытие кода на важные функции.

Как правило, инструменты и библиотеки, используемые для получения покрытия кода, требуют значительных затрат производительности и/или памяти, недопустимых при нормальном функционировании ПО. Поэтому они могут использоваться только в лабораторных условиях.

Разработка через тестирование (test-driven development)

(англ. test-driven development) — техника программирования, при которой модульные тесты для программы или её фрагмента пишутся до самой программы (англ. test-first development) и, по существу, управляют её разработкой. Является одной из основных практик экстремального программирования.

Ни один программист не считает работу над некоторым фрагментом кода завершенной, не проверив перед этим его работоспособность. Однако, если вы тестируете свой код, это не означает, что у вас есть тесты.

Тест - это процедура, которая позволяет либо подтвердить, либо опровергнуть работоспособность кода. Когда программист проверяет работоспособность разработанного им кода, он выполняет тестирование вручную. В данном контексте тест состоит из двух этапов: стимулирование кода и проверки результатов его работы. Автоматический тест выполняется иначе: вместо программиста стимулированием кода и проверкой результатов занимается компьютер, который отображает на экране результат выполнения теста: код работоспособен или код неработоспособен.

Методика разработки через тестирование(Test-Driven Development, TDD) позволяет получить ответы на вопросы об организации автоматических тестов и выработке определенных навыков тестирования.

«Чистый код, который работает» - в этой короткой, но содержательной фразе, кроется весь смысл методики разработки приложений через тестирование. Чистый код, который работает, - это цель, к которой стоит стремиться, и этому есть причины:

    У разработчика появляется шанс усвоить уроки, которые преподносит ему код. Если он воспользуется первой же идеей, которая пришла ему в голову, у него не будет шанса реализовать вторую, лучшую идею.

    Коллеги по команде могут рассчитывать на разработчика, а он, в, свою очередь, на них.

    Разработчику приятнее писать такой код.

Однако как мы можем получить чистый код, который работает? Очень многие силы мешают нам добиться этого, а иногда нам не удается получить даже код, который работает. Чтобы избавиться от множества проблем, мы будем разрабатывать код, исходя из автоматических тестов. Такой стиль программирования называется разработкой через тестирование. В рамках этой методики мы:

    Пишем новый код только тогда, когда автоматический код не сработал.

    Удаляем дублирование.

Два столь простых правила на самом деле генерируют сложное индивидуальное и групповое поведение со множеством технических последствий:

    Проектируя код, мы постоянно запускаем его и получаем представление о том, как он работает, это помогает нам принимать правильные решения.

    Мы самостоятельно пишем свои собственные тесты, так как мы не можем ждать, что кто-то другой напишет тесты для нас.

    Наша среда разработки должна быстро реагировать на небольшие модификации кода.

    Архитектура программы должна базироваться на использовании множества сильно связанных компонентов, которые слабо сцеплены друг с другом, благодаря чему тестирование кода упрощается.

Два упомянутых правила TDD определяют порядок этапов программирования:

    Красный - напишите небольшой тест, который не работает, а возможно, даже не компилируется.

    Зеленый - заставьте тест работать как можно быстрее, при этом не думайте о правильности дизайна и чистоте кода. Напишите ровно столько кода, чтобы тест сработал.

    Рефакторинг - удалите из написанного вами кода любое дублирование.

Освоив TDD, разработчики обнаруживают, что они пишут значительно больше тестов, чем раньше, и двигаются вперед маленькими шагами, которые раньше могли показаться бессмысленными.

Заставив тест работать, мы знаем, что теперь тест работает, отныне и навеки. Мы стали на шаг ближе к завершению работы, чем мы были до того, как тест сработал. После этого мы заставляем второй тест работать, затем третий, четвертый и т.д. Чем сложнее проблема, стоящая перед программистом, тем меньшую область функциональности должен покрывать каждый тест.

Определенно существуют задачи, которые невозможно(по крайней мере, на текущий момент) решить только при помощи тестов. В частности, TDD не позволяет механически продемонстрировать адекватность разработанного кода в области безопасности данных и взаимодействия между процессами. Безусловно, безопасность основана на коде, в котором не должно быть дефектов, однако она основана также на участии человека в процедурах защиты данных. Тонкие проблемы, возникающие в области взаимодействия между процессами, невозможно с уверенностью воспроизвести, просто запустив некоторый код.

Терминология, связанная с модульными тестами

  • Разработка через тестирование - процесс разработки программного обеспечения, который предусматривает написание и автоматизацию модульных тестов еще до момента написания соответствующих классов или модулей. Это гарантирует, что все обязанности любого элемента программного обеспечения определяются еще до того, как они будут закодированы.
  • Модульные тесты - Unit Tests, Programming Tests, Developer Tests - тесты, проверяющие функциональность отдельных классов, компонентов, модулей приложения. Эти тесты не видны конечному заказчику или доменному эксперту. Обычно их начинают писать после оформления функциональных тестов.
  • Зеленая/Красная полоса - многие графические среды для выполнения модульных тестов отображают результат выполнения тестов в виде линии, которая окрашена в зеленый цвет, если все тесты выполнились удачно, и красной, если были ошибки.
  • Моки, Мок-объекты (MockObjects) - автоматически генерируемые заглушки, которые могу выступат в роли реальных объектов. Поведением моков можно управлять непосредственно в тесте. Моки могут выполнять дополнительные проверки, что тестируемый код их использовал, как ожидалось.
  • Модульный тест - тест, который проверяет поведение небольшой части приложения. Эта часть может быть одним классом, одним методом или набором классов, который реализуют какое-то архитектурное решение, и это решение необходимо проверить на работоспособность.
  • Тест - TestCase - набор тестовых методов, предназначенных для тестирования одного класса (в среде xUnit). Обычно TestCase состоит из методов, чье имя начинается с приставки test. Каждый такой метод тестирует какой-либо один момент тестируемого класса. В приемочном тестировании TestCase - это набор команд, которые тестируют одну значимую для заказчика функциональность.
  • Фикстура - Fixture - состояние среды тестирования, которое требуется для успешного выполнения тестового метода. Это может быть набор каких-либо объектов, состояние базы данных, наличие определенных файлов и т.д. Фикстура создается в методе setUp() перед каждым вызовом метода вида testSomething теста (TestCase) и удаляется в tearDown() после окончания выполнения тестового метода.
  • Проверка - Assert - метод класса TestCase, который предназначен для сверки реального состояния тестируемого кода с ожидаемым.

Терминология, связанная с наборами тестов

  • Набор тестов - TestSuite - набор тестов, предназначенный для тестирования какой-либо укрупненной сущности программной системы. В SimpleTest есть понятие TestGroup, которые практически эквивалентно понятию TestSuite. Иногда TestSuite употребляют в значении «все тесты, которые есть для приложения».

Терминология, связанная с приемочными тестами

  • Приемочные (функциональные) тесты - Customer tests, Acceptance tests - тесты, проверяющие функциональность приложения на соответствие требованиям заказчика. Приемочные тесты не должны ничего знать о деталях реализации приложения. Приемочные тесты заменяют ТЗ при использовании методики экстремального программирования (XP).
  • Регрессионный тесты - тесты, которые проверяют, что поведение системы не изменилось. На самом деле, большинство регрессионных тестов являются или модульными или функциональными тестами, которые включаются в определенный набор тестов (RegressionTestSuite), который гарантирует, что функциональность системы не будет случайно изменена.

Андрей Колесов

Вряд ли имеет смысл говорить о важности тестирования в общем процессе разработки ПО, ведь давно известно, что реализация каждого этапа жизненного цикла приложений является необходимым условием для появления качественного программного продукта. Но, сказав слова о равенстве всех видов работ, нужно признать: в течение всей истории разработки ПО - а она насчитывает более 50 лет - тестирование выступало в роли падчерицы, которой достается самая трудоемкая, рутинная и непрестижная работа * . Далеко за примерами ходить не нужно: авторские права разработчиков закреплены законодательством, их имена можно при желании легко узнать. А что нам известно о тех, кто тестирует приложения, и это при том, что именно на их долю приходится в среднем около трети затрат по созданию ПО?

Впрочем, в последнее время ситуация заметно меняется, и здесь можно выделить две основные тенденции. Первая - растет понимание необходимости промышленных методов тестирования, в частности с применением специальных средств автоматизации. Вторая - идет поиск возможностей для оптимизации затрат на выполнение данных работ с точки зрения общей организации бизнеса, в том числе с использованием модели аутсорсинга.

Нужно отметить парадоксальную ситуацию: при обилии методической литературы и курсов по проектированию и кодированию ПО наблюдается практически полное отсутствие материалов по тестированию и отладке! Как сказал известный американский автор книг по разработке ПО Джон Роббинс: "Даже если у вас есть специальное образование, бьюсь об заклад, что вы никогда не сталкивались со специальным курсом, посвященным отладке" (см. PC Week/RE, № 9/2004, с. 61).

Однако ситуация несколько меняется, одним из свидетельств чего являются проведенные в конце февраля в Москве компанией "Аплана" при поддержке московского представительства IBM практические семинары "Эффективная организация процессов тестирования в ходе разработки и сопровождения корпоративных систем". Тема оказалась настолько актуальной, что Центр технологий IBM не смог вместить всех желающих в один день, поэтому семинар пришлось проводить дважды. Изначально мероприятие было ориентировано на ИТ-подразделения корпораций, ведущие собственные внутрифирменные разработки, однако большой интерес к нему проявили и специализированные фирмы - создатели заказного и тиражируемого ПО. В общей сложности в семинарах приняли участие более 80 руководителей и специалистов корпоративных и ведомственных центров разработки и внедрения, а также ИТ-компаний.

Следует подчеркнуть, что, хотя в качестве инструментальной базы использовались продукты IBM Rational, основной акцент семинара был сделан на организационные и методические вопросы тестирования в контексте общего процесса разработки ПО и бизнес-функционирования предприятий в целом. Во многом именно такой подход предопределил активное участие специалистов в данном мероприятии.

Особенности организации тестирования

В первую очередь нужно отметить, что вопросы тестирования следует рассматривать в контексте всего жизненного цикла ПО, начиная от разработки ТЗ и заканчивая сопровождением приложений. Как известно, тестирование - это процедура обнаружения дефектов (ошибок) ПО до его промышленного использования. Очевидно, что трудоемкость такой работы связана с количеством самих ошибок, в связи с чем надо четко выделить основные причины их появления:

  • неудовлетворительное организационное, методическое и техническое обеспечение всего процесса разработки;
  • сжатые сроки исполнения проекта;
  • сложность проекта, большое число требований и их изменений по ходу работы;
  • недостаточная квалификация разработчиков.

Есть еще один важный момент. Тестирование, в свою очередь, является лишь составляющей частью отладки - процесса доводки ПО после его написания до эксплуатационного состояния. Процесс этот включает две основные процедуры: обнаружение ошибок (тестирование) и поиск и устранение их причин. Однако, даже учитывая все возможные взаимосвязи этих работ (например, поиск причин ошибок требует проведения специального дополнительного тестирования), нужно подчеркнуть, что тестирование является достаточно автономным, независимым этапом жизненного цикла ПО. При этом подчеркнем, что повышение качества разработки (которое обратно пропорционально количеству ошибок в приложении) напрямую снижает затраты на устранение ошибок, но на объем тестирования влияет совсем не так сильно: его нужно проводить в любом случае и желательно "по полной программе".

Понятно также, что организация и методика тестирования в значительной степени зависят от целевого назначения разработки: коробочный продукт, заказной проект или внутрифирменный. И тут стоит еще раз обратить внимание на то, что прошедшие семинары были адресованы в первую очередь разработчикам ИТ-подразделений заказчиков. Объяснение этому простое: во-первых, объем разработок, выполняемых в таких компаниях и в специализированных ИТ-фирмах, по крайней мере соизмерим; во-вторых, в силу ряда причин задачи тестирования при выполнении внутрифирменных проектов достаточно специфичны и очень актуальны.

Говоря об особенностях процедур тестирования в ИТ-подразделениях, наверное, надо выделить три основных, весьма противоречивых аспекта.

  1. Объем тестирования очень велик. Дело в том, что именно в случае внутрифирменных разработок очень часто вносятся изменения (многие слушатели семинара говорили о непрерывном потоке корректировок по запросам подразделений-заказчиков). А ведь, как известно, классическое правило разработки ПО гласит: изменение одной строки кода требует повторного проведения полного цикла тестирования.
  2. Как это ни цинично звучит, но разработчики очень часто не заинтересованы в снижении количества ошибок в ПО, передаваемом в эксплуатацию. Руководство компаний оценивает работу ИТ-отдела в первую очередь по его умению уложиться в бюджет (время и деньги), а проблемы эксплуатации программ его волнуют значительно меньше. Поэтому получается, что увеличение объемов тестирования повышает издержки ИТ-подразделения без выделения соответствующих ресурсов со стороны начальства ** .
  3. Проведение качественного тестирования требует наличия специалистов и инструментов соответствующего профиля. А из п. 2 следует, что ИТ-подразделениям держать собственные группы тестировщиков просто невыгодно.

Общие вопросы тестирования

Программа мероприятия включала как методические аспекты организации процессов тестирования, так и практические рекомендации по их применению. Ключевая идея в целом выглядит достаточно очевидной: повышение качества тестирования ПО при сохранении разумного уровня затрат на его проведение должно обеспечиваться за счет современных промышленных методов (организационных и технических) выполнения этих работ.

В ряде докладов специалистов компании "Аплана" речь, в частности, шла о типовых ситуациях, подкрепленных реальными примерами того, как можно уменьшить затраты на реализацию программных проектов (в том числе за счет выбора оптимальной конфигурации оборудования) и снизить бизнес-риски, правильно организовав процессы тестирования и использования соответствующих автоматизированных средств.

Рамки статьи не позволяют изложить вопросы применения конкретных инструментов детально. Более полезным сейчас представляется рассмотреть некоторые общие вопросы классификации задач тестирования. Они обсуждались в одном из докладов, но, как мне показалось, некоторые важные моменты в нем не были затронуты. Поэтому далее я приведу свои соображения, опираясь на мнение выступивших на семинаре экспертов.

Тестирование пронизывает весь жизненный цикл ПО, начиная от проектирования и заканчивая неопределенно долгим этапом эксплуатации. Эти работы напрямую связаны с задачами управления требованиями и изменениями, ведь целью тестирования является как раз возможность убедиться в соответствии программ заявленным требованиям.

Тестирование - процесс пошаговый. Наверное, имеет смысл разделить проверку работоспособности программ в ходе непосредственного написания кода (самим программистом) и после завершения основного этапа кодирования (скорее всего, специальными тестировщиками). Тут можно вспомнить о золотом правиле программирования: написание каждых 20-30 строк кода (тем более законченных процедур, функций) должно сопровождаться проверкой их работоспособности, хотя бы в каком-то основном режиме. В то же время нужно подчеркнуть и важное различие в проведении тестирования в ходе кодирования и по его завершении: в первом случае продолжать написание программы (а также запуск других тестовых примеров) желательно только после устранения ошибки, во втором осуществляется пакетное выполнение серии текстов с простой фиксацией их результатов.

Тестирование - процесс также итерационный. После обнаружения и исправления каждой ошибки обязательно следует повторение тестов, чтобы убедиться в работоспособности программы. Более того, для идентификации причины обнаруженной проблемы может потребоваться проведение специального дополнительного тестирования. При этом нужно всегда помнить о фундаментальном выводе, сделанном профессором Эдсжером Дейкстрой в 1972 г: "Тестирование программ может служить доказательством наличия ошибок, но никогда не докажет их отсутствие!".

Различные виды тестирования можно классифицировать и по следующим основным характеристикам (хотя любая категоризация является достаточно условной).

Функциональное и нагрузочное тестирование. Работы первого вида можно отнести к традиционным - проверка ПО на соответствие требованиям по функционалу *** . В последние годы заметно возросла актуальность относительно новых задач, таких, например, как анализ совместимости разрабатываемого продукта с различными программными и аппаратными платформами, приложениями и пр. Второй тип обычно связывают с задачами оценки производительности и масштабирования, но на самом деле он затрагивает гораздо более широкий круг проблем; выявление узких мест в коде программы, обнаружение "утечек" ресурсов и т. д.

Компонентное и интеграционное тестирование. Очевидно, что первый вид тестирования выполняется на более ранних этапах разработки (по мере создания законченных модулей), второй - на завершающем этапе. Принципиальное их различие заключается в том, что компонентное в основном базируется на методах "белого ящика" (учета внутренней логики и структуры программы), а интеграционное - на методах "черного ящика" (знание только внешних спецификаций). Соответственно существенная часть работы по проведению тестирования в первом случае ложится на проектировщиков и разработчиков ПО, во втором - на независимых тестеров.

Ручное и автоматизированное тестирование. По мере повышения сложности проекта доля задач, решаемых с помощью автоматизированных методов (использование скриптов, программ-имитаторов и пр.), неуклонно растет. Подавляющее число задач нагрузочного тестирования может решаться исключительно с их помощью.

Наверное, имеет смысл выделить тестирование текущей конфигурации системы и тестирование с учетом ее возможного развития. Анализ возможных проблем в будущем чаще всего связывается сегодня с задачами масштабирования, например повышения нагрузки на систему в результате увеличения числа пользователей. Хотя конечно же тут нужно иметь в виду более широкий круг вопросов, в частности перспективы смены платформы. Хотелось бы при этом подчеркнуть, что оценка масштабирования может (и должна!) производиться не только с помощью тестирования реального приложения, но и методами системного моделирования на уровне общей структуры ПО (о таком подходе в последние годы что-то стали забывать!).

Решение проблемы - центры тестирования

Как уже было сказано, ведущую роль в вопросах тестирования играют методология и организационная составляющая. Что же касается инструментария, то его роль в этом процессе вторична и выбор того или иного продукта для автоматизации задач тестирования определяется уже в зависимости от целей и специфики проекта, существующих предпочтений заказчика, бюджета. На рынке сейчас представлен целый спектр средств автоматизированного тестирования, в котором лидируют IBM Rational, Mercury, Segue, Compuware.

В рамках семинара специалистами компании "Аплана" рассматривались возможности автоматизированного тестирования на примере средств тестирования IBM Rational, которые в настоящее время получили значительное распространение среди российских разработчиков (см. врезку "Методология и инструментарий IBM Rational"). Обсуждались также различные сценарии их применения при создании ПО корпоративного уровня. Среди конкретных программных продуктов особое внимание было уделено наиболее популярной сегодня системе IBM Rational Robot.

Однако, несмотря на важность применения правильных методов и инструментов, возможно, более актуальным является изменение общего позиционирования работ по тестированию в общей структуре процесса разработки. В частности, это подразумевает необходимость выделения тестирования в отдельную услугу, реализуемую на внутрифирменном уровне или в режиме аутсорсинга.

"Аплана", специализируясь на разработке заказного ПО, осознала необходимость такого подхода на собственном опыте. В компании в соответствии с общепринятыми стандартами управления качеством была изначально сформирована собственная служба, которую год назад преобразовали в Центр тестирования, не только обеспечивающий решение внутренних задач своей фирмы, но и предоставляющий услуги внешним организациям.

Моделям взаимодействия клиентов с Центром тестирования и рассмотрению конкретных проектов было посвящено отдельное выступление на семинаре и, судя по реакции слушателей, такие предложения заинтересовали многих. И это не случайно, поскольку аутсорсинг услуг по тестированию является пока достаточно новым. Перечислим основные возможные модели взаимодействия:

  • выполнение полного комплекса работ по тестированию ПО или отдельных его этапов на стенде Центра или на площадке заказчика;
  • консалтинг и обучение заказчиков по вопросам организации процессов тестирования внутри организации;
  • аудит тестирования, проводимого сторонними компаниями;
  • аутсорсинг технических и программных ресурсов для проведения тестирования.

В заключение стоит отметить еще один любопытный момент: проведя семинары, компания "Аплана" одной из первых в нашей стране фактически объявила о продвижении нового вида услуг в области разработки ПО. Первопроходцы же довольно часто попадают в двойственное положение. Так и на этом семинаре: бесплатный курс консалтинга и обучения пришлось дать не только потенциальным заказчикам, но и конкурентам...

* Не забывая о значимости вопросов тестирования, нужно помнить о том, что один из классиков современных методов разработки ПО, голландский профессор Эдсжер Дейкстра еще в конце 60-х годов прошлого столетия обосновал необходимость применения методов структурного программирования, исходя именно из задачи снижения трудозатрат на тестирование.

** Специфика тестирования заключается еще и в том, что в отличие от других этапов разработки ПО, имеющих достаточно формальные критерии их окончания, данный процесс, в общем случае, бесконечен. Ведь, как известно, "каждая последняя найденная ошибка является на самом деле предпоследней". Правильно определить реально необходимый объем тестирования - это отдельная непростая задача.

*** Говоря о тестировании, надо также обязательно упомянуть о важности верификации ПО (систематической процедуры проверки правильности). Тонкое различие между этими понятиями заключается в том, что тестирование базируется на возможности сравнения полученных результатов с эталонными. Однако есть достаточно большой класс задач, когда эталонных данных попросту нет. Классический пример такого варианта - построение сложных математических моделей с решением десятков тысяч дифференциальных уравнений, хотя аналогичные ситуации возникают и тогда, когда имеешь дело с бизнес-приложениями. В этом случае требуется включение в ПО дополнительных функций и проведение специальных исследований, чтобы у пользователя появилась уверенность (пусть даже не 100-%), что программа действительно работает правильно.

Методология и инструментарий IBM Rational
Общая методология разработки ПО Rational Unified Process выделяет довольно большой набор видов тестирования (см. рисунок). Их можно с известной долей условности разделить следующим образом:
Функциональное тестирование (Function testing)
  • тестирование целостности данных (Data integrity testing);
  • тестирование на разных платформах (Configuration testing);
  • тестирование отказоустойчивости (Failover & recovery testing);
  • тестирование доступа (Security testing);
  • инсталляционное тестирование (Installation testing);
  • тестирование пользовательского интерфейса (User interface testing)
Нагрузочное тестирование (Load testing)
  • профилирование производительности (Performance profiling);
  • тестирование цикла работы (Business cycle testing);
  • тестирование при большой пользовательской нагрузке (Stress testing);
  • тестирование на больших объемах данных (Volume testing).
Для решения этих задач предлагаются следующие основные инструменты:
  • IBM Rational TestManager - управление тестированием;
  • IBM Rational PurifyPlus (Purify, PureCoverage, Quantify) - анализ работы системы в режиме RunTime;
  • IBM Rational Robot - функциональное и нагрузочное тестирование;
  • IBM Rational TestFactory - автоматизация создания тестов;
  • IBM Rational XDE Tester - функциональное тестирование Java и web-приложений.
Из сопоставления двух этих списков видно, что каждый продукт покрывает несколько типов тестирования. Вот краткая характеристика этих инструментов.
IBM Rational TestManager необходим на всех этапах тестирования, предоставляет в распоряжение команды общие средства планирования, проектирования, исполнения и анализа тестов с использованием единой панели управления. Данный продукт имеет собственное хранилище данных, что обеспечивает более качественное управление версиями. Любой инструмент тестирования ПО, обладающий собственным API, не сложно интегрировать в единую систему, при этом может поддерживаться большинство исполняющих платформ тестирования.
IBM Rational PurifyPlus включает три инструмента, предназначенных для анализа в режиме реального времени приложений и компонентов, разработанных с помощью Visual C/C++, C#, VB, VB .NET, Java, Java .NET. Purify обеспечивает автоматическое выявление ошибок, связанных с памятью, при этом выделяются источник и расположение ошибки. Если доступен исходный код, то его можно исправить непосредственно из Purify. Запатентованная технология Object Code Insertion позволяет выявлять ошибки доступа к памяти не только в исходном коде, но и в двоичных программных компонентах (DLL, объекты COM/DCOM, ODBC). PureCoverage - средство автоматического определения непротестированного кода. Quantify выполняет оценку производительности, определяя узкие места приложений и компонентов, как с исходным кодом, так и без него. Встроенные средства анализа данных помогают проводить сравнение результатов тестовых прогонов для различных вариантов кода.
IBM Rational Robot - средство создания, изменения и выполнения автоматизированных тестов Интернет-приложений, ERP-систем и клиент-серверных решений. С его помощью обеспечивается объектно-уровневая поддержка при создании приложений на различных средствах разработки. Сценарии функциональных тестов генерируются в среде SQABasic, синтаксически совместимой с VB; встроенный редактор позволяет расширить сценарии тестов необходимыми процедурами и логическими условиями. Предусмотрена возможность создания специализированных тестов для различных типов программных объектов. Для формирования скриптов используется собственный Си-подобный язык.
IBM Rational TestFactory - инструмент автоматической генерации скриптов тестирования посредством всестороннего анализа запущенного приложения для выявления дефектов надежности. Поскольку в программах имеется огромное число путей выполнения, проблема заключается в том, чтобы создать тесты, которые проверяют полный функционал приложения за минимальное число шагов.
IBM Rational XDE Tester - специализированный инструмент для тестирования Java-приложений (J2EE, J2SE, SWT, AWT/JFC) и Web-приложений (HTML, DHTML, XML, JavaScript, апплеты Java). Текстовые сценарии пишутся на Java, технология ScriptAssure обеспечивает проверку достоверности динамических данных. Среда тестирования реализована в оболочке Eclipse, при этом имеется возможность встраивания инструмента в WebSphere Studio и Rational XDE Developer.

Рано или поздно многие организации, использующие то или иное программное обеспечение приходят к необходимости организовывать процесс тестирования. Причин обычно несколько, либо это стартап, который сразу требует тестирования своего ПО, либо руководство начинает понимать, что помимо тестирования бизнесом, сопровождением, разработкой да всеми кого только можно привлечь в компании все таки требуются профессиональные специалисты по тестированию, которые разгрузят всех других людей, не имеющих никакого нормального представления о тестировании, И вот именно с этого момента зачастую начинается традиционное для нашей работы назначение одного из текущих сотрудников на должность руководителя отдела тестирования. Мол, вот тебе поле, засеивай… А как, что ты будешь делать не важно, но отдел должен быть и должен приносить результаты. Конечно, не всегда бывает все так плохо, кто-то все таки ищет на эту должность грамотных специалистов по тестированию, но тем не менее процесса тестирования на этом этапе все равно нет и его нужно создавать.

И очень часто многие руководители начинают создавать процесс тестирования не системно, а выборочно. Но при этом, если организовывать процесс тестирования, выдирая просто лучшие практики, не имея при этом системного подхода, то такой процесс не принесет положительных результатов ни через месяц, ни через год.

Я думаю многие знают, что если процесс тестирования с самого начала организовать не правильно, то потом изменить его будет уже крайне сложно. Поэтому нужно определить, как же правильно организовать процесс тестирования?

С чего же начинать организацию процесса тестирования?

Я выделяю 11 основных критериев в организации процесса тестирования:

  1. Цели и область тестирования
  2. Команда
  3. Управление
  4. Коммуникация и взаимодействие
  5. Методология тестирования
  6. Документированность процесса
  7. Управление рисками
  8. Измерение процесса
  9. Инструменты
  10. Тестовые среды
  11. Совершенствование процесса

Именно выполнение всех этих критериев позволяет равномерно развивать процесс тестирования, что в короткие сроки позволяет достигать того уровня, когда процесс тестирования будет приносить положительные результаты.

Поэтому, любой руководитель, перед которым стоит задача организации процесса тестирования, должен задать следующие вопросы:

  • Зачем нам нужно тестирование?
  • Что мы имеем, чтобы сделать тестирование?
  • Какие процессы нужно формализовать или создать?
  • Как и что мы должны тестировать?

Только после того, как мы получим ответы на эти вопросы, можно начинать переходить к стандартам.

Я выделяю следующие стандарты, которые действительно нужно изучить перед тем, как начинать строить процесс:

  • ISO 29119
  • IEEE 829\1008
  • TPI Next&TMap
  • ISTQB

Естественно, использование полностью практик, изложенных в стандартах нельзя. Любой стандарт должен быть кастомизирован под потребности именно вашего процесса тестирования, потому что необдуманное внедрение практик стандартов может привести к неблагоприятным последствиям, потому что ваш процесс тестирования не будет выполнять требований бизнеса.

Любой ИТ процесс всегда должен удовлетворять потребностям бизнеса!

Мы разберем основные критерии построения процесса тестирования.

Цели и область тестирования

Целью тестирования является обнаружение дефектов, проверка соответствия ПО заявленным требованиям, а также предоставление обратной связи о дефектах всем заинтересованным сторонам.

Это стандартная цель процесса тестирования, но также могут быть цели, которые определяются потребностями бизнеса организации. К примеру, для банков характерно, чтобы различные требования ЦБ внедрялись своевременно, поэтому дополнительно к общей цели тестирования, еще добавляется своевременность выполнение тестирования с требуемым качеством для критичных задач.

Говоря об области тестирования, мы должны прекрасно понимать, что именно нам предстоит тестировать. Это могут быть системы, компоненты, бизнес процессы. Для того, чтобы это понять, то нужно просто ответить на два вопроса:

  • Что надо тестировать?
  • Что будем тестировать?

Зачастую, то что надо тестировать и то что будем может сильно различаться. Это зависит от возможностей вашего процесса тестирования. «Что надо» часто диктуется бизнесом и руководством, поэтому хороший руководитель должен всегда понимать, «что нужно» тестировать. Как говорится в поговорке: «За двумя зайцами погонишься, ни одного не поймаешь», так и тут. Всегда лучше качественно тестировать то, что действительно вы можете тестировать вашей командой, чем хвататься за все, что просит бизнес и ничего не успевать в срок, да еще и пропускать критичные дефекты.

Команда и управление

Команда — это самая важная составляющая процесса тестирования. Без команды вы, как руководитель, ничего не сделаете. Зачастую к формированию команды подходят несколькими подходами:

Инструменты и инфраструктура

Какой же процесс тестирования без инструментов? Это получается ручной труд ради ручного труда 🙂 Я думаю многие из вас часто слышали о написании тест-кейсов в документах ворд, о построения графиков и диаграмм в экселе. Но, зачем тратить усилия, если рынок предлагает нам готовые продукты управления тестирования, такие как HP ALM, MS TFS, TestRail, TestLink, JIRA Zephyr и многие другие.
Поэтому, если вы приступили к организации процесса тестирования, то делайте этот процесс удобным и эффективным. Пишите тест-кейсы в удобных формах готовых продуктов, интегрируйте инструменты с системой управления задачами, настраивайте и т.д.

Подходя к выбору инструмента нужно всегда понимать:

  • Какие задачи вы планируете выполнять?
  • Какой у вас бюджет на инструменты?

Получив ответы на эти вопросы вы сможете определить наиболее удобные для вас инструменты тестирования, а возможно и разработать собственные.

Помимо инструментов управления тестирования, к инструментам тестирования также можно отнести:

  • Система управления дефектами и задачами (может включаться в систему управления тестированием)
  • Вспомогательные инструменты (для скриншотов, снятия логов, работы с БД, SOUP UI для XML и т.д.)
  • Инструменты автоматизации ( , Selenium и т.д.)
  • Системы управления знаниями (на wiki движке)

Теперь поговорим об инфраструктуре. В текущем контексте своего повествования я подразумеваю тестовые среды.

Практически в любой организации, особенно если организация крупная и не разрабатывает мобильные приложения для плеймаркета, вам потребуется тестовая (ые) среда (ы) для тестирования. Мощности и объемы интеграции систем в тестовых средах могут быть различными в зависимости от объемов тестирования.

Стандартно я выделяю следующие типы тестовых сред:

  • Среда разработки (можно ли ее относить к тестовой?, но тем не менее)
  • Среда тестирования системы (может быть развернута одна или несколько систем, компонент, не требует серьезных мощностей)
  • Среда интеграции (полноценный интеграционная среда для проверки работоспособности сквозных бизнес процессов)
  • Среда (основное требования — соответствие мощностями боевому контуру)
  • Среда ПродЛайк/ПреПрод (среда для отладки готового протестированного билда, проведение инсталяционного тестирования)

Возможность организации такого большого количества тестовых сред позволяет выполнять работы по тестированию с наложением их друг на друга, тем самым увеличивая кол-во изменений (релизов, спринтов), которые могут идти параллельно, но на разных этапах тестирования.

Совершенствование процесса

Я очень часто говорю такую фразу, что «Любой процесс, неважно какой, всегда должен постоянно совершенствоваться», на что очень часто слышу «Зачем, наш процесс и так хорошо работает».

Но это не так. Почему мы должны постоянно совершенствовать процесс тестирования:

1. Цели тестирования не могут быть одинаковыми, они постоянно меняются в зависимости от потребностей бизнеса, что диктуется рынком.

2. ИТ сфера постоянно развивается. Приходят новые технологи подходы, которые всегда позволяются совершенствовать процесс тестирования.

Как говорится, совершенству нет предела!

Ну а как совершенствовать — это стандартный цикл Демминга.

Запланировали — .Сделали — Проанализировали — Скорректировали

Ну и в заключение скажу, что правильная позволяет в кротчайшие сроки создать действительно эффективный процесс тестирования, решающий поставленные ему цели и задачи.

Тестирование программного обеспечения (ПО) выявляет недоработки, изъяны и ошибки в коде, которые необходимо устранить. Его также можно определить как процесс оценки функциональных возможностей и корректности ПО с помощью анализа. Основные методы интеграции и тестирования программных продуктов обеспечивают качество приложений и заключаются в проверке спецификации, дизайна и кода, оценке надежности, валидации и верификации.

Методы

Главная цель тестирования ПО - подтверждение качества программного комплекса путем систематической отладки приложений в тщательно контролируемых условиях, определение их полноты и корректности, а также обнаружение скрытых ошибок.

Методы можно разделить на статические и динамические.

К первым относятся неформальное, контрольное и техническое рецензирование, инспекция, пошаговый разбор, аудит, а также статический анализ потока данных и управления.

Динамические техники следующие:

  1. Тестирование методом белого ящика. Это подробное исследование внутренней логики и структуры программы. При этом необходимо знание исходного кода.
  2. Тестирование методом черного ящика. Данная техника не требует каких-либо знаний о внутренней работе приложения. Рассматриваются только основные аспекты системы, не связанные или мало связанные с ее внутренней логической структурой.
  3. Метод серого ящика. Сочетает в себе предыдущие два подхода. Отладка с ограниченным знанием о внутреннем функционировании приложения сочетается со знанием основных аспектов системы.

Прозрачное тестирование

В методе белого ящика используются тестовые сценарии контрольной структуры процедурного проекта. Данная техника позволяет выявить ошибки реализации, такие как плохое управление системой кодов, путем анализа внутренней работы части программного обеспечения. Данные методы тестирования применимы на интеграционном, модульном и системном уровнях. Тестировщик должен иметь доступ к исходному коду и, используя его, выяснить, какой блок ведет себя несоответствующим образом.

Тестирование программ методом белого ящика обладает следующими преимуществами:

  • позволяет выявить ошибку в скрытом коде при удалении лишних строк;
  • возможность использования побочных эффектов;
  • максимальный охват достигается путем написания тестового сценария.

Недостатки:

  • высокозатратный процесс, требующий квалифицированного отладчика;
  • много путей останутся неисследованными, поскольку тщательная проверка всех возможных скрытых ошибок очень сложна;
  • некоторая часть пропущенного кода останется незамеченной.

Тестирование методом белого ящика иногда еще называют тестированием методом прозрачного или открытого ящика, структурным, логическим тестированием, тестированием на основе исходных текстов, архитектуры и логики.

Основные разновидности:

1) тестирование управления потоком - структурная стратегия, использующая поток управления программой в качестве модели и отдающая предпочтение большему количеству простых путей перед меньшим числом более сложных;

2) отладка ветвления имеет целью исследование каждой опции (истинной или ложной) каждого оператора управления, который также включает в себя объединенное решение;

3) тестирование основного пути, которое позволяет тестировщику установить меру логической сложности процедурного проекта для выделения базового набора путей выполнения;

4) проверка потока данных - стратегия исследования потока управления путем аннотации графа информацией об объявлении и использовании переменных программы;

5) тестирование циклов - полностью сосредоточено на правильном выполнении циклических процедур.

Поведенческая отладка

Тестирование методом черного ящика рассматривает ПО как «черный ящик» - сведения о внутренней работе программы не учитываются, а проверяются только основные аспекты системы. При этом тестировщику необходимо знать системную архитектуру без доступа к исходному коду.

Преимущества такого подхода:

  • эффективность для большого сегмента кода;
  • простота восприятия тестировщиком;
  • перспектива пользователя четко отделена от перспективы разработчика (программист и тестировщик независимы друг от друга);
  • более быстрое создание теста.

Тестирование программ методами черного ящика имеет следующие недостатки:

  • в действительности выполняется избранное число тестовых сценариев, результатом чего является ограниченный охват;
  • отсутствие четкой спецификации затрудняет разработку тестовых сценариев;
  • низкая эффективность.

Другие названия данной техники - поведенческое, непрозрачное, функциональное тестирование и отладка методом закрытого ящика.

1) эквивалентное разбиение, которое может уменьшить набор тестовых данных, так как входные данные программного модуля разбиваются на отдельные части;

2) краевой анализ фокусируется на проверке границ или экстремальных граничных значений - минимумах, максимумах, ошибочных и типичных значениях;

3) фаззинг - используется для поиска погрешностей реализации с помощью ввода искаженных или полуискаженных данных в автоматическом или полуавтоматическом режиме;

4) графы причинно-следственных связей - методика, основанная на создании графов и установлении связи между действием и его причинами: тождественность, отрицание, логическое ИЛИ и логическое И - четыре основных символа, выражающие взаимозависимость между причиной и следствием;

5) проверка ортогональных массивов, применяемая к проблемам с относительно небольшой областью ввода, превышающей возможности исчерпывающего исследования;

6) тестирование всех пар - техника, набор тестовых значений которой включает все возможные дискретные комбинации каждой пары входных параметров;

Тестирование методом черного ящика: примеры

Техника основана на спецификациях, документации, а также описаниях интерфейса программного обеспечения или системы. Кроме того, возможно использование моделей (формальных или неформальных), представляющих ожидаемое поведение ПО.

Обычно данный метод отладки применяется для пользовательских интерфейсов и требует взаимодействия с приложением путем введения данных и сбора результатов - с экрана, из отчетов или распечаток.

Тестировщик, таким образом, взаимодействует с ПО путем ввода, воздействуя на переключатели, кнопки или другие интерфейсы. Выбор входных данных, порядок их введения или очередность действий могут привести к гигантскому суммарному числу комбинаций, как это видно на следующем примере.

Какое количество тестов необходимо произвести, чтобы проверить все возможные значения для 4 окон флажка и одного двухпозиционного поля, задающего время в секундах? На первый взгляд расчет прост: 4 поля с двумя возможными состояниями - 24 = 16, которые необходимо умножить на число возможных позиций от 00 до 99, то есть 1600 возможных тестов.

Тем не менее этот расчет ошибочен: мы можем определить, что двухпозиционное поле может также содержать пробел, т. е. оно состоит из двух буквенно-цифровых позиций и может включать символы алфавита, специальные символы, пробелы и т. д. Таким образом, если система представляет собой 16-битный компьютер, то получится 216 = 65 536 вариантов для каждой позиции, результирующих в 4 294 967 296 тестовых случаев, которые необходимо умножить на 16 комбинаций для флажков, что в общей сложности дает 68 719 476 736. Если их выполнить со скоростью 1 тест в секунду, то общая продолжительность тестирования составит 2 177,5 лет. Для 32 или 64-битных систем, длительность еще больше.

Поэтому возникает необходимость уменьшить этот срок до приемлемого значения. Таким образом, должны применяться приемы для сокращения количества тестовых случаев без уменьшения охвата тестирования.

Эквивалентное разбиение

Эквивалентное разбиение представляет собой простой метод, применимый для любых переменных, присутствующих в программном обеспечении, будь то входные или выходные значения, символьные, числовые и др. Он основан на том принципе, что все данные из одного эквивалентного разбиения будут обрабатываться тем же образом и теми же инструкциями.

Во время тестирования выбирается по одному представителю от каждого определенного эквивалентного разбиения. Это позволяет систематически сокращать число возможных тестовых случаев без потери охвата команд и функций.

Другим следствием такого разбиения является сокращение комбинаторного взрыва между различными переменными и связанное с ними сокращение тестовых случаев.

Например, в (1/x) 1/2 используется три последовательности данных, три эквивалентных разбиения:

1. Все положительные числа будут обрабатываться таким же образом и должны давать правильные результаты.

2. Все отрицательные числа будут обрабатываться так же, с таким же результатом. Это неверно, так как корень из отрицательного числа является мнимым.

3. Ноль будет обрабатываться отдельно и даст ошибку «деление на ноль». Это раздел с одним значением.

Таким образом, мы видим три различных раздела, один из которых сводится к единственному значению. Есть один «правильный» раздел, дающий достоверные результаты, и два «неправильных», с некорректными результатами.

Краевой анализ

Обработка данных на границах эквивалентного разбиения может выполняться иначе, чем ожидается. Исследование граничных значений - хорошо известный способ анализа поведения ПО в таких областях. Эта техника позволяет выявить такие ошибки:

  • неправильное использование операторов отношения (<,>, =, ≠, ≥, ≤);
  • единичные ошибки;
  • проблемы в циклах и итерациях,
  • неправильные типы или размер переменных, используемых для хранения информации;
  • искусственные ограничения, связанные с данными и типами переменных.

Полупрозрачное тестирование

Метод серого ящика увеличивает охват проверки, позволяя сосредоточиться на всех уровнях сложной системы путем сочетания методов белого и черного.

При использовании этой техники тестировщик для разработки тестовых значений должен обладать знаниями о внутренних структурах данных и алгоритмах. Примерами методики тестирования серого ящика являются:

  • архитектурная модель;
  • унифицированный язык моделирования (UML);
  • модель состояний (конечный автомат).

В методе серого ящика для разработки тестовых случаев изучаются коды модулей по технике белого, а фактическое испытание выполняется на интерфейсах программы по технологии черного.

Такие методы тестирования обладают следующими преимуществами:

  • сочетание преимуществ техник белого и черного ящиков;
  • тестировщик опирается на интерфейс и функциональную спецификацию, а не на исходный код;
  • отладчик может создавать отличные тестовые сценарии;
  • проверка производится с точки зрения пользователя, а не дизайнера программы;
  • создание настраиваемых тестовых разработок;
  • объективность.

Недостатки:

  • тестовое покрытие ограничено, так как отсутствует доступ к исходному коду;
  • сложность обнаружения дефектов в распределенных приложениях;
  • многие пути остаются неисследованными;
  • если разработчик программного обеспечения уже запускал проверку, то дальнейшее исследование может быть избыточным.

Другое название техники серого ящика - полупрозрачная отладка.

1) ортогональный массив - использование подмножества всех возможных комбинаций;

2) матричная отладка с использованием данных о состоянии программы;

3) проводимая при внесении новых изменений в ПО;

4) шаблонный тест, который анализирует дизайн и архитектуру добротного приложения.

тестирования ПО

Использование всех динамических методов приводит к комбинаторному взрыву количества тестов, которые должны быть разработаны, воплощены и проведены. Каждую технику следует использовать прагматично, принимая во внимание ее ограничения.

Единственно верного метода не существует, есть только те, которые лучше подходят для конкретного контекста. Структурные техники позволяют найти бесполезный или вредоносный код, но они сложны и неприменимы к крупным программам. Методы на основе спецификации - единственные, которые способны выявить недостающий код, но они не могут идентифицировать посторонний. Одни техники больше подходят для конкретного уровня тестирования, типа ошибок или контекста, чем другие.

Ниже приведены основные отличия трех динамических техник тестирования - дана таблица сравнения между тремя формами отладки ПО.

Аспект

Метод черного ящика

Метод серого ящика

Метод белого ящика

Наличие сведений о составе программы

Анализируются только базовые аспекты

Частичное знание о внутреннем устройстве программы

Полный доступ к исходному коду

Степень дробления программы

Кто производит отладку?

Конечные пользователи, тестировщики и разработчики

Конечные пользователи, отладчики и девелоперы

Разработчики и тестировщики

Тестирование базируется на внешних внештатных ситуациях.

Диаграммы БД, диаграммы потока данных, внутренние состояния, знание алгоритма и архитектуры

Внутреннее устройство полностью известно

Степень охвата

Наименее исчерпывающая и требует минимума времени

Потенциально наиболее исчерпывающая. Требует много времени

Данные и внутренние границы

Отладка исключительно методом проб и ошибок

Могут проверяться домены данных и внутренние границы, если они известны

Лучшее тестирование доменов данных и внутренних границ

Пригодность для тестирования алгоритма

Автоматизация

Автоматические методы тестирования программных продуктов намного упрощают процесс проверки независимо от технической среды или контекста ПО. Их используют в двух случаях:

1) для автоматизации выполнение утомительных, повторяющихся или скрупулезных задач, таких как сравнение файлов в нескольких тысяч строк с целью высвобождения времени тестировщика для концентрации на более важных моментах;

2) для выполнения или отслеживания задач, которые не могут быть легко осуществимы людьми, таких как проверка производительности или анализ времени отклика, которые могут измеряться в сотых долях секунды.

Тестовые инструменты могут быть классифицированы по-разному. Следующее деление основано на поддерживаемых ими задачах:

  • управление тестированием, которое включает поддержку управления проектом, версиями, конфигурациями, риск-анализ, отслеживание тестов, ошибок, дефектов и инструменты создания отчетов;
  • управление требованиями, которое включает хранение требований и спецификаций, их проверку на полноту и многозначность, их приоритет и отслеживаемость каждого теста;
  • критический просмотр и статический анализ, включая мониторинг потока и задач, запись и хранение комментариев, обнаружение дефектов и плановых коррекций, управление ссылками на проверочные списки и правила, отслеживание связи исходных документов и кода, статический анализ с обнаружением дефектов, обеспечением соответствия стандартам написания кода, разбором структур и их зависимостей, вычислением метрических параметров кода и архитектуры. Кроме того, используются компиляторы, анализаторы связей и генераторы кросс-ссылок;
  • моделирование, которое включает инструменты моделирования бизнес-поведения и проверки созданных моделей;
  • разработка тестов обеспечивает генерацию ожидаемых данных исходя из условий и интерфейса пользователя, моделей и кода, управление ими для создания или изменения файлов и БД, сообщений, проверки данных исходя из правил управления, анализа статистики условий и рисков;
  • критический просмотр путем ввода данных через графический интерфейс пользователя, API, командные строки с использованием компараторов, помогающих определить успешные и неудавшиеся тесты;
  • поддержка сред отладки, которая позволяет заменить отсутствующее оборудование или ПО, в т. ч. симуляторы оборудования на основе подмножества детерминированного выхода, эмуляторы терминалов, мобильных телефонов или сетевого оборудования, среды для проверки языков, ОС и аппаратного обеспечения путем замены недостающих компонентов драйверами, фиктивными модулями и др., а также инструменты для перехвата и модификации запросов ОС, симуляции ограничений ЦПУ, ОЗУ, ПЗУ или сети;
  • сравнение данных файлов, БД, проверка ожидаемых результатов во время и по окончании тестирования, в т. ч. динамическое и пакетное сравнение, автоматические «оракулы»;
  • измерение покрытия для локализации утечек памяти и некорректного управления ею, оценки поведения системы в условиях симулированной нагрузки, генерации нагрузки приложений, БД, сети или серверов по реалистичным сценариям ее роста, для измерения, анализа, проверки и отчета о системных ресурсах;
  • обеспечение безопасности;
  • тестирование производительности, нагрузки и динамический анализ;
  • другие инструменты, в т. ч. для проверки правописания и синтаксиса, сетевой безопасности, наличия всех страниц веб-сайта и др.

Перспектива

С изменением тенденций в индустрии ПО процесс его отладки также подвержен изменениям. Существующие новые методы тестирования программных продуктов, такие как сервис-ориентированнае архитектура (SOA), беспроводные технологии, мобильные услуги и т. д., открыли новые способы проверки ПО. Некоторые из изменений, которые ожидаются в этой отрасли в течение следующих нескольких лет, перечислены ниже:

  • тестировщики будут предоставлять легковесные модели, с помощью которых разработчики смогут проверять свой код;
  • разработка методов тестирования, включающих просмотр и моделирование программ на раннем этапе, позволит устранить многие противоречия;
  • наличие множества тестовых перехватов сократит время обнаружения ошибок;
  • статический анализатор и средства обнаружения будут применяться более широко;
  • применение полезных матриц, таких как охват спецификации, охват модели и покрытие кода, будет определять разработку проектов;
  • комбинаторные инструменты позволят тестировщикам определять приоритетные направления отладки;
  • тестировщики будут предоставлять более наглядные и ценные услуги на протяжении всего процесса разработки ПО;
  • отладчики смогут создавать средства и методы тестирования программного обеспечения, написанные на и взаимодействующие с различными языками программирования;
  • специалисты по отладке станут более профессионально подготовленными.

На смену придут новые бизнес-ориентированные методы тестирования программ, изменятся способы взаимодействия с системами и предоставляемой ими информацией с одновременным снижением рисков и ростом преимуществ от бизнес-изменений.