Сенсорный экран: история изобретения и принципы работы. Что лучше: резистивный или емкостной экран? Типы сенсорного экрана

  • 30.08.2019

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

Многие думают, что эра сенсорных экранов началась в нулевых, с выходом первых КПК (надеюсь, нет таких, кто думает, что первый сенсорный экран появился в iPhone?) Однако это не так - первым потребительским устройством с сенсорным дисплеем стал... телевизор в 1982 году. Годом позже появился первый сенсорный ПК от HP. Через 10 лет, в 1993 году, появился Apple Newton - родоначальник КПК, который ввел моду на стилусы (хотя это скорее была необходимость - экран-то резистивный), и уже в 2007 году с выходом iPhone появился современный емкостный экран в том виде, в котором мы все привыкли его видеть. Так что история сенсорных экранов насчитывает 35 лет, и за это время произошло достаточно много.


Уже из названия понятно, что лежит в основе таких дисплеем - это электрическое сопротивление. Устройство такого экрана просто: над дисплеем находится подложка (дабы при сильном нажатии его не деформировать), после чего идет один резистивный слой, изолятор и второй резистивный слой уже на мембране:


На левый и правый край мембраны и нижний и верхний край резистивного слоя на подложке подведено напряжение. Что происходит, когда мы нажимаем на такой дисплей? Резистивные слои замыкаются, сопротивление меняется, а значит меняется и напряжение - а это легко зарегистрировать, после чего, зная сопротивление единицы резистивного слоя, можно легко узнать сопротивление по обеим осям до точки нажатия, а значит и высчитать саму точку нажатия:


Это - принцип действия четырехпроводного резистивного экрана, и такие уже больше не используются по одной простой причине: малейшее повреждение мембраны с резистивным слоем ведет к тому, что экран перестает корректно работать. А с учетом того, что в такой экран обычно тыкают острым стилусом, добиться повреждения отнюдь не трудно.

Тогда решили сделать по-другому: мембрана стала токопроводящей, а на резистивном слое подложки теперь расположены все 4 электрода, но уже по углам, а напряжение подведено только к мембране - то есть экран стал пятипроводным. Что происходит при нажатии? Мембрана касается резистивного слоя, начинает идти ток, который снимается с 4 электродов, что опять же позволяет, зная сопротивление резистивного слоя, определить точку касания:


Вот этот тип уже более «вандалоустойчив» - даже при порезе мембраны экран продолжит функционировать нормально (кроме, разумеется, места пореза). Но, увы, это не отменяет других проблем, общих для всех резистивных экранов, а их много.

Во-первых, такой экран воспринимает только одно касание: несложно догадаться, что при нажатии сразу двумя пальцами экран будет думать, что вы нажали в середину линии, соединяющей точки нажатия. Вторая проблема - на экран действительно нужно давить, причем желательно острым предметом (ногтем, стилусом). Разумеется, привыкнуть к этому можно, но это зачастую приводило к характерным царапинам, что красоты экрану не добавляло. Третья проблема - такой экран пропускает не более 85% светового потока, и из-за его толщины нет ощущения того, что вы касаетесь пальцем изображения напрямую.

Но, тем ни менее, у него есть и плюсы: во-первых, разбить дисплей в таком экране очень и очень сложно - у него «тройная защита» в виде мембраны, изоляторов и подложки. Второй плюс - экрану безразлично, чем вы в него тыкаете - с ним можно работать и в обычных перчатках (что зимой очень актуально). Но, увы, это достоинства не перевесили недостатки, и с выходом iPhone начался бум на емкостные экраны.

Поверхностно-емкостные экраны

Это, можно сказать, переходный тип между привычными нам емкостными экранами (которые являются проекционными) и старыми резистивными. Принцип действия тут схож с пятипроводным экраном: есть стеклянная пластина, покрытая резистивным слоем, и 4 электрода по углам, которые подают на пластину небольшое переменное напряжение (почему не постоянное - объясню чуть ниже). При нажатии на такой экран токопроводящим заземленным предметом мы получаем в месте нажатия утечку тока, которую легко можно зарегистрировать:


Тут и разгадка, почему напряжение переменное - с постоянным при плохом заземлении могут быть перебои в работе, а с переменным такого нет.

Проблем у них тоже хватает: экран теперь менее защищен, и при повреждении стеклянной пластины перестает работать весь. Опять же не поддерживается мультитач, и более того - теперь экран не реагирует на руку в перчатке или же стилусы - они в основном не проводят ток.

Единственный плюс такого экрана - он стал тоньше и прозрачнее резистивного, но в общем-то это оценили немногие. Но все изменилось с выходом iPhone, где применялся несколько другой тип сенсорного экрана, который уже поддерживал мультитач.

Проекционно-емкостные экраны

Вот мы уже и подобрались к современному типу сенсорных экранов. По принципу работы он существенно отличается от предыдущих - тут электроды расположены сеткой на внутренней стороне экрана (а не 4 электрода по углам), и при нажатии на экран палец образует с электродами конденсаторы, по емкости которых и можно определить местоположение нажатия:

С таким устройством экрана можно нажимать на него сразу несколькими пальцами - если они расположены достаточно далеко (дальше, чем два соседних электрода в сетке), то такие нажатия будут определяться как разные - именно так и появился мультитач, сначала на 2 пальца в iPhone, а сейчас уже и на 10 пальцев в планшетах. Большее количество нажатий уже не нужно (людей больше чем с 10 пальцами маловато), да и определение одновременно больше чем 5-7 нажатий накладывает серьезную нагрузку на контроллер тача.

Из плюсов такого экрана, кроме поддержки мультитача - возможность сделать OGS (One Glass Solution): защитное стекло экрана с интегрированной сеткой электродов и дисплей представляют из себя одно целое: в таком случае толщина оказывается наименьшей, и кажется, что вы пальцами касаетесь изображения. Это же приводит к проблеме хрупкости: при появлении трещины на стекле гарантированно рвется сетка электродов, и экран перестает реагировать на нажатия.

Это - основные типы сенсорных экранов, однако есть и многие другие. Начнем, пожалуй, с самого старого типа, с которого сенсорные экраны и начинались.

Инфракрасные экраны

Опять же принцип действия понятен из названия: по краям экрана расположено множество светоизлучателей и приемников в ИК-диапазоне. При нажатии палец перекрывает часть света, что и позволяет определить местоположение нажатия. Плюсами таких экранов на заре их появления было то, что ими можно было оснастить любой дисплей, что и было сделано с телевизором в 1982. Минусы также очевидны - толщина такой конструкции оказывается внушительной, а точность позиционирования - достаточно низкой.

Тензометрические экраны

Экраны, которые реагируют на нажатие (сильное нажатие). Огромный их плюс в том, что они максимально «антивандальные», поэтому их и применяют в различных банкоматах, стоящих на улице.

Индукционные экраны

Из названия опять же все понятно: внутри экрана есть катушка индуктивности и сетка проводов. При касании экрана специальным активным пером меняется напряженность созданного магнитного поля - с помощью этого и регистрируется нажатие. Самый главный плюс такого экрана - максимально возможная точность, поэтому они хорошо зарекомендовали себя в дорогих графических планшетах.

Оптические экраны

Принцип основан на полном внутреннем отражении: стекло подсвечивается инфракрасной подсветкой, и пока нажатия нет, на границе стекла и воздуха лучи света полностью отражаются (то есть нет преломленного луча). При нажатии на такой экран появляется преломленный луч, а по углу преломления (ну или отражения) можно высчитать точку нажатия.

Экраны на поверхностно-акустических волнах

Пожалуй, одни из самых сложно устроенных экранов. Принцип работы заключается в том, что в толще стекла создаются ультразвуковые колебания. При прикосновении к вибрирующему стеклу волны поглощаются, а специальные датчики по углам это регистрируют и высчитывают точку прикосновения:


Плюсом этой технологии является то, что прикасаться к экрану можно любым предметом, не обязательно токопроводящим и заземленным. Минус - экран боится любых загрязнений, так что использовать его, например, в дождь, будет невозможно.

DST экраны

Их принцип действия основан на пьезоэлектрическом эффекте - при деформации диэлектрика он поляризуется, а значит - возникает разность потенциалов - а ее уже можно посчитать. Из плюсов - очень быстрая скорость реакции и возможность работы при серьезно загрязненном экране. Минус - для определения местоположения пальца он должен постоянно двигаться.

Вот в общем-то и все типы сенсорных экранов. Конечно, большинство из них диковинные и вы вряд ли с ними столкнетесь, но само разнообразие и развитие этой технологии радует.

Сенсорный дисплей, как устройство ввода-вывода информации, появился относительно давно. Еще в 90-х годах прошлого века можно было встретить в продаже КПК и другие портативные девайсы, оснащенные тачскрином. По мере развития технологий сенсорные смартфоны совершенствовались, к ним выдвигались новые требования, поэтому за последнее десятилетие сенсорные экраны серьезно изменились.

Резистивные сенсоры

Самые простые и доступные сенсоры для смартфонов. Они состоят из двух слоев, на которые нанесена сетка из прозрачного токопроводящего материала. Нижний выполнен из стекла (минерального или органического), а верхний – пластиковый. Между ними расположена тонкая воздушная прослойка. В момент касания происходит замыкание цепи между сетками разных слоев, и контроллер определяет координаты места нажатия.

Преимуществами резистивных экранов являются чувствительность к нажатию любым предметом, дешевизна, простота конструкции и точность. Главный недостаток – хрупкость: пластиковый верхний слой легко порезать или проколоть, после чего контакт нарушится и сенсор работать не будет.

Еще резистивные сенсоры обладают относительно низкой прозрачностью (до 80 %), поэтому, начиная года так с 2010-го, они выходят из употребления на смартфонах. Сегодня такой тачскрин можно встретить лишь в дешевых телефонах китайского производства.

Емкостные сенсоры

Емкостные сенсоры смартфонов состоят из стеклянной панели, покрытой прозрачным токопроводящим слоем, и четырех угловых датчиков. На нее подается слабый переменный ток, утечку которого при касании регистрируют сенсоры, вычисляя координаты нажатия. Помимо того, что реагируют такие тачскрины лишь на касание предмета с электрической проводимостью, они обладают малой точностью и не способны одновременно воспринимать несколько нажатий.

Емкостно-проекционные сенсоры

Наиболее распространенный на современных смартфонах вид сенсоров. Представляют собой развитие предыдущего типа. Вместо токопроводящего слоя на панель наносится сетка электродов, которые также находятся под напряжением. В момент касания пальца, выступающего в роли конденсатора, происходит утечка тока, расположение которой вычисляется контроллером. Такая конструкция делает возможным отслеживание нескольких касаний (на данный момент до 10, больше – не имеет смысла) одновременно.

Принципиальная конструкция таких тачскринов производителями мобильных устройств модифицируется. На современных OGS дисплеях смартфонов чувствительные электроды могут монтироваться прямо между кристаллами (или диодами) матрицы, а для устойчивости к повреждениям экран покрывают закаленным стеклом.

Ранее также практиковалось разделение защитного стекла и сенсорного слоя: электроды наносились на прозрачную пленку, которая сверху покрывалась стеклом. Подобный подход позволял сохранять работоспособность сенсора даже при наличии серьезных повреждений (трещины, сколы).

Оснащенные сенсорными экранами устройства (мобильные телефоны, планшеты, нетбуки, даже персональные компьютеры) становятся все более популярными. Но если вы решились покупать устройство, экран которого реагирует на прикосновения, вам следует знать, что существуют разные типы сенсорных экранов .

Разные типы сенсорных экранов работают на разных физических принципах . Основных видов сенсорных экранов два - емкостные и резистивные. Существуют и другие типы, к примеру, экраны на поверхностно-акустических волнах, инфракрасные, оптические, тензометрические, индукционные (используются в ) и др. Но шанс столкнуться с этими типами экранов в повседневной жизни достаточно мал, поэтому поговорим о двух самых распространенных разновидностях тачскринов.

Типы сенсорных экранов: резистивный

Резистивный сенсорный экран - это более простая и дешевая технология . Такой экран состоит из двух основных частей: проводящая подложка и пластиковая мембрана. Когда вы нажимаете на мембрану, она замыкается с подложкой. При этом управляющая электроника вычисляет сопротивление, возникающее между краями мембраны и подложки, и таким образом определяет координаты точки нажатия.

Резистивные сенсорные экраны используются в КПК, коммуникаторах, некоторых моделях мобильных телефонов , POS-терминалах, планшетных компьютерах, промышленных устройствах управления, медицинском оборудовании. Обычно малогабаритные приборы, оснащенные резистивным экраном, имеют в наборе стилус, чтобы удобнее было нажимать на мембрану (при невысокой площади экрана сделать это пальцем затруднительно).

Весомое преимущество резистивных экранов - это их простота и дешевизна , что в итоге снижает цену всего устройства. Также они стойки к загрязнениям. Но главное - даже при отсутствии специального стилуса с ними можно работать практически любым твердым тупым предметом, который окажется под рукой. На прикосновения пальцев они тоже реагируют, даже если рука в перчатке, правда, прикосновение должно быть достаточно сильным.

Но есть у резистивных экранов и свои недостатки . Этот тип сенсорных экранов чувствителен к механическим повреждениям: если использовать вместо стилуса неподходящий предмет или, скажем, хранить телефон в одном кармане с ключами, можно легко его поцарапать. Поэтому для устройств с этим типом экранов лучше дополнительно приобрести специальную защитную пленку. Чувствительность резистивных экранов при низких температурах снижается. Кроме этого, прозрачность их тоже оставляет желать лучшего: они пропускают максимум 85% света, исходящего от дисплея.

Типы сенсорных экранов: емкостные

Емкостные сенсорные экраны используют тот факт, что предметы большой емкости (в данном случае - человек) проводят переменный электрический ток . Такие экраны представляют собой панель из стекла, которая покрыта прозрачным резистивным сплавом. На проводящий слой передается небольшое переменное напряжение. Если вы касаетесь пальца экраном или другим предметом, проводящим ток, происходит утечка тока, она фиксируется датчиками, и вычисляются координаты точки нажатия.

Бывают обычные емкостные экраны и проекционно-емкостные . Вторая технология - более «продвинутая». Такие экраны более чувствительны (скажем, реагируют на руку в перчатке, в зависимости от просто емкостных), поддерживают технологию мультитач (одновременное определение координат нескольких точек касания). Емкостные экраны используют в части банкоматов, информационных киосках и охраняемых помещениях. Проекционно-емкостные - в уличных электронных киосках, платежных терминалах, банкоматах, тачпадах ноутбуков, смартфонах и других устройствах с поддержкой технологи мультитач.

Достоинства таких сенсорных экранов - это долговечность, стойкость к большинству загрязнений (к тем, которые не проводят ток), высокая прозрачность экрана, возможность работы при низких температурах. При необходимости можно обеспечить высокую прочность - слой стекла на емкостном экране может быть толщиной до 2 см. Емкостные экраны реагируют на легчайшие прикосновения. Проекционно-емкостные экраны еще и поддерживают мультитач.

Недостаток емкостных экранов - более высокая стоимость по сравнению с резистивными . К тому же, такие экраны реагируют лишь на токопроводящие предметы: палец или специальный стилус (не такой, как используется с резистивными экранами). Некоторые умельцы умудряются использовать сосиски, но где гарантия, что сосиска окажется под рукой в нужный момент?

Как видите, разные типы сенсорных экранов имеют свои преимущества и недостатки , так что вам решать, какой из них более подходящий лично для вас.

В данной статье мы рассмотрим различные виды сенсорных экранов, их особенности, плюсы и минусы технологии.

«Мультитач»

Данная технология позволяет распознавать одновременно несколько нажатий в разных точках экрана. Это открывает новые возможности в управлении устройством. Примером технологии «мультитач» является Apple iPhone .

Емкостные сенсорные экраны

Например: HTC Wildfire

Чувствительный элемент емкостного сенсорного экрана представляет собой стекло, покрытое прозрачным проводящим составом (обычно применяется сплав оксида индия и оксида олова). По углам панели размещены четыре электрода, которые подают на проводящий слой небольшое переменное напряжение.

При прикосновении пальцем (или иным проводящим предметом) к такому экрану, образуется емкостная связь между пальцем и экраном (утечка тока), что вызывает импульс тока в точку контакта. Контроллер экрана замеряет силу образующегося при этом тока по всем четырем электродам. Электрический ток из каждого угла экрана пропорционален расстоянию до точки касания, таким образом контроллеру достаточно просто сравнить эти токи для определения места касания.

Плюсы: надежный прозрачный экран с малым временем отклика, обладающий высокой прочностью и долговечностью.

Минусы такого экрана заключаются в том, что управлять им можно только пальцами или специальным стилусом, обладающим электрической ёмкостью. Потому зимой можете забыть об использовании такого экрана в перчатках. И к тому же при низких температурах электрические характеристики сенсора изменяются, и порой он может работать некорректно (от неправильного определения координат нажатия до полной неработоспособности).

Проекционно-емкостные экраны

Например: Apple iPhone

Существует еще одна разновидность емкостного сенсора – проекционно-емкостный экран. На его тыльную сторону нанесена сетка электродов, на которые подаётся слабый ток, а место касания определяется по точкам с повышенной ёмкостью.

Такие экраны, кроме высокой прозрачности и долговечности, имеют еще два важных преимущества – стекло-подложка может быть сделана сколь угодно прочной (и довольно толстой), к тому же они позволяют использовать технологию «мультитач», которую не могли себе позволить обычные ёмкостные экраны.

Минусом может являть немного более низкая точность определения координат нажатия.

Резистивные сенсорные экраны

Например: HTC Touch Diamond

Резистивный экран реагирует только на давление. Экран представляет собой стеклянный жидкокристаллический дисплей, на который наложена гибкая мембрана. На соприкасающиеся стороны нанесён резистивный состав, а пространство между плоскостями разделено диэлектриком.

При нажатии на экран пальцем (или любым другим предметом), он соприкасается с мембраной, и в точке касания начинает протекать ток. Чтобы определить место касания, контроллер экрана попарно замеряет напряжение между электродами, размещенными по краям панели. Такой экран называется 4-проводным (существуют также 5-6-7-проводные, имеющие некоторые отличия).

Особенность резистивного экрана состоит в том, что для его срабатывания требуется физическое усилие, причем нажатия ногтем он распознает лучше, чем подушечкой, реагирует на любые прикасающиеся к поверхности предметы. Устройства с резистивными экранами часто комплектуются стилусами. Такой дисплей обеспечивает более высокую точность управления (стилусом реально попасть буквально в пиксел, тогда как пальцем на емкостном экране – только в достаточно большую по площади область), но из-за постоянного контакта с твердыми предметами гибкая мембрана быстро покрывается царапинами. Именно резистивными экранами оснащено большинство мобильных устройств.

К недостаткам резистивных экранов относится также низкое светопропускание - не более 70-85%, из-за чего требуется повышенная яркость подсветки.

Зато эти экраны предельно дёшевы в производстве, чем и объясняется их широкое распространение.