Зачем используются антенны разной формы. Антенны, их виды и применение. Принцип работы передающей антенны

  • 31.10.2019

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.


Антенны - преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование - электромагнитную волну, в ВЧ колебания.

Диаграмма направленности - графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны
Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны
Также имеет название - антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 - фидер, 2 - рефлектор, 3 - директоры, 4 - активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор - активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Направленность - двулепестковая

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность - рамочная антенна с рефлектором:

Логопериодическая антенна
Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 - это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация
Поляризация - это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный - горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:
Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

Глава 4 - Антенны - «окна» в другие миры

Из электронной версии печатного издания книги А. Поис: «Наш Мир и Мы», часть 1 – «Мир и Мы» (Серия издания: «Поиски истины», М. МЦНТИ – Международный центр научной и технической информации. ООО «Мобильные коммуникации», 2004), размещенной на сайте www.pois.ru

Глава 4 - Антенны - «окна» в другие миры.... 1

Назначение и направленные свойства антенн.. 1

Различные типы антенн.. 6

Антенны, антеннами не называемые. 24

Антенны космического масштаба.. 25

Космические неоднородные диэлектрические линзы и гравитация . 26

Египетские пирамиды как облучатели линзовой антенны по имени «Земля» . 30

Галактики, межзвездные туманности, оболочки планет и черные дыры как антенны .. 32

Антенны земного масштаба.. 36

Антенны микромира.. 44

Некоторые искусственные формы как антенны.. 50

Общие параметры вещественных и полевых антенн.. 55

Выводы.. 57

Антенны, как известно, являются весьма «узким» научным направлением, но применяются столь широко, что почти каждый человек использует те или иные антенны в своей повседневной жизни, не задумываясь, как правило, ни о принципах их работы, ни о свойствах. Антенны относятся к той области науки, без которой невозможно дальнейшее познание мира, так как именно они являются устройствами ввода-вывода энергии, позволяющими обмениваться информацией, в том числе, и через огромные промежутки пространства-времени. Они всегда располагаются на внешней поверхности той среды, «окнами» которой являются, а поэтому их легко обнаружить. Кроме того, вся основная информация о самих антеннах, как, впрочем, и о нас самих, «на лице написана» и может быть достаточно легко считана соответствующими специалистами. Теория антенн, в основу которой положена теория электромагнитного поля, настолько универсальная, что может быть использована в самых разных областях науки. Ниже приведена основная информация об антеннах. И хотя ее первоисточники -, - и - рассчитаны на студентов высших учебных заведений и узких специалистов, но она дана здесь в самом общем виде и изложена, по возможности, популярно, поэтому может быть понятна достаточно широкому кругу читателей. Кроме антенн, созданных человеком в этой главе рассмотрены природные антенны, и некоторые искусственные конструкции, которые, как правило, антеннами считать не принято, хотя фактически они ими являются. Среди антенн, созданных самой Природой можно найти аналоги всем антеннам, созданным человеком.

Назначение и направленные свойства антенн

Антенна - это устройство, предназначенное для излучения (испускания, «распыления») и приема (поглощения, «улавливания») электромагнитных волн. Однако аналогичные устройства используют и при работе с упругими волнами, в частности, звуковыми.

Антенна преобразует колебания в свободные волны (или наоборот) и излучает (принимает) эти волны в определенных направлениях (с определенных направлений) в соответствие со своей диаграммой направленности. Волны между антенной и генератором (приемником) распространяются по фидерной линии (энерговоду ) в виде связанных, «бегущих» по нему, волн.

Передающей антенной связанные волны, поступающие от возбудителя колебаний - генератора, преобразуются в свободные , которые затем излучаются («распыляются») и распространяются в свободном пространстве. Приемная антенна осуществляет обратные действия - улавливает свободные волны и преобразует их в связанные, которые затем передаются в приемник, где снова превращаются в колебания.

Строго говоря, абсолютно свободных волн нет, как и нет абсолютно свободного пространства. Поэтому распространясь даже в, якобы, свободном пространстве волны являются связанными со средой, хотя и в несоизмеримо меньшей степени, чем с энерговодом.

Если любое ЕДИНСТВО действительно является частицей-волной, то «уловители» и «распылители» любых частиц-волн, а не только электромагнитных, можно также назвать антеннами.

Антенной, в принципе, может служить любая, причем не только вещественная и видимая, но и полевая, и невидимая форма, способная «улавливать» - принимать или «распылять» - излучать энергию того или иного вида. Но улавливать энергию может только незаполненная , «пустая», форма, имеющая недостаток энергии данного вида. А «распылять» - только переполненная форма, имеющая избыток энергии. Незаполненная и переполненная форма - это, как уже было показано, своего рода энергетическая «вогнутость» и «выпуклость», соответственно. В первой плотность энергии определенного вида меньше, чем в сообщающемся с ней пространстве, а во второй - больше.

Энерговоды , используемые в антенной технике , показаны на рис. 4.1 (поз.1).

Аналогичную форму имеют многие устройства, созданные Природой и человеком. И хотя большинство из них энерговодами не называют, но они фактически могут ими стать, если в окружающей их среде появится тот вид энергии, движение которой они способны направить. В принципе, энерговодами могут служить естественные и искусственные элементы, имеющие не только аналогичную конструкцию, но и многие другие формы.

К искусственным конструкциям, способным служить энерговодами, относятся многие строительные элементы, включая разные трубы и прокатные профили. К природным - русла рек; корни, стволы и ветки растений; пещеры и многое другое, включая слои атмосферы разной плотности, являющиеся, как известно, атмосферными волноводами для определенного диапазона волн (см. рис. 4.1, поз.2).

Любой энерговод всегда выступает и в качестве антенны, хотя коэффициент усиления такой антенны может быть бесконечно малым. Это является следствием того, что абсолютно замкнутых систем ни человеком, ни Природой не создано, а любая, хотя бы чуть-чуть приоткрытая для энергии того или иного вида система уже является антенной. Хорошей антенной является открытый энерговод, например, колебательный контур. В замкнутом контуре энергия, изменяясь с определенной частотой во времени, колеблется в малом промежутке пространства. Но если контур «открыть», то эти колебания «растянутся» в пространстве, образуя волны, а колебательный контур превратится в антенну.

Свободная электромагнитная волна , как уже было сказано, - это система замкнутых контуров (см. рис. 2.1, поз.2), внутри которых циркулирует электрический ток - поток электронов. Электрические контуры создают вокруг себя замкнутое магнитное поле, состоящее из множества магнитных «колец», расположенных в плоскости, перпендикулярной плоскости электрического контура. Магнитные «кольца», в свою очередь, создают электрические и т. д. В результате, образуется движущееся поле, состоящее из «нанизанных» друг на друга и расположенных во взаимно перпендикулярных плоскостях «колечек». Каждое из этих «колечек» можно рассматривать как замкнутый контур, в котором «бьются» стоячие волны, создавая на его поверхности выпуклости и вогнутости. Образование видимых нам единичных «колец», которые «дышат», может продемонстрировать опытный курильщик, резко выдыхая дым. Аналогичные частицы-волны можно «выбивать» и из аппарата «Тэты» .

Аппарат «Тэты» - это деревянный ящик, в котором вместо одной стенки натянута плотная материя (мембрана), а на противоположной стенке вырезано отверстие. При резком ударе по мембране воздух (его следует подкрасить, чтобы он стал видимым) выбрасывается из отверстия в виде вращающегосякольца .

Направленные свойства антенн - способность концентрации (усиления) частиц-волн в определенных направлениях путем создания из них узких пучков (лучей) или других, иногда очень сложных, форм, проявляются, как известно, в том случае, когда их размеры значительно превосходят длину волны. Однако направленностью, хотя бы небольшой, обладает практически любая антенна. На направленные свойства распространяется принцип взаимности , из которого следует, что направленные свойства антенны при ее работе в режиме передачи и приема одинаковы . Направленное испускание частиц-волн позволяет без увеличения мощности передатчика в десятки, сотни, тысячи и даже миллионы раз увеличивать концентрацию частиц-волн в определенных направлениях и (или) без увеличения чувствительности приемника усиливать ослабленный во столько же раз сигнал, приходящий с тех же самых направлений. Направленные свойства антенны определяются ее диаграммой направленности.

Аналогом, хотя и далеким, направленных «антенн» могут служить большие предприятия. Они в часы «пик» «улавливают» или «испускают» большое количество людей, увеличивая в определенных направлениях плотность людских потоков. В данном случае реализуется и принцип взаимности - потоки людей и при «улавливании» их предприятием, и при «испускании» будут примерно одни и те же, но направленные в противоположные стороны.

Диаграмма направленности (ДН) определяет характер распределения в пространстве мощности электромагнитного поля, излучаемого (принимаемого) антенной.

Из определения следует, что, в общем случае, ДН определяет распределение в пространстве энергии, направление ее движения, т. е. направленные свойства. Она представляет собой своего рода распределительную сеть. Поэтому ДН имеет любая система, способная определенным образом направлять (распределять) те или иные виды энергии, частицы-волны того или иного диапазона. Любая сеть энерговодов также является своего рода ДН .

Океанские и воздушные течения; орбиты, комет, планет, звезд и др.; путь на работу и обратно; сеть всевозможных силовых линий, включая магнитные; и многие другие сети являются своего рода ДН. Для автомобилей - это сеть автомобильных дорог, а для поездов - железнодорожных. Для воды - сеть водоемов и пустот в земной коре, включая пещеры и подземные реки, водопроводная сеть и др. Для самолетов - воздушные трассы. Для электрического тока и газа - электрическая и газовая сеть, соответственно. Для энергии, обеспечивающей жизнедеятельность человека и животных, - это в основном нервная, кровеносная, лимфатическая и пищеварительная системы. Все эти системы (и не только они), подобно водопроводной или газовой сети или автодорожной системе, в определенные промежутки пространства-времени могут быть наполнены частицами-волнами того или иного вида, но могут наполненными и не быть . ДН определяет лишь возможность движения энергии по той или иной распределительной сети, а не саму энергию и ее движение.

Диаграмма направленности является, как известно, одной из основных характеристик антенны. Форма ДН и «протяженность» (дальность действия ) ее отдельных лепестков, в первую очередь, определяется , как известно, конфигурацией и плотностью рабочей поверхности антенны, а так же ее размером в длинах волн («удельной взаимодействующей поверхностью»). Зависит она и от пространственной ориентации волны (поляризации), от параметров окружающей среды, от типа самой волны и многого другого. Известно бесконечное множество форм ДН, соответствующих тем или иным антеннам при их работе на тех или иных длинах волн. Многие из них можно рассчитать с большой точностью, но что представляет собой невидимая нам ДН, «наполненная» энергией, включая ДН антенн, предназначенных для приема-передачи электромагнитных волн, остается не совсем ясным. Поэтому попробуем это выяснить с учетом сделанного ранее предположения, что заряды, определяющие распределение энергии в пространстве, - это энергетические «выпуклости» и «вогнутости».

Абсолютно «пустого» пространства, как уже было неоднократно отмечено, в природе не обнаружено. Любое пространство, включая вакуум, с той или иной плотностью заполнено как относительно стабильными («покоящимися»), так и нестабильными (действующими, движущимися, изменяющимися) частицами-волнами, большинство из которых остается для нас невидимыми . Поэтому любая форма, внесенная в любое пространство, как и любое тело, опущенное в воду, совершенно определенным образом его искривляет - перераспределяет заполняющие его частицы и квазичастицы. В общем случае она перераспределяет энергию. В результате образуются новые энергетические потоки и новые энергетические формы - «выпуклости» и «вогнутости», которые тут же заполняются энергией, имеющейся в окружающей среде, до тех пор, пока система не придет в состояние статического или динамического равновесия. Если же в данном промежутке пространства-времени какого-либо вида энергии, способной заполнить данную энергетическую сеть, нет, но со временем она появляется, то эта энергия распределяется в соответствии с подходящими для нее и сообщающимися между собой «пустотами», способными ее поглотить, т. е. по определенной диаграмме направленности. И это не зависит от того, с какой стороны данная энергия «течет» - изнутри или снаружи. Это же относится и к антеннам. ДН, «заполненная» электромагнитными или какими-либо другими полевыми частицами-волнами, в свою очередь, также является своеобразной энергетической формой - антенной-невидимкой . Она также искривляет пространство, перераспределяя его энергию (частицы-волны) и создавая новые энергетические «выпуклости» и «вогнутости» - очередную распределительную сеть, ДН следующего порядка. И т. д.

Гипотеза 4.1 : Диаграмма направленности, в общем случае, - это некая энергетическая форма, создаваемая телом за счет изменения им кривизны пространства, создания энергетических «выпуклостей» и «вогнутостей» путем перераспределения покоящихся и (или) движущихся вещественных и полевых частиц и квазичастиц разной формы, размера и конфигурации. Форма незаполненной диаграммы направленности определяется расположением сообщающихсяпространственно-временныхэнергетических «пустот» (заполненной - расположением уплотнений), размер которых соизмерим с размером тех или иных частиц-волн или больше их, а энергетическая пространственно-временная плотность поверхности (или объема), ограничивающей эти пустоты, не позволяет данным частицам-волнам пройти сквозь нее совершенно свободно.

Примером видимой нами «вогнутости», ограниченной непрозрачной для определенных частиц-волн поверхностью, может служить как «тарелка» антенны НТВ, так и самая обычная тарелка или дуршлаг. Для того, чтобы антенна (и не только антенна), имеющая ту или иную ДН, из «мертвой» превратилась в «живую» (действующую), необходимо вдохнуть в нее «душу» - наполнить частицами-волнами. И не любыми, а теми, с которыми она способна взаимодействовать - улавливать и испускать, причем определенным образом.


Изображение диаграммы направленности может быть пространственным или плоским (в полярной или прямоугольной системе координат). При плоскостном изображении чаще всего приводят ДН в наиболее характерной плоскости сечения или в двух главных взаимно перпендикулярных плоскостях. Пространственное изображение является весьма сложным и трудоемким, поэтому чаще используют плоскостное.

На рис. 4.2 показано пространственное и плоскостное (в полярной и декартовой системе координат) изображение игольчатой и веерной диаграммы направленности (поз.1), а также несколько пространственных ДН разной формы (поз.2-4), которые аналогичны многим хорошо известным вещественным формам, включая и форму некоторых антенн.

На рис. 4.3 приведено схематическое изображение и плоскостные ДН нескольких типов антенн -: вертикального четвертьволнового вибратора, расположенного над экраном (поз.1); тонкого углового вибратора (полуволнового и волнового), имеющего разный угол между плечами (поз.2); трех цилиндрических спиральных антенн (поз.3), имеющих разные размеры в длинах волн; симметричного вибратора, имеющего разный размер в длинах волн и разную толщину (поз.4); биконической антенны, имеющей разный размер в длинах волн (поз.5); толстого углового вибратора, имеющего разный размер в длинах волн (поз.6); диэлектрической стержневой антенны (поз.7); проволочной ромбической антенны (поз.8); антенны, состоящей из вертикального вибратора и трех радиальных проводов (поз.9), антенны из четырех радиальных вибраторов, расположенных на поверхности цилиндра (поз.10); а также (внизу) ДН разных антенн, форма которых наиболее типична. Соответствующие пространственные ДН являются, как правило, телом вращения плоскостной ДН вокруг оси симметрии.

Направленные свойства многих антенн в сильной степени зависят от наличия или отсутствия экрана. Если, например, горизонтальный или вертикальный вибратор расположить на определенном расстоянии от проводящего экрана, то это равносильно появлению еще одного (виртуального) вибратора, который, являясь всего лишь зеркальным отражением первого, влияет на распределение поля вполне реальным образом. В результате ДН получается такой, как будто бы это система, состоящая из двух реальных вибраторов. Отражающим экраном, особенно на длинных и средних волнах, зачастую служит земля, на коротких и ультракоротких волнах чаще всего делают металлические экраны, которые могут быть сплошными или сетчатыми. Иногда их делают и лучеобразными. Чаще всего экраны используют для создания одностороннего излучения. Направленные свойства в сильной степени зависят и от размера экрана. Например, приведенная на рис 4.3 (поз.1) ДН четвертьволнового вертикального вибратора при наличии бесконечного экрана представляет собой сплошное воронкообразное тело (пунктир). При конечном экране это тело состоит из нескольких слоев (лепестков) и напоминает по форме чашечку многолепесткового цветка.

Если мысленно представить пространственные формы приведенных плоскостных ДН, то многие из них окажутся похожими на те или иные видимые объекты окружающего нас мира, а многолепестковые ДН, чаще всего, похожи на цветы. Многообразие форм цветов известно каждому, а многообразие форм ДН вообще не поддается исчислению. Однако даже среди небольшого количества ДН, приведенных на рис. 4.2 и 4.3, можно найти ДН весьма близкие по форме, хотя они и принадлежат конструктивно разным антеннам.

Принципиальное отличие антенн от многих других устройств, как уже было сказано, состоит в том, что антенны являются устройствами ввода–вывода энергии, т. е. своего рода окнами. Поэтому они, как правило, расположены на границе сред («миров») и открыты для обозрения. Кроме того, даже по одному внешнему виду антенны опытный специалист зачастую может определить многие ее параметры, включая главные, - возможный рабочий диапазон и направленные свойства.

Если любое ЕДИНСТВО действительно является приемо-передающим устройством для частиц-волн тех или иных видов и диапазонов, то оно одновременно является и антенной, чаще всего, бесконечным множеством антенн. Поэтому именно антенны помогут нам наиболее быстро определить основные параметры каждого ЕДИНСТВА. Но для этого из бесконечного разнообразия антенн необходимо выделить те, которые нас интересуют в каждом конкретном случае, так как антенной - уловителем и распылителем энергии того или иного вида является любая, хотя бы чуть-чуть открытая система. Но так как абсолютно замкнутых систем в реальном мире не обнаружено и человеком не создано, то антеннами является все СУЩЕЕ.

Различные типы антенн

Современные антенные устройства подразделяют на следующие основные типы: проволочные , щелевые , поверхностных волн, акустического типа (рупорные), спиральные , логопериодические и оптического типа (зеркальные и линзовые). Кроме того, в отдельную группу обычно выделяют элементарные излучатели (диполи), которые могут быть и «элементарными» структурными элементами более сложных антенн.

Элементарные излучатели - это элементарный электрический вибратор (малый прямолинейный кусок проводника), элементарный магнитный (рамка) и их щелевые аналоги, а также излучатель Гюйгенса.

Элементарные проволочные и щелевые (прямолинейные и круговые) излучатели и ДН, которая для проволочных вибраторов и их соответствующих щелевых «собратьев» имеет одинаковую форму, показаны на рис 4.4 (поз.1 и 2, соответственно). Там же приведена теоретическая ДН воображаемого элемента Гюйгенса (поз.3), а также ДН (поз.4, слева) его близкого реального аналога - кардиоидной антенны (поз.4, справа), состоящей из прямолинейного элемента и круговой рамки.

Элементарный вибратор - это очень короткий по сравнению с длиной волны провод, обтекаемый переменным (колеблющимся) электрически током, амплитуду и фазу которого можно по всей длине считать одинаковыми. Такой вибратор называют электрическим, а его практической моделью является диполь Герца.

Элементарная рамка , являющаяся эквивалентом магнитного вибратора, - это виток провода той или иной формы (обычно круглой или квадратной), по которому течет переменный (колеблющийся) ток, а его длина много меньше длины волны .

Электрический и магнитный вибратор представляют собой проводники, по которым течет переменный ток. Их диаграммы направленности одинаковы по форме - это тороид, Но в первом случае ось тороида совпадает с осью электрического вибратора, а во втором - с осью рамки, перпендикулярной к ее плоскости.

Элементарная щелевая антенна - это антенна, работа которой связана с излучением и приемом электромагнитных волн отверстием , прорезанным в бесконечном экране или в стенке резонатора.

Принцип двойственности , который очень хорошо демонстрируют элементарные вибраторные и щелевые антенны, выражается в идентичности ДН одинаковых по форме антенн . При этом не имеет значения, представляет ли антенна собой проводящее ток «тело» или «дырку» той же формы, вырезанную в бесконечной плоскости, через которую поступают частицы-волны. В первом случае частицы-волны отрываются от электрического потока текущего по проводнику, а во втором - «разбрызгиваются» через щель из заполненного аналогичными потоками пространства - резонатора. Значение имеет наличие потока (тока), а также размер и форма взаимодействующей с ним поверхности, от которой могут «оторваться» или через которую могут «протиснуться» частицы-волны.

Источник Гюйгенса - это воображаемый первичный излучатель зеркальных антенн, реальным аналогом которого может служить совокупность электрического и магнитного излучателя, «элементарный кусок» поверхности, определенным числом которых при расчете ДН заменяют иногда поверхность зеркальных антенн. Источник Гюйгенса по своим направленным свойствам является сочетанием свойств электрического и магнитного диполей. Его расчетная ДН имеет вид кардиоиды вращения (см. рис. 4.4, поз.3). Кардиоидная антенна , состоящая из вибратора и рамки (см. рис. 4.4, поз.4, справа), имеет примерно ту же форму ДН (см. рис. 4.4, поз.4, слева), как и виртуальный источник Гюйгенса. И обе они по форме напоминают сердце.

Проволочные и щелевые антенны и их антенные системы - это те же проволочные вибраторы и щели, но большей (в длинах волн) величины по сравнению с элементарными вибраторами, а антенные системы - это многоэлементные конструкции различной формы, составленные из «элементарных» (или более сложных) одинаковых излучателей. Антенные системы образованы обычно из нескольких (или множества) вибраторных, щелевых или других антенн, расположенных определенным образом. Основным признаком любой системы является упорядоченное (повторяющееся) плоскостное или пространственное расположение однородных элементов или одинаковых сочетаний из разных элементов (это присуще и молекуле ДНК), которые в своей совокупности образуют ту или иную форму. Антенные системы, состоящие из активных элементов (энергия подводится к каждо му из них) увеличивают, как правило, усиление антенны по сравнению с одиночным элементом в число раз, соответствующее их количеству.

Проволочные антенны выполняют чаще всего из проводов, труб, лент, сечение которых может быть постоянным или переменным. В простейшем случае проволочную антенну, как и элементарный электрический вибратор, изготавливают из прямолинейного провода, к которому подключается питающая линия. Вибратор, имеющий одно «плечо» (энерговод подводится к одному из его концов), называют несимметричным, а имеющий два одинаковых «плеча» (энерговод подводится к центру), - симметричным.

На рис. 4.5 показаны различные виды несимметричных вертикальных вибраторов .

На рис. 4.6 - мачтовых и проволочных антенн. Они отличаются друг от друга длиной рабочей волны и абсолютными размерами, а также связанным с этим иногда разным конструктивным выполнением.

На рис. 4.7 показаны некоторые (человеком их создано очень много) симметричные вибраторы , включая изогнутый, который можно согнуть из уголкового вибратора (он показан пунктиром).

На рис. 4.8 приведены плоские одноярусные и многоярусные антенные системы , , , изготовленные из проволочных вибраторов (поз.1), пирамидальная антенна, изготовленная из проводов (поз.2), и антенны, выполненные из пластин (поз.3).

К плоским проволочным антеннам относятся и многие рамочные антенны (активные и пассивные). Некоторые из них , , , показаны на рис. 4.9.

Естественные и искусственные аналоги даже перечисленных выше антенн столь многочисленны, что каждый может самостоятельно найти среди искусственных и естественных объектов окружающего нас мира очень много подобных форм, тем более, что абсолютно точного конструктивного подобия, чтобы иметь параметры, примерно совпадающие с параметрами той или иной типовой антенны, не требуется.

Щелевые антенны - это различного размера и конфигурации щели, прорезанные в стенке резонатора, имеющего ту или иную форму.

На рис. 4.10 показаны некоторые конфигурации щелей, прорезанных на прямоугольном и круглом волноводе (поз.1), экранах резонаторов (поз.2), а также щелевые антенны, изготовленные на базе прямоугольного (поз.3) и круглого (поз.4) волновода, и возможные формы и расположение щелей на стенках прямоугольного волновода (поз.5). В центре (поз.6) приведен один из первых искусственных спутников, оборудованный антеннами разного типа в основном щелевыми, которые действительно напоминают окна, открытые в другой мир, в данном случае, в космическое пространство.

Вибраторные и щелевые антенные системы , , - это системы из нескольких (или множества) одинаковых и упорядоченно расположенных вибраторов или щелей, которые могут быть размещены на телах самой разной формы.

На рис. 4.11 показаны некоторые наиболее часто используемые в летательных аппаратах вибраторные и щелевые антенные системы. Среди них есть системы, похожие и на ежа, и на кактус, и на окна зданий, и многое другое.

Аналогами проволочных и щелевых антенн , как и многих других, могут служить любые неоднородности соответствующей формы, образованные границей раздела двух сред, проводящие (пропускные) свойства которых для данного вида энергии значительно отличаются.

Это может быть дамба, ограниченная водой, по которой способны двигаться машины, а вода является для них запретной зоной. Но если дамбу заменить каналом, воду - твердой поверхностью, а машины - гондолами, то все изменится. Вода станет «пропускать» гондолы, а твердая поверхность - нет.

В общем случае, аналогами тех или иных конкретных проволочных и щелевых «вибраторов» являются те представители неживой и живой природы, включая самого человека, общие контуры которых (или их отдельных частей) в определенные моменты времени, хотя бы в слабой мере напоминают приведенные выше (и здесь неприведенные) формы вибраторов и щелей. Мелкие детали, размер которых много меньше рабочей длины волны, особого значения не имеют, а форма может весьма сильно отличаться от приведенных форм без особого ущерба для их работы.

Аналогами несимметричных вертикальных вибраторов могут служить деревья, рога животных, стебли трав и многое, многое другое, включая различные конструкции, созданные человеком совсем для иных целей. Вертикальными «вибраторами» являются, например, башни, церкви, высотные дома. Все они, наряду с высокими деревьями, способны улавливать молнии, длина волны которых, как известно, составляет несколько десятков метров, т. е. соизмерима с их размерами.

Аналогом симметричных вибраторов являются листья (и иголочки), а также веточки многих растений, включая деревья, расположенные симметрично. Они, как известно, способны поглощать и накапливать энергию, а также ее перерабатывать и испускать уже в виде другой энергии, например, поглощать углекислый газ и, переработав его, испускать кислород.

Аналогом щелевой антенны может служить любая канава, колея или углубление, способная заполниться любым веществом, размеры отдельных частиц которого соизмеримы с ее размерами или много меньше. К ним же можно отнести и все «просветы» между природными объектами и искусственными конструкциями, соответствующего размера и формы. Действующими «щелевыми антеннами» на видимом нам уровне являются родники, гейзеры, фонтаны, поливочные распылители и др.

Аналогами «рамочных» излучателей являются любые конструкции соответствующей конфигурации. Рамочными антеннами могут быть украшения в виде цепочек, колец, браслетов, сережек. К ним относятся узоры и линии соответствующей конфигурации.

«Нарисованные» антенны (и не только антенны) широко применяются, как известно, в печатных схемах.

Перечисленные выше антенны и Природой, и человеком могут быть изготовлены самыми разными способами, например, в виде углублений, нарисованы карандашом (кстати, графит проводит электрический ток) или образованы металлическим покрытием.

Человек (а также его отдельные части и органы) является владельцем множества антенн. Человек, стоящий по стойке «смирно, может служить аналогом вертикального вибратора, раскинув руки в стороны, он превращается уже в симметричный горизонтальный «вибратор», а сводя и разводя руки и ноги, меняет (регулирует) ДН своих «уголковых вибраторных антенн», образованных руками и ногами. О некоторых (из бесчисленного множества) «человеческих» антеннах будет более подробный разговор во второй части.

В качестве одиночных вибраторных и рамочных антенн и их щелевых «собратьев» могут выступать практически все объекты и субъекты нашего мира. Все они способны концентрировать вокруг или внутри себя определенного вида поле (если оно имеет место быть) в соответствие с собственной ДН. И все, что попадает в зону действия этой ДН, будет находиться в поле с повышенной концентрацией энергии данного вида. Если же плотность внутренней энергии системы, подсоединенной к антенне, превысит плотность этой же энергии в окружающем пространстве, то она начнет ее испускать с повышенной концентрацией в тех направлениях, которые совпадают с «лепестками» ее ДН.

Наглядным примером «антенн», работающих на передачу, могут служить, как уже было сказано, действующие поливочные установки. Некоторые из них способны распылять воду по кругу, другие - в определенном секторе, а третьи - представляют собой своего рода локатор, они вращаются. При необходимости можно создать в определенном направлении и остронаправленную ДН - «луч», направив туда тонкую, но мощную струю воды.

Аналоги антенных систем - это кристаллы, снежинки, многоатомные молекулы, многомолекулярные соединения органических веществ и др. К ним же можно отнести многое из того, что создано руками человека, но не рассматривается им в качестве антенных систем. Это и лесозащитные полосы, и окна зданий, если они расположены упорядоченно, и улицы, имеющие одинаковые и упорядоченно расположенные дома. На некоторых таких улицах может, как известно, постоянно «гулять» ветер, для которого они являются энерговодами. В качестве природных аналогов многоэлементных систем могут служить ветки деревьев, особенно хвойных, их иголочки, как уже было сказано, являются типичными «проволочными» вибраторами. Но о деревьях далее будет более подробный разговор.



Антенны поверхностных волн - это направляющие системы (рис. 4.12), вдоль которых распространяются поверхностные электромагнитные волны. Направляющими (поз. 1-7) могут быть металлические поверхности, покрытые слоем диэлектрика, ребристые металлические структуры, поверхности, состоящие из слоев с разными электрическими свойствами, диэлектрические и металлические стержни и многое другое. Излучение плоскостных антенн поверхностных волн (поз.1и 2, справа) направлено примерно параллельно поверхности, а стержневых (поз.2, слева и поз 6) - преимущественно вдоль их оси. Поэтому их соответственно называют антеннами поверхностных волн и антеннами осевого излучения.

В общем случае, антенны поверхностных волн представляют собой поверхность из однородных (одинаковых) неоднородностей, вдоль которых «дует» электромагнитный ветер. Антенны поверхностных волн можно сравнить с дорогой, покрытой «вязким» верхним слоем. Частицы-волны в этом «вязком» слое как бы «запутываются» и не могут «улететь» вверх, но могут по нему передвигаться.

На рис. 4.12 (поз.1, 2, 5) показаны способы возбуждения электромагнитного «ветра» в некоторых типах поверхностных антенн , , при помощи первичного излучателя того или иного вида. Из диэлектрических штырей, имеющих круглый, квадратный или прямоугольный экран, может быть изготовлена многоэлементная решетка (поз. 6, внизу, справа).

Аналоги антенн поверхностных волн (плоскостных) - это кора головного мозга, песчаные барханы в пустынях, слои земной коры с разными параметрами, лесные массивы, слоистые облака и многое другое. Стержневых - фактически все, что угодно, имеющее подобную конфигурацию, включая слегка раздвинутые четыре пальца ладони (на них очень похожи счетверенные диэлектрические штыри, см. рис.4.12, поз 6), а также позвоночник человека и животных (он сходен со стрежнем, изготовленным из отдельных шайб). Но о «человеческих» антеннах более подробный разговор пойдет во второй части.

Антенны акустического типа - рупорные , , , , , , , - показаны на рис. 4.13.

Направленные свойства рупорных антенн определяются в основном размером раскрыва - шириной «окна» и углом раствора рупора.

Угол раствора - это угол, образованный его противоположными стенками или образующими, а раскрыв - плоскость, перпендикулярная оси рупора и проходящая через его кромки.

При малых углах раствора рупора ширина ДН определяется в основном, его размером раскрыва в длинах волн, а при больших - углом раствора. Угол раствора не связан с длиной волны, а поэтому направленные свойства такого рупора сохраняются практически неизменными в очень широком диапазоне волн. Все широкоугольные антенны являются, как правило, и широкодиапазонными, так как их фазовый центр (фокус) на разных длинах волн расположен примерно в одном и том же месте.

НАЗНАЧЕНИЕ АНТЕННАнтенны - РТ устройства предназначенные для
излучения и приема электромагнитных волн.
ИЗЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН
ПРИЁМ ЭЛЕКТРОМАГНИТНЫХ
антенна антенна
ВОЛН
Передат
чик
фидер
фидер
Приём
ник

КЛАССИФИКАЦИЯ АНТЕНН

ПО ДИАПАЗОННОМУ ПРИЗНАКУ
ПО ХАРАКТЕРУ ИЗЛУЧАЮЩИХ
ЭЛЕМЕНТОВ
ПО ВИДУ РАДИОТЕХНИЧЕСКОЙ
СИСТЕМЫ, В КОТОРОЙ ИСПОЛЬЗУЕТСЯ
АНТЕННА

ПО ДИАПАЗОННОМУ ПРИЗНАКУ

АНТЕННЫ ДЛИННЫХ И СРЕДНИХ
ВОЛН
АНТЕННЫ КОРОТКИХ ВОЛН
АНТЕННЫ УЛЬТРАКОРОТКИХ ВОЛН

ПО ХАРАКТЕРУ ИЗЛУЧАЮ-ЩИХ ПОВЕРХНОСТЕЙ

ПО ХАРАКТЕРУ ИЗЛУЧАЮЩИХ ПОВЕРХНОСТЕЙ
ВИБРАТОРНЫЕ АНТЕННЫ
ЩЕЛЕВЫЕ АНТЕННЫ
АНТЕННЫ ПОПЕРЕЧНОГО И
ОСЕВОГО ИЗЛУЧЕНИЙ
АПЕРТУРНЫЕ АНТЕННЫ
АНТЕННЫ ПОВЕРХНОСТНЫХ ВОЛН

ПО ВИДУ РАДИОТЕХНИ-ЧЕСКОЙ СИСТЕМЫ

ПО ВИДУ РАДИОТЕХНИЧЕСКОЙ СИСТЕМЫ
АНТЕННЫ ДЛЯ РАДИОСВЯЗИ
АНТЕННЫ ДЛЯ РАДИОВЕЩАНИЯ
АНТЕННЫ ТЕЛЕВИЗИОННЫЕ
АНТЕННЫ ДЛЯ РАДИОНАВИГАЦИИ
И РАДИОЛОКАЦИИ

АНТЕННЫ ДЛИННЫХ И СРЕДНИХ ВОЛН

ДИАПАЗОНЫ РАБОЧИХ ЧАСТОТ
МИРИАМЕТРОВЫЕ (СВЕРХДЛИННЫЕ)
ВОЛНЫ (l =10…100 км)
КИЛОМЕТРОВЫЕ (ДЛИННЫЕ) ВОЛНЫ
(l =1…10 км)
ГЕКТОМЕТРОВЫЕ (СРЕДНИЕ) ВОЛНЫ
(l =100…1000 м)

АНТЕННЫ КОРОТКИХ ВОЛН

ДИАПАЗОНЫ РАБОЧИХ ЧАСТОТ
ДЕКАМЕТРОВЫЕ (КОРОТКИЕ)
ВОЛНЫ (l =10…100 м)

АНТЕННЫ УЛЬТРАКОРОТКИХ ВОЛН

ДИАПАЗОНЫ РАБОЧИХ ЧАСТОТ
МЕТРОВЫЕ ВОЛНЫ (l =1…10 м)
ДЕЦИМЕТРОВЫЕ ВОЛНЫ (l =10 см …1 м)
САНТИМЕТРОВЫЕ ВОЛНЫ (l =1…10 см)
МИЛЛИМЕТРОВЫЕ ВОЛНЫ (l =1…10 мм)

из-за особенностей распространения СДВ, ДВ и
СВ максимум излучения антенн этих диапазонов
должен быть направлен вдоль поверхности земли
обычно на СДВ и ДВ приемлемая высота опор
составляет 150…250 м. Некоторые СВ-антенны
имеют высоту до 350 и даже до 500 м. В СВдиапазоне высота антенны может быть соизмерима
с длиной волны и равна обычно (0.15…0.63)l .
антенны выполняют в виде антенн-мачт или
антенн-башен. высота антенных опор определяется
технико-экономическими соображениями

ОСОБЕННОСТИ АНТЕНН ДЛИННЫХ И СРЕДНИХ ВОЛН

антенны сверхдлинных и длинных волн находят
свое применение в радиотелеграфной связи, в
дальней навигации, при передаче сигналов
точного времени, а антенны средних волн для
радиовещания, морской связи.
в качестве передающих антенн применяют
антенны - мачты различных типов с подведением
больших мощностей, а в качестве приемных вертикальные несимметричные антенны, рамочные
антенны, антенны бегущей волны

ОСОБЕННОСТИ КОРОТКО-ВОЛНОВЫХ АНТЕНН

ОСОБЕННОСТИ КОРОТКОВОЛНОВЫХ АНТЕНН
на коротких волнах сравнительно просто
строить антенны, размеры которых превышают
длину волны в несколько раз и обуславливают
значительные направленные свойства
условия
прохождения
коротких
волн
определяются состоянием ионосферы, поэтому для
обеспечения непрерывной радиосвязи используют
антенны диапазонного типа

в качестве простых антенн на коротких волнах
применяют
горизонтальные
симметричные
вибраторы, диапазонные вибраторы Надененко,
шунтовые диапазонные вибраторы, уголковую
антенну Пистолькорса, антенны зенитного типа

АНТЕННЫ КВ-диапазона

ВИБРАТОРНАЯ
АНТЕННА

АНТЕННЫ КВ-диапазона

АНТЕННЫ «АКТИВНАЯ ПЕТЛЯ»

в этом диапазоне возможно построение антенн,
размеры которых велики по сравнению с длиной
волны, что позволяет реализовать высокую
направленность при приемлемых размерах
также
используют антенны УКВ, размеры
которых сравнимы с длиной волны (вибраторные,
щелевые). они используются как самостоятельные
антенны или как элементы более сложных (в
составе антенных решеток, в качестве облучателей
зеркальных антенн)

ОСОБЕННОСТИ АНТЕНН УКВ-ДИАПАЗОНА

условия
РРВ
этом
диапазоне
предъявляют повышенные требования
к механическим характеристикам
антенн, к прочности, массе, парусности
(антенны спутниковой, радиорелейной
связи)

Кирилл Сысоев

Мозолистые руки не знают скуки!

Содержание

Чтобы антенна для телевизора служила исправно и не вызывала сложностей в работе на даче или в квартире, нужно правильно подобрать внутренний (комнатный) или уличный цифровой прибор. Выделяют несколько критериев при покупке телеантенны – стойкость приема сигнала, усиление, активность. Ознакомьтесь с известными производителями приборов, секретами выбора и установки.

Виды антенн для телевизора

В России различный уровень сигнала телевизионных волн, поэтому домашние антенны отличаются высокой чувствительностью, которая обеспечивает прием почти в любых условиях. Выделяют параболические, комнатные и наружные антенны, которые делятся на еще несколько категорий. Чтобы получать телевизионную волну без помех, нужен индивидуальный подбор типа и мощности.

Спутниковые

Параболические телевизионные антенны пользуются популярностью. Их отличает стабильность работы, высокое качество получения сигнала и увеличенное количество каналов. Оборудование данного вида состоит из приемника, ресивера для декодировки, принимает волны со спутника, поэтому четкость изображения зависит от расположения агрегата и телевизора.

Прямофокусные

У этого вида облучатель конвертера «смотрит» ниже горизонта, что защищает приемник сигнала от негативного атмосферного воздействия:

  • название модели: MULTI Toroidal;
  • цена: 1100 р.;
  • характеристики: диаметр – 100 см, принятие с 16 спутников;
  • плюсы: простота добавки каналов;
  • минусы: качество получения различается.

В небольшом доме или на даче пригодится 60-сантиметровая спутниковая тарелка, которая стоит чуть дороже первой:

  • название модели: Triax TD-064;
  • цена: 1300 р.;
  • характеристики: 60 см;
  • плюсы: стойкость к осадкам, коррозии;
  • минусы: стоимость спутниковых телевизионных каналов высока.

Тем, кто не хочет заморачиваться со сложной конструкцией, подойдет готовый комплект спутникового телевидения:

  • название модели: НТВ+;
  • цена: 7050 р.;
  • характеристики: интерактивная приставка, библиотека фильмов;
  • плюсы: декодирование;
  • минусы: могут быть помехи.

Офсетные

Преимуществом использования офсетных антенн считается больший угол обзора и улучшенное качество изображения:

  • название модели: Супрал;
  • цена: 1400 р.;
  • характеристики: 80 см;
  • плюсы: антикоррозийное покрытие, настенный кронштейн;
  • минусы: нет.

Чуть большим диаметром отличается следующий подтип, который подойдет для принятия любых волн:

  • название модели: Universal;
  • цена: 1200 р.;
  • характеристики: 90 см, алюминиевый сплав;
  • плюсы: совместимость с разными гнездами телевизора;
  • минусы: нет крепления.

Третьим вариантом офсетной антенны станет комплект спутникового телевидения по доступной стоимости:

  • название модели: D-Color DCA-101;
  • цена: 253 р.;
  • характеристики: размеры 30*20 см;
  • плюсы: компактность, питание усилителя от приставки, мало шума;
  • минусы: нет.

Уличные антенны для телевизора

Если покупатель живет вдали от передатчиков тв-сигнала, то усилить прием помогут элементы наружного типа. Уличные варианты принимают телеволны до 60 км от передатчика. Для правильного подбора нужно знать расстояние до ближайшей вышки, выяснить необходимость в усилении волны. Чтобы добиться качественной картинки, ставить агрегат рекомендуется в максимально высокой точке над домом.

Активные

Комплектуется активная антенна для ТВ специальным усиливающим прибором мощности. Это помогает повысить четкость картинки телевизора при далеко расположенной телевышке:

  • название модели: Funke ABM 3553;
  • цена: 2300 р.;
  • характеристики: 75 Ом, размер 1,38 м;
  • плюсы: работает в сложных условиях приема, сделана из анодированного алюминия;
  • минусы: большие размеры, нет кабеля и блока питания.

Более доступной антенной является следующая, отличающаяся особенностями конструкции:

  • название модели: Cadena AV;
  • цена: 1550 р.;
  • характеристики: получение DVB-T/DVB-T 2;
  • плюсы: есть кронштейн;
  • минусы: питание через адаптер.

Еще одним популярным доступным бюджетным вариантом станет следующий агрегат дальнего действия:

  • название модели: Rexant ABM 3529;
  • цена: 2064 р.;
  • характеристики: 68 см;
  • плюсы: есть защита от коррозии и ультрафиолета;

Пассивные

При отсутствии препятствий могут использоваться пассивные приборы к телевизору, которые стоят дешево и не нуждаются в усиливающей технике:

  • название модели: GELLAN FULLBAND-15;
  • цена: 1264 р.;
  • характеристики: до 2700 МГц, 50 Ом, параметры – 240*240*40 мм, условия эксплуатации – настенная;
  • плюсы: вертикальная поляризация;
  • минусы: улучшает сигнал при расстоянии до 10 км.

Вторым популярным брендом является голландский Funke, который стоит дорого, но оправдывает параметрами:

  • название модели: Funke BM 4527;
  • цена: 1413 р.;
  • характеристики: 75 Ом, 685 мм;
  • плюсы: анодированный алюминий;
  • минусы: нет кабеля и блока питания.

Третьей по популярности среди покупателей телевизоров является антенна Локус, которая доступна по стоимости, в продаже со скидками:

  • название модели: Locus L 021.12;
  • цена: 1300 р.;
  • характеристики: радиус действия 55 км, 1,31 кг, 1,4х2 м;
  • плюсы: простота сборки;
  • минусы: нет провода.

Стержневые

Традиционная антенна для телевизора имеет стержневую систему, состоящую из металлических полувибраторов:

  • название модели: Jablotron AN-05 GSM;
  • цена: 1428 р.;
  • характеристики: частота 900-1800 МГц, длина кабеля – 3 м;
  • плюсы: магнитное основание;
  • минусы: могут быть помехи.

Более дорогой и качественный - товар другого производителя, выпускающего дипольные устройства к телевизорам:

  • название модели: ETS-LINDGREN;
  • цена: 3144 р.;
  • характеристики: 80 МГЦ-2 ГГц, параметры – 210х170х9 см;
  • плюсы: индивидуальная калибровка, высокий коэффициент усиления;
  • минусы: масса 4,5 кг.

Самым дорогим устройством в подборке считается выпущенное производителем по военным стандартам:

  • название модели: Narda RA-01;
  • цена: 5000 р.;
  • характеристики: 9 кГц-30 МГц, вес – 1,5 кг, размеры – 150х135х120 мм;
  • плюсы: индивидуальная;
  • минусы: слишком дорогая.

Рамочные

Этот подтип представлен одним или несколькими витками проводов, соединенных в одну рамку, в плоскости которой находится максимальная интенсивность дециметрового диапазона частот:

  • название модели: Garmin 220;
  • цена: 1490 р.;
  • характеристики: компактная;
  • плюсы: принимает любые программы;
  • минусы: необходима доставка.

Простым устройством является следующее, которое представляет собой рамочную обмотку магнитно-генерирующего типа:

  • название модели: EMCO 7603;
  • цена: 1000 р.;
  • характеристики: 20 Гц-50 кГц, 16 витков, диаметр – 12, высота – 8 см;
  • плюсы: индивидуальная калибровка, линейная поляризация, вес – 0,5 кг
  • минусы: не обнаружено.

Рамочная антенна для телевизора производителя A.H.Systems – более доступная по стоимости, отличается простотой работы:

  • название модели: A.H.SYSTEMS SAS;
  • цена: 700 р.;
  • характеристики: 1 кГц-30 МГц, 50 Ом;
  • плюсы: вес 1 кг, повышенная прочность конструкции, сетевой адаптер и предусилитель в комплекте;
  • минусы: принцип работы от батареи.

Комнатные

Если сигнал из телецентра высококачественный, подойдет внутреннее улавливающее устройство, которое по способу установки удобнее наружного. Такие варианты стоят дешево, подходят к любому гнезду телевизора, транспортабельны. Из минусов – сложность настройки изображения. Выделяют аналоговые, всеволновые, широкополосные и узкополосные разновидности.

Цифровая

Для получения цифрового изображения используется этот подтип. С его помощью можно добиться высококачественной картинки:

  • название модели: Funke Margon Home 2.0;
  • цена: 1450 р.;
  • характеристики: 170-240 МГц;
  • плюсы: 3,5 м шнур для помещений;
  • минусы: не оснащена уличным кабелем.

Следующая антенна для телевизора более доступна по стоимости, ее можно заказать по почте по акции:

  • название модели: BBK DA 19;
  • цена: 843 р.;
  • характеристики: получение HDTV-стандартов эфирного ТВ;
  • плюсы: мало шума;
  • минусы: не обнаружено.

Всеволновая

Из наименования следует, что устройства принимают все виды частот (дециметровые, метровые), их называют универсальными:

  • название модели: польская антенна Дельта К331А.02;
  • цена: 1092 р.;
  • характеристики: габариты 280*680*120 мм;
  • плюсы: принятие любых ТВ-программ;
  • минусы: незначительные помехи.

Популярен отечественный производитель, продукцию отличает выгодная стоимость и бесплатная доставка при заказе от 3000 рублей:

  • название модели: SPI 918;
  • цена: 399 р.;
  • характеристики: 75 Ом;
  • плюсы: компактные размеры;
  • минусы: нет.

Широкополосная

Веерный, или широкополосный подтип устанавливается на дачных участках, находящихся вдалеке от передатчика:

  • название модели: Рэмо Bas 5340 TV JET ANT-USB Horizon;
  • цена: 580 р.;
  • характеристики: логопериодическая;
  • плюсы: питание от USB или ресивера;
  • минусы: работает только в зоне устойчивого получения.

Вариантом, устанавливаемым на потолке, можно существенно усилить прием на любых телевизионных волнах:

  • название модели: AO-700/2700-4;
  • цена: 599 р.;
  • характеристики: вес 300 г, размеры 185*100 мм;
  • плюсы: купольная;
  • минусы: нет провода.

Узкополосная

Этим термином обозначаются узконаправленные варианты для телевизоров, улавливающие определенную частоту, что сокращает помехи:

  • название модели: Romsat AV-2845;
  • цена: 600 р.;
  • характеристики: длина провода 14 м, телескопическая, материал – алюминий;
  • плюсы: не боится «зимовки» на даче;
  • минусы: размер 1035 мм.

Более дешевое устройство - простая конструкция отечественного бренда, сделанная из пластика, улавливающая каналов поменьше:

  • название модели: Vector-PL-1 K;
  • цена: 450 р. на распродаже;
  • характеристики: 5-128 В, 75 Ом;
  • плюсы: провод 3 м;
  • минусы: пластик, небольшое расстояние от вышки.

С усилителем

Комнатные антенны с усилителем для телевизора помогут смотреть передачи с четкой картинкой и ярким изображением:

  • название модели: Delta Satellite в формате dvb-t2 DS 1000;
  • цена: 1800 р.;
  • характеристики: устойчивость к воздействию солнца, установка на мачте;
  • плюсы: встроенный усилитель слабого сигнала, ловит - до 80 км;
  • минусы: не найдено.

В два раза дешевле обойдется следующее сооружение для телевизора, принимающее цифровые и аналоговые телевизионные кодировки:

  • название модели: Selenga 101 A;
  • цена: 843 р.;
  • характеристики: длина кабеля 1,2 м;
  • плюсы: компактность, вес 300 г;
  • минусы: пластиковый корпус.

Как выбрать антенну для телевизора

От того, куда устанавливается конструкция, зависит выбор. Удаленному месту установки подойдут уличные с усилителем, городским квартирам – узкополосные, активные комнатные, автомобилям – рамочные. В деревнях и на дачах лучше устанавливать параболические тарелки. Выбор зависит от критериев удаленности, ценового диапазона, усилительного коэффициента.

Для автомобиля

Для качественного приема ТВ, радио, навигатора требуется комбинированный GPS или GSM автомобильный агрегат. Параболический будет принимать все программы, но обойдется дорого. Внутрисалонные активные всеволновые сооружения снабжены усилителем, наружные – пассивные, нуждаются в удлинительном шнуре. Из недостатков последних отмечают нестойкость к коррозии.

Для дачи

Чтобы смотреть телевизор на даче, лучше купить активную конструкцию и установить ее максимально высоко. В комплекте должен быть усилительный элемент и адаптер, к зарядке потребуется приобрести коаксиальный провод. Внешний тип должен стоять на крыше. Если телевышка недалеко, подойдет внутреннее устройство. Чтобы прослушивать радио, приобретите широкополосное.

Домашнюю

В городской квартире или загородном доме на телевизор проще устанавливать комнатный агрегат, если до ретранслятора не более 30 км. В противном случае придется ставить наружную (активную или пассивную) или цифровую с тюнером. Комнатную лучше выбрать стержневую (метровые) или рамочную (дециметровые сигналы): она мобильна, меньше весит, легко подключается.

Как выбрать антенну для цифрового телевидения Т2

Содержание статьи

АНТЕННА, конструкция, используемая для передачи или приема радиоволн (т.е. электромагнитных излучений с длинами волн в пределах от ~20 000 м до ~1 мм). В качестве примеров использования антенн можно привести радио и телевещание, дальнюю радиосвязь на коротких волнах и микроволнах, отраженных спутниковыми антеннами, радиолокацию – в основе всех этих физических процессов и технических систем лежит передача энергии в форме электромагнитных волн через воздушное и космическое пространство. Функция передающей антенны состоит в том, чтобы преобразовывать электромагнитную энергию, поступающую от передатчика, в излучаемую электромагнитную волну. На стороне приема тоже необходимо иметь антенну, которая принимает часть энергии, излученной передающей антенной, и пересылает ее на более или менее сложные детектирующие и усиливающие схемы, которые и составляют основу приемника. См . РАДИО И ТЕЛЕВИДЕНИЕ; РАДИОЛОКАЦИЯ.

ТИПЫ АНТЕНН

Тип конструкции антенны зависит от длины волн, на которых она должна работать. Чтобы эффективно излучать энергию, антенна должна иметь размеры, близкие к длине рабочей волны. Поэтому на низких частотах, использовавшихся в свое время для трансатлантической радиотелеграфной и радиотелефонной связи (частоты от 16 до 70 кГц, т.е. волны длиной от 19 до 4,3 км), огромная система антенных проводов общей протяженностью до 2 км представляла собой электрически короткую антенну и оказывалась, следовательно, неэффективным излучателем. Если такая антенна должна была иметь заметную направленность, то ее эффективность получалась очень низкой. Напротив, на сверхвысоких частотах (СВЧ) использование полуволнового симметричного вибратора длиной менее 1 см и отполированного металлического рефлектора диаметром всего лишь несколько сантиметров позволяет весьма эффективно фокусировать излучение такого вибратора в узкий луч.

АНТЕННЫ ДЛЯ РАДИОВЕЩАНИЯ С АМПЛИТУДНОЙ МОДУЛЯЦИЕЙ(540–1600 кГц, 550–190 м)

Четвертьволновая передающая антенная мачта.

Основная зона охвата широковещательной станции «обслуживается» поверхностной (земной) волной. Для того чтобы волна распространялась вблизи земной поверхности, она должна иметь вертикальную поляризацию, т.е. вектор электрического поля излучения должен быть вертикальным, и, следовательно, необходима вертикальная антенна. В действительности достаточно иметь антенну лишь половинной высоты; причиной тому является ее зеркальный заряд.

Когда электромагнитное поле встречает на своем пути проводящую плоскость, оно зеркально отражается от нее. Поэтому электромагнитное поле, создаваемое над проводящей плоскостью некоторой системой токов и зарядов, оказывается идентичным полю, которое существовало бы, если бы вместо проводящей плоскости имелась зеркально отраженная система токов и зарядов, т.е. просто зеркальное отображение реальной системы в данной плоскости. Таким образом, поле над плоскостью – это поле вертикального полуволнового симметричного вибратора (рис. 1). Такой вибратор наиболее интенсивно излучает в плоскости, перпендикулярной его оси; в рассматриваемом случае это означает, что излучение направлено вдоль поверхности земли. Такая антенна на практике представляет собой стальную мачту высотой около четверти длины волны, установленную на опорных изоляторах (рис. 2). Землю делают хорошим проводником, закапывая в нее систему проводов, расходящихся в радиальных направлениях от основания антенны. Если антенную мачту для устойчивости снабжают проволочными оттяжками, то их надо разделить изоляторами на секции, достаточно короткие, чтобы влияние оттяжек на локальное поле антенны было незначительным.

Направленные антенные решетки из антенных мачт.

Существуют две причины, по которым широковещательной станции может требоваться направленная диаграмма излучения. Во-первых, ее «аудитория» может находиться преимущественно с одной стороны от места расположения передающей станции. Так, например, региональная станция, размещенная в приморском городе, должна создавать более сильный сигнал в континентальном направлении, если нежелательно, чтобы половина ее мощности терялась на морских просторах. Во-вторых, может возникнуть необходимость исключения взаимных помех в зоне, обслуживаемой какой-либо удаленной станцией, работающей на той же самой частоте; в этом случае диаграмма направленности данной станции должна иметь нулевое излучение в направлении на удаленную.

Направленность излучения часто достигается созданием решетки из двух или большего числа антенных мачт, в которой расстояния между мачтами и фазы возбуждения антенн каждой из мачт выбраны так, чтобы получить желаемую диаграмму направленности. Проиллюстрируем данный подход примером. Пусть имеются две одинаковые антенные мачты, находящиеся друг от друга на расстоянии в половину длины волны и возбуждаемые токами одинаковой величины и фазы. Излучение каждой антенны равнонаправленно в горизонтальной плоскости; таким образом, если смотреть сверху, каждая из антенн выглядит как точечный источник круговых волн, распространяющихся равномерно во всех направлениях. Диаграмма направленности такой двухантенной решетки определяется наложением волн, излучаемых обеими антеннами. Как показано на рис. 3, точки, находящиеся на оси запад – восток (WE), от одной антенной мачты на полдлины волны дальше, чем от другой. Таким образом, в этих точках две излучаемые волны отличаются по фазе на 180° и, следовательно, гасят друг друга; в результате излучение по линии WE в обе стороны отсутствует. Точки же, расположенные на прямой север – юг (NS), напротив, находятся на одинаковом удалении от антенных мачт, так что обе волны в этих точках оказываются в одинаковой фазе и суммируются. Такая система называется антенной решеткой бокового (поперечного) излучения – ее диаграмма направленности представлена на рис. 4,а . Если же антенные мачты излучают в противофазе (разность фаз 180° ), то вдоль оси NS будет происходить взаимное гашение волн, а вдоль оси WE – их сложение. Такая система называется антенной решеткой продольного (осевого) излучения. Ее диаграмма направленности похожа на диаграмму направленности решетки поперечного излучения, но повернута на 90° (рис. 4,б ). Если две антенные мачты находятся друг от друга на расстоянии в четверть длины волны и возбуждаются токами равной величины, но волна, излучаемая восточной мачтой, опережает по фазе западную на 90° , то диаграмма направленности будет иметь форму кардиоиды (рис. 5, пунктирная линия). Штриховой и сплошной линиями на рисунке представлены диаграммы направленности, получаемые при опережении по фазе восточной мачтой на 45° и 180° соответственно.

Радиовещательные приемные антенны.

Радиовещательные приемные антенны с высотой, близкой к половине или даже четверти длины волны, оказываются, как правило, непомерно большими. К счастью, это ограничение часто не играет существенной роли, так как напряженность поля, создаваемого передающей станцией, обычно настолько большая, что даже маленькая антенна обеспечивает более чем достаточный сигнал для современного радиоприемника. Исключая из рассмотрения крайне удаленные пункты, надо сказать, что длинная наружная антенна не улучшает отношение сигнал/шум и часто может лишь ухудшить прием. Большинство вещательных радиоприемников выпускаются со встроенной рамочной или ферритовой антенной. Такое устройство представляет собой электрически небольшой магнитный диполь.

Если электрические и магнитные силовые линии, образующие поле антенны, поменять местами, то полученное в результате поле теоретически возможно в том смысле, что оно подчиняется законам электромагнетизма. Трудность состоит в том, что для излучения такого поля требуется магнитный аналог исходной излучающей системы; но магнитный аналог электрических зарядов, движущихся по электрическим проводникам, – это некие магнитные заряды, движущиеся по магнитным проводникам; однако ни магнитного заряда, ни магнитного проводника пока еще не удалось обнаружить. Существует, однако, магнитный аналог очень маленького диполя – катушка индуктивности. Хотя миниатюрный магнитный диполь, или рамочная антенна, как его называют, является весьма малоэффективной передающей антенной, такие качества, как миниатюрность и отличные возможности противостоять местным помехам и шумам, делают его идеальным средством для приема радиовещательных передач. Диаграмма направленности небольшой рамочной антенны представлена на рис. 6. Поворачивая рамку, можно, используя резко выраженные нули диаграммы, совпадающие с осью рамки, исключить прием помехи. Такая рамочная антенна может иметь форму плоской спирально намотанной катушки, размещаемой на задней стенке корпуса приемника, или форму тонкого соленоида с ферритовым сердечником. Благодаря резко выраженным нулям диаграммы направленности такую рамочную антенну используют в радиопеленгационной аппаратуре.

Диапазон ЧМ-радиовещания (от 88 до 108 МГц) заключен между нижним и верхним каналами ОВЧ-диапазона телевидения (от 2-го до 13-го канала); поэтому антенны, применяемые для передачи и приема ЧМ-сигналов, по существу такие же, как и используемые для телевидения, и хотя в последующем описании речь будет идти преимущественно о телевизионных антеннах, последние в большей или меньшей степени пригодны также и для ЧМ-радиовещания. Обычно и ЧМ-радиостанции, и телевизионные передающие станции ведут передачи на волнах с горизонтальной поляризацией.

АНТЕННЫ ДЛЯ ТЕЛЕВИЗИОННОГО И ЧМ-РАДИОВЕЩАНИЯ(54–216 мГц, 5,6 м – 72 см)

Телевизионные передающие антенны.

От телевизионной (или ЧМ) передающей антенны обычно требуется, чтобы она давала равномерно распределенное (ненаправленное) излучение в горизонтальной плоскости; однако в вертикальной плоскости выгодно концентрировать излучение в сравнительно узкий луч, направленный к горизонту, ибо именно там находится обслуживаемая «аудитория» зрителей и слушателей. Энергия, направляемая выше или ниже линии горизонта, либо теряется в космосе, либо уходит в землю. Характеристики диаграммы направленности в вертикальной плоскости той или иной телевизионной передающей антенны можно определить сравнением с соответствующей диаграммой горизонтального полуволнового симметричного вибратора в вертикальной плоскости, содержащей этот вибратор. Коэффициент усиления антенны по мощности определяется как отношение входной мощности, подаваемой на выбранный для сравнения симметричный вибратор, к мощности, подаваемой на вход антенны, коэффициент усиления которой надо определить, при условии, что обе антенны дают одинаковую интенсивность излучения в горизонтальной плоскости на расстоянии в одну милю (1,6 км). Эффективная излучаемая мощность определяется как мощность в ваттах, поступающая по соединительной линии (фидеру) от передатчика в антенну, умноженная на коэффициент усиления антенны. Таким образом, эффективная излучаемая мощность в типичном случае получается намного больше фактической мощности передатчика.

Одной из проблем конструирования антенны, решение которой особенно важно для телевещания, является исключение отражений от антенны обратно в соединительную линию. Эта отраженная энергия переотражается передатчиком в антенну, куда она попадает с задержкой, равной частному от деления двойной длины фидера на скорость света, и приводит к передаче в антенну задержанного эхо-сигнала. В худшем случае это эхо может проявить себя на принимаемой картинке как вторичное изображение (тускло воспроизводимое изображение, смещенное вправо), но даже при менее неприятных последствиях четкость получаемого изображения ухудшается.

Проблема отражений, как и другие проблемы, связанные с конструкцией антенны, при передаче телевизионного сигнала усугубляются требованиями, предъявляемыми к ширине полосы тракта. Видеоинформация телевизионного сигнала занимает полосу около пяти мегагерц, что составляет почти 10% несущей частоты нижних каналов ТВ-диапазона. Это означает, что телевизионная передающая антенна должна иметь конструкцию, соответствующую жестким требованиям не только на одной частоте, но и в широкой полосе частот. Полуволновый проволочный симметричный вибратор был бы совершенно непригодным для передач телевидения, так как если даже согласовать его с фидером и добиться отсутствия отражений на какой-либо одной частоте, то при изменении частоты на 5% диполь будет отражать в фидер четверть подаваемой на его вход энергии.

Применяемая на практике телевизионная передающая антенна представляет собой «турникетную» модель, которая состоит из двух скрещенных горизонтальных симметричных вибраторов, сделанных из труб диаметром 5 или 8 см. Каждый вибратор имеет в горизонтальной плоскости диаграмму направленности в форме цифры 8, и при возбуждении двух вибраторов со сдвигом по фазе на 90° суммарная диаграмма в той же плоскости становится почти всенаправленной. Направленность в вертикальной плоскости (а следовательно, и коэффициент усиления антенны) можно улучшить путем установки на антенной мачте нескольких ярусов турникетных антенн одну над другой.

Турникетная антенна – это прототип одной из самых широко применяемых телевизионных передающих антенн, получившей название «супертурникетной». Вибраторы простой турникетной антенны приобрели в ней форму излучателей с конфигурацией бабочки – такая конфигурация позволяет получить намного большую ширину полосы вещания. Коэффициент усиления по мощности трехъярусной супертурникетной антенны составляет около 4.

Телевизионные приемные антенны.

В отличие от волн, используемых для АМ-вещания, волны, на которых ведется телевещание, имеют значительно меньшую длину, так что приемные антенны размером в половину длины волны здесь вполне осуществимы. Так, телевизионный полуволновый симметричный вибратор настолько мал, что его можно сделать из жесткой трубки. Вместе с тем малый размер даже электрически длинной антенны на этих частотах означает, что эффективная площадь приема падающей волны (и, следовательно, возможность антенны захватить ее энергию) ограниченна. Кроме того, из-за большой ширины полосы телевизионного сигнала и шума, равномерно распределенного по каналу, приемник должен получить значительное количество энергии, чтобы обеспечить приемлемое отношение сигнал/шум. В свете вышесказанного становится понятным, что эффективность антенны играет важную роль в приеме телевизионного сигнала.

На рабочих частотах телевещания атмосферные помехи не имеют особого значения, но приемная антенна будет улавливать массу индустриальных помех и космический шум. Поэтому важно, чтобы приемная антенна имела четко выраженную направленность, позволяющую не принимать сигналы, приходящие с направлений, не совпадающих с направлением на нужную передающую станцию. Другой тип помех, часто ухудшающих качество телевизионнного приема, – это многолучевое распространение, при котором нужный сигнал приходит на приемную антенну по двум путям разной длины. Так, например, один сигнал может прийти непосредственно от передатчика, а другой – отразившись от какой-либо горы или здания. Многолучевое распространение проявляется на экране в виде многоконтурности изображений, и, чтобы избавиться от него, надо использовать направленную антенну, позволяющую исключить прием по одному из двух лучей.

Ширина полосы телевизионной приемной антенны должна быть очень большой, поскольку от нее требуется охватить не один канал, а обычно все тринадцать, размещенные в диапазоне частот 4:1. К счастью, согласование линии передачи с антенной, при котором отражения не возникают, не так существенно на приемной стороне, где рассогласование приводит лишь к потере слабого сигнала, не порождая эхо-сигналов. Важное значение имеет, однако, согласование соединительной линии с приемником, но в этом случае следует уделить внимание конструкции приемника.

Отражения, возникающие на неоднородностях соединительной линии, могут вызывать многоконтурность или потерю резкости изображения. Такие отражения часто возникают, если двухпроводной ленточный кабель проходит слишком близко к металлическим конструкциям, например таким, как лотки для проводов или водостоки. Это станет понятным, если вспомнить, что высокочастотная электромагнитная энергия распространяется в поле, возникающем вокруг проводов, которые служат проводниками этого поля.

Одна из самых простых антенн, используемых для приема телевизионного сигнала, представляет собой полуволновый петлевой симметричный вибратор (рис. 7), отличающийся от обычного полуволнового симметричного вибратора тем, что его выходной импеданс (300 Ом) согласуется с широко применяемыми типами фидеров, а также тем, что он обладает более широкой полосой; иначе говоря, он эффективно передает принимаемую электромагнитную энергию более широкого диапазона частот в соединительную линию.

Чтобы получить нужную диаграмму направленности в горизонтальной и вертикальной плоскостях, базовую антенну обычно используют совместно с одним или несколькими пассивными элементами. Пассивный элемент – это еще одна антенна, размещенная вблизи от основной, но не подсоединенная к фидеру. С основной антенной (а следовательно, и с приемником) она связана только локальными полями. Понять, как пассивный элемент влияет на диаграмму направленности антенны, легко, поскольку здесь, по существу, используется тот же принцип, что и в ненаправленной антенной решетке; разница же состоит в том, что в данном случае возбуждается только одна антенна, а другая принимает энергию лишь от ее ближнего поля. Для примера отметим, что стержень полуволновой длины, помещенный (как показано на рис. 8) на расстоянии в четверть длины волны от полуволнового симметричного вибратора, действует как отражатель. Почему это действительно так, можно пояснить следующим образом. Локальное поле возбуждаемой (основной) антенны индуцирует в пассивном элементе заряды и токи противоположного знака, но из-за расстояния в четверть длины волны эти токи и заряды отстают от соответствующих токов и зарядов в основной антенне приблизительно на четверть периода, т.е. ток в пассивном элементе опережает ток в основной антенне приблизительно на 90° . Диаграмма направленности возбуждаемой антенны с пассивным элементом определяется путем наложения обоих излучаемых волновых полей. Эта ситуация очень похожа на рассмотренную для ненаправленной (в горизонтальной плоскости) решетки АМ-вещания; ее диаграмма направленности показана пунктирной линией на рис. 5. Эти две волны имеют тенденцию гасить друг друга в направлении к пассивному элементу и усиливать друг друга в противоположном направлении; следовательно, пассивный элемент действует как отражатель. Пассивный элемент не обязательно должен находиться на расстоянии в четверть волны от возбуждаемой антенны. Если его поместить очень близко к ней, например на расстоянии всего 0,1 длины волны, он тем не менее будет действовать как отражатель, если его длину сделать чуть больше половины длины волны. Увеличение длины пассивного элемента делает его индуктивным, в результате чего текущий по нему ток отстает по фазе от электродвижущей силы, индуцируемой полем основной антенны. Если же близко расположенный пассивный элемент сделать чуть короче половины длины волны, он становится направляющим («директором») и концентрирует излучение на своей стороне от основной антенны. Все вышесказанное имеет непосредственное отношение и к приемным антеннам. Поскольку диаграммы направленности при передаче и приеме одинаковы, пассивные директоры и отражатели можно использовать в телевизионных приемных антеннах для получения необходимой диаграммы направленности. Типичная высоконаправленная антенная решетка с одним отражателем и тремя директорами показана на рис. 9.