Уравнение колебаний силы тока в колебательном контуре. Колебательный контур. Свободные, затухающие, вынужденные колебания в колебательном контуре. Формула Томсона. Декремент затухания, логарифмический декремент затухания, добротность, резонанс в колебател

  • 23.06.2020

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

§1 Колебательный контур.

Собственные колебания в колебательном контуре.

Формула Томсона.

Затухающие и вынужденные колебания в к.к.

  1. Свободные колебания в к.к.


Колебательным контуром (к.к.) называется цепь, состоящая из конденсатора и катушки индуктивности. При определенных условиях в к.к. могут возникнуть электромагнитные колебания заряда, тока, напряжения и энергии.

Рассмотрим цепь, показанную на рис.2. Если поставить ключ в положение 1, то будет происходить заряд конденсатора и на его обкладках появится заряд Q и напряжение U C . Если затем перевести ключ в положение 2, то конденсатор начнет разряжаться, в цепи потечет ток, при этом энергия электрического поля, заключенного между обкладками конденсатора, будет превращаться в энергию магнитного поля, сосредоточенную в катушке индуктивности L . Нали-чие катушки индуктивности приводит к тому, что ток в цепи увеличивается не мгновенно, а постепенно из-за явления самоиндук-ции. По мере разряда конденсатора заряд на его обкладках будет уменьшаться, ток в цепи увеличиваться. Максимального значения контурный ток достигнет при заряде на обкладках равном нули. С этого момента контурный ток начнет уменьшаться, но, благодаря явлению самоиндукции, он будет поддерживаться магнитным полем катушки индуктивности, т.е. при полном разряде конденсатора энергия магнитного поля, запасенного в катушке индуктивности, начнет переходить в энергию электрического поля. Из-за контурного тока начнется перезаряд конденсатора и на его обкладках начнет накапливаться заряд противоположный первоначальному. Перезаряд конденсатора будет происходить до тех пор, пока вся энергия магнитного поля катушки индуктивности не перейдет в энергию электрического поля конденсатора. Затем процесс повторится в обратном направлении, и, таким образом, в цепи возникнут электромагнитные колебания.

Запишем 2 -й закон Кирхгофа для рассматриваемого к.к,

Дифференциальное уравнение к.к.

Мы получили дифференциальное уравнение колебаний заряда в к.к. Это уравнение аналогично дифференциальному уравнению, описывающему движение тела под действием квазиупругой силы. Следовательно, аналогично будет записываться и решение этого уравнения

Уравнение колебаний заряда в к.к.

Уравнение колебаний напряжения на обкладках конденсатора в к.к.

Уравнение колебаний тока в к.к.

  1. Затухающие колебания в к.к.

Рассмотрим к.к., содержащий емкость, индуктивность и сопротивление. 2-й закон Кирхгофа в этом случае запишется в виде

- коэффициент затухания,

Собственная циклическая частота.

- - дифференциальное уравнение затухающих колебаний в к.к.

Уравнение затухающих колебаний заряда в к.к.

Закон изменения амплитуды заряда при затухающих колебаниях в к.к.;

Период затухающих колебаний.

Декремент затухания.

- логарифмический декремент затухания.

Добротность контура.

Если затухание слабое, тогда Т ≈Т 0

Исследуем изменение напряжения на обкладках конденсатора.

Изменение тока отличается по фазе на φ от напряжения.

при - возможны затухающие колебания,

при - критическое положение


при , т.е. R > R К - колебания не возникают (апериодический разряд конденсатора).

Колебательный контур - это устройство, предназначенное для генерации (создания) электромагнитных колебаний. С момента его создания и по сегодняшний день он используется во многих областях науки и техники: от повседневной жизни до огромных заводов, производящих самую разную продукцию.

Из чего он состоит?

Колебательный контур состоит из катушки и конденсатора. Кроме того, в нём также может присутствовать резистор (элемент с переменным сопротивлением). Катушка индуктивности (или соленоид, как её иногда называют) представляет собой стержень, на который наматываются несколько слоёв обмотки, которая, как правило, представляет собой медную проволоку. Именно этот элемент создаёт колебания в колебательном контуре. Стержень, находящийся в середине, часто называют дросселем, или сердечником, а катушку иногда именуют соленоидом.

Катушка колебательного контура создаёт колебания только при наличии запасённого заряда. При прохождении через неё тока она накапливает заряд, который затем отдаёт в цепь, если напряжение падает.

Провода катушки обычно имеют очень маленькое сопротивление, которое всегда остаётся постоянным. В цепи колебательного контура очень часто происходит изменение напряжения и силы тока. Это изменение подчиняется определённым математическим законам:

  • U = U 0 *cos(w*(t-t 0) , где
    U - напряжение в данный момент времени t,
    U 0 - напряжение во время t 0 ,
    w - частота электромагнитных колебаний.

Другим неотъемлемым компонентом контура является электрический конденсатор. Это элемент, состоящий из двух обкладок, которые разделены между собой диэлектриком. При этом толщина слоя между обкладками меньше их размеров. Такая конструкция позволяет накапливать на диэлектрике электрический заряд, который потом можно отдать в цепь.

Отличие конденсатора от аккумулятора в том, что в нём не происходит превращения веществ под действием электрического тока, а происходит непосредственное накопление заряда в электрическом поле. Таким образом, с помощью конденсатора можно накопить достаточно большой заряд, отдавать который можно весь сразу. При этом сила тока в цепи сильно возрастает.

Также колебательный контур состоит из ещё одного элемента: резистора. Этот элемент обладает сопротивлением и предназначен для контролирования силы тока и напряжения в цепи. Если при постоянном напряжении увеличивать то сила тока будет уменьшаться по закону Ома:

  • I = U/R , где
    I - сила тока,
    U - напряжение,
    R - сопротивление.

Катушка индуктивности

Давайте подробнее рассмотрим все тонкости работы катушки индуктивности и лучше поймём её функцию в колебательном контуре. Как мы уже говорили, сопротивление этого элемента стремится к нулю. Таким образом, при подключении к цепи постоянного тока произошло бы Однако если подключать катушку в цепь переменного тока, она работает исправно. Это позволяет сделать вывод о том, что элемент оказывает сопротивление переменному току.

Но почему это происходит и как возникает сопротивление при переменном токе? Для ответа на этот вопрос нам нужно обратиться к такому явлению, как самоиндукция. При прохождении тока по катушке в ней возникает которая создаёт препятствие изменению тока. Величина этой силы зависит от двух факторов: индуктивности катушки и производной силы тока по времени. Математически эта зависимость выражается через уравнение:

  • E = -L*I"(t) , где
    E - значение ЭДС,
    L - величина индуктивности катушки (для каждой катушки она разная и зависит от количества мотков обмотки и их толщины),
    I"(t) - производная силы тока по времени (скорость изменения силы тока).

Сила постоянного тока со временем не изменяется, поэтому сопротивления при его воздействии не возникает.

Но при переменном токе все его параметры постоянно изменяются по синусоидальному или косинусоидальному закону, вследствие чего возникает ЭДС, препятствующая этим изменениям. Такое сопротивление называют индукционным и вычисляют по формуле:

  • X L = w*L, где
    w - частота колебаний контура,
    L - индуктивность катушки.

Сила тока в соленоиде линейно нарастает и убывает по различным законам. Это значит, что если прекратить подачу тока в катушку, она будет продолжать некоторое время отдавать заряд в цепь. А если при этом резко прервать подачу тока, то будет происходить удар из-за того, что заряд будет пытаться распределиться и выйти из катушки. Это - серьёзная проблема в промышленном производстве. Такой эффект (хотя и не совсем связанный с колебательным контуром) можно наблюдать, например, при вытаскивании вилки из розетки. При этом проскакивает искра, которая в таких масштабах не в силах нанести вред человеку. Она обусловлена тем, что магнитное поле не исчезает сразу, а постепенно рассеивается, индуцируя токи в других проводниках. В промышленных масштабах сила тока во много раз больше привычных нам 220 вольт, поэтому при прерывании цепи на производстве могут возникнуть искры такой силы, что причинят немало вреда как заводу, так и человеку.

Катушка - это основа того, из чего колебательный контур состоит. Индуктивности последовательно включённых соленоидов складываются. Далее мы подробнее рассмотрим все тонкости строения этого элемента.

Что такое индуктивность?

Индуктивность катушки колебательного контура - это индивидуальный показатель, численно равный электродвижущей силе (в вольтах), которая возникает в цепи при изменении силы тока на 1 А за 1 секунду. Если соленоид подключён к цепи постоянного тока, то её индуктивность описывает энергию магнитного поля, которое создаётся этим током по формуле:

  • W=(L*I 2)/2, где
    W - энергия магнитного поля.

Коэффициент индуктивности зависит от многих факторов: от геометрии соленоида, от магнитных характеристик сердечника и от количества мотков проволоки. Ещё одно свойство этого показателя в том, что он всегда положителен, потому что переменные, от которых она зависит, не могут быть отрицательными.

Индуктивность также можно определить как свойство проводника с током накапливать энергию в магнитном поле. Она измеряется в Генри (названа в честь американского учёного Джозефа Генри).

Кроме соленоида колебательный контур состоит из конденсатора, о котором пойдёт речь далее.

Электрический конденсатор

Ёмкость колебательного контура определяется конденсатора. О его внешнем виде было написано выше. Теперь разберём физику процессов, которые протекают в нём.

Так как обкладки конденсатора сделаны из проводника, то по ним может течь электрический ток. Однако между двумя пластинами есть препятствие: диэлектрик (им может быть воздух, дерево или другой материал с высоким сопротивлением. Благодаря тому что заряд не может перейти от одного конца провода к другому, происходит накопление его на обкладках конденсатора. Тем самым возрастает мощность магнитного и электрического полей вокруг него. Таким образом, при прекращении поступления заряда вся электроэнергия, скопившаяся на обкладках, начинает передаваться в цепь.

Каждый конденсатор имеет оптимальное для его работы. Если долго эксплуатировать этот элемент при напряжении выше номинального, срок его службы значительно сокращается. Конденсатор колебательного контура постоянно подвержен влиянию токов, и поэтому при его выборе следует быть предельно внимательным.

Кроме обычных конденсаторов, о которых шла речь, есть также ионисторы. Это более сложный элемент: его можно описать как нечто среднее между аккумулятором и конденсатором. Как правило, диэлектриком в ионисторе служат органические вещества, между которыми находится электролит. Вместе они создают двойной электрический слой, который и позволяет накапливать в этой конструкции в разы больше энергии, чем в традиционном конденсаторе.

Что такое ёмкость конденсатора?

Ёмкость конденсатора представляет собой отношение заряда конденсатора к напряжению, под которым он находится. Посчитать эту величину можно очень просто с помощью математической формулы:

  • C = (e 0 *S)/d, где
    e 0 - материала диэлектрика (табличная величина),
    S - площадь обкладок конденсатора,
    d - расстояние между пластинами.

Зависимость ёмкости конденсатора от расстояния между обкладками объясняется явлением электростатической индукции: чем меньше расстояние между пластинами, тем сильнее они влияют друг на друга (по закону Кулона), тем больше заряд обкладок и меньше напряжение. А при уменьшении напряжения увеличивается значение ёмкости, так как её также можно описать следующей формулой:

  • C = q/U, где
    q - заряд в кулонах.

Стоит поговорить о единицах измерения этой величины. Ёмкость измеряется в фарадах. 1 фарад - достаточно большая величина, поэтому существующие конденсаторы (но не ионисторы) имеют ёмкость, измеряемую в пикофарадах (одна триллионная фарада).

Резистор

Ток в колебательном контуре зависит также от сопротивления цепи. И кроме описанных двух элементов, из которых состоит колебательный контур (катушки, конденсатора), имеется ещё и третий - резистор. Он отвечает за создание сопротивления. Резистор отличается от других элементов тем, что имеет большое сопротивление, которое в некоторых моделях можно изменять. В колебательном контуре он выполняет функцию регулятора мощности магнитного поля. Можно соединить несколько резисторов последовательно или параллельно, тем самым увеличив сопротивление цепи.

Сопротивление этого элемента зависит также от температуры, поэтому следует быть внимательным к его работе в цепи, так как при прохождении тока он нагревается.

Сопротивление резистора измеряется в Омах, а его значение можно вычислить по формуле:

  • R = (p*l)/S, где
    p - удельное сопротивление материала резистора (измеряется в (Ом*мм 2)/м);
    l - длина резистора (в метрах);
    S - площадь сечения (в квадратных миллиметрах).

Как связать параметры контура?

Теперь мы вплотную подошли к физике работы колебательного контура. Со временем заряд на обкладках конденсатора изменяется согласно дифференциальному уравнению второго порядка.

Если решить это уравнение, из него следует несколько интересных формул, описывающих процессы, протекающие в контуре. Например, циклическую частоту можно выразить через ёмкость и индуктивность.

Однако наиболее простая формула, которая позволяет вычислить многие неизвестные величины, - формула Томсона (названа в честь английского физика Уильяма Томсона, который вывел её в 1853 году):

  • T = 2*п*(L*C) 1/2 .
    T - период электромагнитных колебаний,
    L и C - соответственно, индуктивность катушки колебательного контура и ёмкость элементов контура,
    п - число пи.

Добротность

Есть ещё одна важная величина, характеризующая работу контура, - добротность. Для того чтобы понять, что это такое, следует обратиться к такому процессу, как резонанс. Это явление, при котором амплитуда становится максимальной при неизменной величине силы, которая это колебание поддерживает. Объяснить резонанс можно на простом примере: если вы начнёте подталкивать качели в такт их частоте, то они будут ускоряться, а их "амплитуда" будет возрастать. А если будете толкать не в такт, то они будут замедляться. При резонансе очень часто рассеивается много энергии. Для того чтобы можно было вычислить величины потерь, придумали такой параметр, как добротность. Она представляет собой коэффициент, равный отношению энергии, находящейся в системе, к потерям, происходящим в цепи за один цикл.

Добротность контура вычисляется по формуле:

  • Q = (w 0 *W)/P, где
    w 0 - резонансная циклическая частота колебаний;
    W - энергия, запасённая в колебательной системе;
    P - рассеиваемая мощность.

Этот параметр - безразмерная величина, так как фактически показывает отношение энергий: запасённой к потраченной.

Что такое идеальный колебательный контур

Для лучшего понимания процессов в этой системе физики придумали так называемый идеальный колебательный контур . Это математическая модель, представляющая цепь как систему с нулевым сопротивлением. В ней возникают незатухающие гармонические колебания. Такая модель позволяет получить формулы приближённого вычисления параметров контура. Один из таких параметров - полная энергия:

  • W = (L*I 2)/2.

Такие упрощения существенно ускоряют расчёты и позволяют оценить характеристики цепи с заданными показателями.

Как это работает?

Весь цикл работы колебательного контура можно разделить на две части. Сейчас мы подробно разберём процессы, происходящие в каждой части.

  • Первая фаза: пластина конденсатора, заряженная положительно, начинает разряжаться, отдавая ток в цепь. В этот момент ток идёт от положительного заряда к отрицательному, проходя при этом через катушку. Вследствие этого в контуре возникают электромагнитные колебания. Ток, пройдя через катушку, переходит на вторую пластину и заряжает её положительно (тогда как первая обкладка, с которой шёл ток, заряжается отрицательно).
  • Вторая фаза: происходит прямо обратный процесс. Ток переходит с положительной пластины (которая в самом начале была отрицательной) на отрицательную, проходя опять через катушку. И все заряды встают на свои места.

Цикл повторяется до тех пор, пока на конденсаторе будет заряд. В идеальном колебательном контуре этот процесс происходит бесконечно, а в реальном неизбежны потери энергии из-за различных факторов: нагрева, который происходит из-за существования сопротивления в цепи (джоулевое тепло), и тому подобное.

Варианты конструкции контура

Кроме простых цепей «катушка-конденсатор» и «катушка-резистор-конденсатор», существуют и другие варианты, использующие в качестве основы колебательный контур. Это, например, параллельный контур, который отличается тем, что существует как элемент электрической цепи (потому как, существуй он отдельно, то являлся бы последовательной цепью, о которой и шла речь в статье).

Также существуют и другие виды конструкции, включающие разные электротехнические компоненты. Например, можно подключать в сеть транзистор, который будет размыкать и замыкать цепь с частотой, равной частотой колебаний в контуре. Таким образом, в системе установятся незатухающие колебания.

Где применяется колебательный контур?

Самое знакомое нам применение составляющих контура - это электромагниты. Они, в свою очередь, используются в домофонах, электродвигателях, датчиках и во многих других не столь обыденных областях. Другое применение - генератор колебаний. На самом деле это использование контура нам очень знакомо: в этом виде он применяется в микроволновке для создания волн и в мобильной и радиосвязи для передачи информации на расстояние. Всё это происходит благодаря тому, что колебания электромагнитных волн можно закодировать таким образом, что станет возможным передавать информацию на большие расстояния.

Катушка индуктивности сама по себе может использоваться как элемент трасформатора: две катушки с разным числом обмоток могут передавать с помощью электромагнитного поля свой заряд. Но так как характеристики соленоидов различаются, то и показатели тока в двух цепях, к которым подключены эти две индуктивности, будут различаться. Таким образом, можно преобразовывать ток с напряжением, скажем, в 220 вольт в ток с напряжением в 12 вольт.

Заключение

Мы подробно разобрали принцип работы колебательного контура и каждой его части в отдельности. Мы узнали, что колебательный контур - это устройство, предназначенное для создания электромагнитных волн. Однако это только основы сложной механики этих, с виду простых, элементов. Узнать больше о тонкостях работы контура и его составляющих можно из специализированной литературы.

>> Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний

§ 30 УРАВНЕНИЕ, ОПИСЫВАЮЩЕЕ ПРОЦЕССЫ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ. ПЕРИОД СВОБОДНЫХ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ

Перейдем теперь к количественной теории процессов в колебательном контуре.

Уравнение, описывающее процессы в колебательном контуре. Рассмотрим колебательный контур, сопротивлением R которого можно пренебречь (рис. 4.6).

Уравнение, описываюндее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии. Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Эта энергия не меняется с течением времени, если ео противление R контура равно нулю. Значит, производная полной энергии по времени равна нулю. Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл уравнения (4.5) состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля; знак «-» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

Вычислив производные в уравнении (4.5), получим 1

Но производная заряда по времени представляет собой силу тока в данный момент времени:

Поэтому уравнение (4.6) можно переписать в следующем виде:

1 Мы вычисляем производные по времени. Поэтому производная (і 2)" равна не просто 2 і , как было бы при вычислении производной но і. Нужно 2 і умножить еще на производную i" силы тока по времени, так как вычисляется производная от сложной функции. То же самое относится к производной (q 2)".

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени. Подставив в уравнение (4.8) і" = q" и разделив левую и правую части этого уравнения на Li, получим основное уравнение, описывающее свободные электрические колебания в контуре:

Теперь вы в полной мере можете оценить значение тех усилий, которые были затрачены для изучения колебаний шарика на пружине и математического маятника. Ведь уравнение (4.9) ничем, кроме обозначений, не отличается от уравнения (3.11), описывающего колебания шарика на пружине. При замене в уравнении (3.11) х на q, х" на q", k нa 1/C и m нa L мы в точности получим уравнение (4.9). Но уравнение (3.11) было уже решено выше. Поэтому, зная формулу, описывающую колебания пружинного маятника, мы сразу же можем записать формулу для описания электрических колебаний в контуре.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Урок № 48-169 Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона. Колебания - движения или состояния, повто­ряющиеся во времени. Электромагнитные колебания - это колебания электрических и магнитных полей, которые сопро­ вождаются периодическим измене­ нием заряда, тока и напряжения. Колеба­тельный контур - это система, состоящая из катушки индуктив­ности и конденсатора (рис. а). Если конденсатор зарядить и замк­нуть на катушку, то по катушке потечет ток (рис. б). Когда кон­денсатор разрядится, ток в цепи не прекратится из-за самоиндук­ции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор (рис. в). Ток в данном направлении прекратится, и процесс повторится в обратном направлении (рис. г).

Таким образом, в колеба­ тельном контуре происхо­ дят электромагнитные колеба­ ния из-за превращения энергии электрического поля конденсато­ ра ( W Э =
) в энергию магнит­ного поля катушки с током (W М =
), и наоборот .

Гармонические колебания - периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса.

Уравнение, описывающее свободные электромагнитные колебания, принимает вид

q"= - ω 0 2 q (q"- вторая производная.

Основные характеристики колебательного движения:

Период колебаний - минимальный промежуток времени Т, через который процесс полностью повторяется.

Амплитуда гармонических колебаний - модуль наибольшего значения колеблющейся величины.

Зная период, можно определить частоту колебаний, т. е. число колебаний в единицу времени, например в секунду. Если одно колебание совершается за время Т, то число колебаний за 1 с νопределяется так: ν = 1/Т.

Напомним, что в Международной системе единиц (СИ) частота колебаний равна единице, если за 1 с совершается одно колебание. Единица частоты называется герцем (сокращенно: Гц) в честь немецкого физика Генриха Ге р ц а.

Через промежуток времени, равный периоду Т, т. е. при увеличении аргумента косинуса на ω 0 Т, значение заряда повторяется и косинус принимает прежнее значение. Из курса математики известно, что наименьший период косинуса равен 2л. Следовательно, ω 0 Т =2π, откуда ω 0 = =2πν Таким образом, величина ω 0 - это число колебаний, но не за 1 с, а за 2л с. Она называется циклической или круговой частотой.

Частоту свободных колебаний называют собственной частотой колебательной системы. Часто в дальнейшем для краткости мы будем называть циклическую частоту просто частотой. Отличить циклическую частоту ω 0 от частоты ν можно по обозначениям.

По аналогии с решением дифференциального уравнения для механической колебательной систе­мы циклическая частота свободных электриче­ ских колебаний равна:ω 0 =

Период свободных колебаний в контуре равен: Т==2π
- формула Томсона.

Фаза колебаний (от греческого слова phasis – появление, ступень развития какого-либо явления) – величина φ, стоящая под знаком косинуса или синуса. Выражается фаза в угловых единицах – радианах. Фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами.

Так как ω 0 = , то φ= ω 0 Т=2π . Отношение показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. Так, по прошествии времени t= (четверти периода) φ=, по прошествии половины периода φ = π, по прошествии целого периода φ=2π и т.д.Можно изобразить на графике зависимость


заряда не от времени, а от фазы. На рисунке показана та же косинусоида, что и на предыдущем, но на горизонтальной оси отложены вместо времени

различные значения фазы φ.

Соответствие между механическими и электрическими величинами в колебательных процессах

Механические величины

Задачи .

942(932). Начальный заряд, сообщенный конденсатору колебательного контура, уменьшили в 2 раза. Во сколько раз изменились: а) амплитуда напряжения; б) амплитуда силы то­ка;

в) суммарная энергия электрического поля конденсатора и магнитного поля катушки?

943(933). При увеличении напряжения на конденсаторе колебательного контура на 20 В амплитуда силы тока увели­чилась в 2 раза. Найти начальное напряжение.

945(935). Колебательный контур состоит из конденсатора емкостью С = 400 пФ и катушки индуктивностью L = 10 мГн. Найти амплитуду колебаний силы тока I т , если амплитуда колебаний напряжения U т = 500 В.

952(942). Через какое время (в долях периода t/T) на кон­денсаторе колебательного контура впервые будет заряд, рав­ный половине амплитудного значения?

957(947). Катушку какой индуктивности надо включить в колебательный контур, чтобы при емкости конденсатора 50 пФ получить частоту свободных колебаний 10 МГц?

Колебательный контур. Период свободных колебаний.

1. После того как конденсатору колебательного контура был сообщён заряд q = 10 -5 Кл, в контуре возникли затухающие колебания. Какое количество теплоты выделится в контуре к тому времени, когда колебания в нём полностью затухнут? Ёмкость конденсатора С=0,01мкФ.

2. Колебательный контур состоит из конденсатора ёмкостью 400нФ и катушки индуктивностью 9мкГн. Каков период собственных колебаний контура?

3. Какую индуктивность надо включить в колебательный контур, чтобы при ёмкости 100пФ получить период собственных колебаний 2∙ 10 -6 с.

4. Сравнить жесткости пружин k1/k2 двух маятников с массами грузов соответственно 200г и 400г, если периоды их колебаний равны.

5. Под действием неподвижно висящего груза на пружине её удлинение было равно 6,4см. Затем груз оттянули и отпустили, вследствие чего он начал колебаться. Определить период этих колебаний.

6. К пружине подвесили груз, вывели его из положения равновесия и отпустили. Груз начал колебаться с периодом 0,5с. Определите удлинение пружины после прекращения колебаний. Массу пружины не учитывать.

7. За одно и то же время один математический маятник совершает 25 колебаний, а другой 15. Найти их длины, если один из них на 10см короче другого. 8. Колебательный контур состоит из конденсатора ёмкостью 10мФ и катушки индуктивности 100мГн. Найти амплитуду колебаний напряжения, если амплитуда колебаний силы тока 0,1А 9. Индуктивность катушки колебательного контура 0,5мГн. Требуется настроить этот контур на частоту 1МГц. Какова должна быть ёмкость конденсатора в этом контуре?

Экзаменационные вопросы:

1. Какое из приведенных ниже выражений определяет период свободных колебаний в колебательном контуре? А. ; Б.
; В.
; Г.
; Д. 2 .

2. Какое из приведенных ниже выражений определяет циклическую частоту свободных колебаний в колебательном контуре? А. Б.
В.
Г.
Д. 2π

3. На рисунке представлен график зависимости координаты Х тела, совершающего гармонические колебания вдоль оси ох, от времени. Чему равен период колебания тела?

А. 1 с; Б. 2 с; В. 3 с. Г. 4 с.


4. На рисунке изображён профиль волны в определённый момент времени. Чему равна её длина?

А. 0,1 м. Б. 0,2 м. В. 2 м. Г. 4 м. Д. 5 м.
5. На рисунке представлен график зависимости силы тока через катушку колебательного контура от времени. Чему равен период колебаний силы тока? А. 0,4 с. Б. 0,3 с. В. 0,2 с. Г. 0,1 с.

Д. Среди ответов А-Г нет правильного.


6. На рисунке изображён профиль волны в определённый момент времени. Чему равна её длина?

А. 0,2 м. Б. 0,4 м. В. 4 м. Г. 8 м. Д. 12 м.

7. Электрические колебания в колебательном контуре заданы уравнением q =10 -2 ∙ cos 20t (Кл).

Чему равна амплитуда колебаний заряда?

А . 10 -2 Кл. Б.cos 20t Кл. В.20t Кл. Г.20 Кл. Д.Среди ответов А-Г нет правильного.

8. При гармонических колебаниях вдоль оси ОХ координата тела изменяется по закону X=0,2cos(5t+). Чему равна амплитуда колебаний тела?

А. Xм; Б. 0,2 м;В. сos(5t+) м; (5t+)м; Д.м

9. Частота колебаний источника волны 0,2 с -1 скорость распространения волны 10 м/с. Чему равна, длина волны? А. 0,02 м. Б. 2 м. В. 50 м.

Г. По условию задачи нельзя определить длину волны. Д. Среди ответов А-Г нет правильного.

10. Длина волны 40 м, скорость распространения 20 м/с. Чему равна частота колебаний источника волн?

А. 0,5 с -1 . Б. 2 с -1 . В. 800 с -1 .

Г. По условию задачи нельзя определить частоту колебания источника волн.

Д. Среди ответов А-Г нет правильного.

3