Электронная лампа. Принцип работы электронных ламп

  • 29.07.2019

Поколения компьютеров

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Появление ЭВМ или компьютеров – одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:

Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов.

Способность хранить информацию в специальной памяти.

Поколение первое.

Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году.

Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.



Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.

Электронные лампы можно классифицировать по числу электродов, назначению, диапазону частот, мощности, типу катода, габаритам.

В зависимости от числа электродов электронные лампы делят на диоды, триоды, тетроды, пентоды, гептоды, комбинированные лампы (двойные диоды, двойные триоды, триод-пентоды, триод-гептоды и т. д.).

В зависимости от выполняемых функций лампы могут быть выпрямительные, детекторные, усилительные, преобразовательные, генераторные и др.

Диодом называется электронная лампа с двумя электродами: анодом и катодом. Она была изобретена Джоном Флемингом в 1904 г. Катод располагается в центре лампы: анод, имеющий форму цилиндра, охватывает катод. Принцип действия диода сводится к следующему. Если к аноду приложен положительный потенциал, то вылетевшие из катода отрицательно заряженные электроны под действием электрического поля устремятся к положительному аноду, образуя непрерывный электронный поток, замыкающий электрическую цепь источника анодного питания. Во внешней Цепи пойдет ток анода I а. Так как условно за положительное направление тока принято направление от плюса к минусу источника тока, то внутри диода ток протекает от анода к катоду, т. е. против движения электронов. Величина анодного тока определяется количеством электронов, перелетающих с катода на анод в единицу времени.

Если к аноду диода подключить минус источника тока, а к катоду - плюс, то отрицательно заряженный анод будет отталкивать отрицательные электроны обратно на катод. В этом случае ток через лампу не пойдет. Следовательно, диод проводит электрический ток только в одном направлении - от анода к катоду, когда потенциал анода выше потенциала катода.

Односторонняя проводимость диода является его основным свойством. Именно это свойство определяет назначение диода - выпрямление переменных токов в постоянные и преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование).

Диоды, предназначенные для выпрямления переменного тока, называются кенотронами. В маркировке они имеют букву Ц (1Ц1С, 1Ц7С, 1Ц11П, 1Ц21П, ЗЦ18П, 5ЦЗС, 6Ц4П и др.).

Диоды, предназначенные для детектирования, являются маломощными. Они выпускаются чаще всего двуханодными или входят в состав комбинированных ламп. В маркировке эти диоды имеют букву X или Д (6Д14П, 6Д20П, 6Х6С).

Триодом называется электронная лампа, у которой в промежутке между анодом и катодом помещается третий электрод - сетка. Эта лампа предложена в 1906 г. американским ученым Ли-де-Форестом. Сетку в современных лампах выполняют в виде проволочной спирали, окружающей катод. Изготовляют сетку из никеля, молибдена или вольфрама. Сетка триода называется управляющей, так как с ее помощью легко управлять плотностью анодного тока, подавая на сетку положительное или отрицательное напряжение определенной величины.

Учитывая, что сетка в триоде расположена ближе к катоду, чем анод, ее воздействие на электронный поток будет более значительным. Это свойство триода широко используют в радиотехнике для усиления ослабленных радиосигналов. Принцип усиления радиосигнала сводится к следующему. Сигнал, который необходимо усилить, подается на управляющую сетку триода. Изменение величины потенциала сетки приведет к соответствующему изменению анодного тока. При этом с анода будет сниматься усиленное напряжение подводимого к сетке сигнала. На сетку подается постоянный отрицательный потенциал (напряжение сеточного смещения) такой величины, чтобы положительные полупериоды сигнала не создали на сетке положительного напряжения. В противном случае появляется сеточный ток (положительная сетка притянет часть электронов), в результате уменьшается анодный ток, что приводит к искажению сигнала.

Триоды используют в качестве усилителей низких и высоких частот, для генерирования различных форм импульсов в широком диапазоне частот, для согласования цепей (катодные повторители). В маркировке триодов имеется буква С или Н (двойные триоды) 6Н1П, 6НЗП, 6Н7С, 6Н9С, 6Н24П и др.

Для определения возможности применения триодов и многоэлектродных ламп вообще в той или иной схеме пользуются техническими характеристиками (параметрами) лампы, важнейшими из которых являются: крутизна характеристики, коэффициент усиления и внутреннее сопротивление лампы.

Крутизна характеристики S - это величина, показывающая, на сколько миллиампер изменится анодный ток при изменении напряжения на сетке на 1 В и постоянном напряжении на аноде. Определяют ее как отношение приращения анодного тока АI а к приращению сеточного напряжения AU C

Коэффициент усиления и определяет усилительные свойства ламп. Он представляет собой отношение приращения анодного напряжения AU a к приращению сеточного напряжения AU C , которые вызывают одно и то же приращение анодного тока АI а


Внутреннее сопротивление триода Ri- это сопротивление между анодом и катодом для переменного тока анода. Его выражают отношением приращения анодного напряжения AU a к приращению анодного тока АI а


Если крутизна оценивает действие сеточного напряжения на анодный ток, то внутреннее сопротивление позволяет оценить действие анодного напряжения на анодный ток.

Тетродом называется четырехэлектродная лампа с двумя сетками, одна из которых управляющая, другая - экранирующая. Последнюю помещают между управляющей сеткой и анодом для увеличения коэффициента усиления лампы. На экранирующую сетку подают положительное напряжение, равное 50- 80% анодного. При этих условиях электроны под действием двух ускоряющих полей (анода и второй сетки) развивают большую скорость и выбивают из анода вторичные электроны, которые движутся от него к экранирующей сетке и притягиваются ею. Данное явление называется динатронным эффектом в тетроде. Он приводит к росту тока экранирующей сетки и к уменьшению тока анода, что равносильно искажению усиливающего сигнала.

Чтобы устранить вредное влияние динатронного эффекта, в промежутке между экранирующей сеткой и анодом создают тормозящее отрицательное поле. С этой целью между сеткой и анодом помещают две металлические пластины, соединенные с катодом. Такие лампы называют лучевыми тетродами. Их широко используют в качестве оконечных усилителей сигналов низкой частоты (6П13С, 6П31С, 6П36С, 6П1П).

Второй путь устранения динатронного эффекта в тетроде - введение еще одной сетки, которая называется защитной, или антидинатронной. Лампу с пятью электродами называют пентодом. Третья сетка соединяется с катодом. Она создает тормозящее поле для вторичных электронов, вылетающих из анода, и возвращает их обратно на анод. Пентоды являются лучшими усилительными лампами, коэффициент усиления для некоторых типов пентодов доходит до нескольких тысяч. Используют их в качестве усилителей высокой и промежуточной частот.

Гептодом называется семиэлектродная электронная лампа, имеющая пять сеток. Назначение сеток может быть следующим: первая и третья - управляющие, вторая и четвертая - экранирующие, пятая - антидинатронная. Гептоды используют для преобразования электрических колебаний одной частоты в колебания другой. Например, в супергетеродинных приемниках они выполняют роль преобразователя высокочастотных колебаний принятого сигнала в сигналы промежуточной частоты.

В современной радиоаппаратуре широко используют комбинированные лампы, у которых в одном баллоне помещены две или три лампы, имеющие свои отдельные системы электродов. Преимущество таких ламп очевидно: они уменьшают габариты радиоаппаратуры, повышают ее экономичность. Отечественная промышленность выпускает следующие комбинированные лампы: двойные диоды, двойные триоды, диод-триоды, диод- пентоды, триод-пентоды и др. (6И1П, 6Ф1П, 6ФЗП и др.).

Было время, когда вся электроника создавалась на основе электронных вакуумных ламп, которые по внешнему виду напоминают маленькие лампочки, и которые выполняют функции усилителей, генераторов и электронных коммутаторов. В современной электронике для выполнения этих всех функций используются транзисторы, которые изготавливаются в промышленных масштабах при весьма низкой их себестоимости. Теперь же, исследователи из Исследовательского центра НАСА имени Эймса (NASA Ames Research Center) разработали технологию производства наноразмерных электронных вакуумных ламп, что позволит в будущем создать более быстро и более надежно работающие компьютеры.

Электронную вакуумную лампу называют вакуумной из-за того, что это стеклянный сосуд с вакуумом внутри. Внутри лампы есть нить накаливания, но она разогревается до более низкой температуры нежели нити обычных осветительных ламп. Так же, внутри электронной вакуумной лампы имеется положительно заряженный электрод, одна или несколько металлических сеток, с помощью которых управляют электрическим сигналом, проходящим через лампу.

Нить накала нагревает электрод лампы, который создает в окружающем пространстве облако электронов, и чем выше температура электрода, тем на большее расстояние от него могут удалиться свободные электроны. Когда это электронное облако достигает положительно заряженного электрода, то через лампу может течь электрический ток. Тем временем, регулируя полярность и значение электрического потенциала на металлической сетке, можно усилить поток электронов или прекратить его вообще. Таким образом, лампа может служить усилителем и коммутатором электрических сигналов.

Электронные вакуумные лампы, хоть редко, но используются сейчас, в основном для создания высококачественных акустических систем. Даже самые лучшие образцы полевых транзисторов не могут обеспечить того качества звука, которое обеспечивают электронные лампы. Это происходит по одной главной причине, электроны в вакууме, не встречая сопротивления, перемещаются с максимальной скоростью, чего невозможно добиться при движении электронов сквозь твердые полупроводниковые кристаллы.

Электронные вакуумные лампы более надежны в работе нежели транзисторы, которые достаточно просто вывести из строя. К примеру, если транзисторная электроника попадает в космос, то рано или поздно ее транзисторы выходят из строя, "поджаренные" космическим излучением. Электронные лампы же практически не подвержены воздействию радиации.

Создание электронной вакуумной лампы, размерами не превышающей размеры современного транзистора, является огромной проблемой, особенно в массовом производстве. Изготовление крошечных индивидуальных вакуумных камер - это сложнейший и дорогой процесс, который применяют только в случаях острой необходимости. Но ученые НАСА решили эту проблему достаточно интересным путем, оказалось, что при уменьшении размеров электронной лампы менее некоторого предела наличие вакуума перестает быть необходимым условием. Наноразмерные вакуумные лампы, у которых имеется нить накаливания и один электрод, имеют размеры в 150 нанометров. Зазор между электродами лампы настолько мал, что наличие в нем воздуха не является помехой для их работы, вероятность столкновения электронов с молекулой воздуха стремиться к нулю.

Естественно, впервые новые наноэлектронные лампы появятся в электронном оборудовании космических кораблей и аппаратов, где устойчивость электроники к радиации имеет первостепенное значение. Помимо этого, электронные лампы могут работать на частотах, в десятки раз превышающих частоты работы самых лучших экземпляров кремниевых транзисторов, что в будущем позволит на их основе создавать компьютеры, намного более быстрые, чем те, которые мы используем сейчас.

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. За последние 50 лет произошла смена уже не одного поколения компьютеров. И если первые четыре поколения отличались друг от друга только элементной базой и архитектурой, то так и не созданные «компьютеры пятого поколения» должны были включать в себя функции искусственного интеллекта.

К первому поколению относятся компьютеры на основе электронных ламп и реле (40-е года XX века). Оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках. Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы – 7 см, машины были огромных размеров. Каждые 7-8 минут одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось много времени. Быстродействие таких вычислительных систем: 5-30 тыс. арифметических операций в секунду. Данные заносились в память ЭВМ при помощи соединения нужного штекера с нужным гнездом. Такие компьютеры использовались в основном для научно-технических расчетов.

1 июля 1948 года фирма «Белл телефон лабораториз» разработала электронный прибор, способный заменить электронную лампу – транзистор. Это событие можно считать началом компьютеров второго поколения . Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме «Digital Equipment» выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тыс. долларов.

Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности. Самым главным отличием транзистора является то, что он один заменяет 40 электронных ламп и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию.

Появление интегральных схем ознаменовало появление машин третьего поколения . Интегральная схема, представляет собой миниатюрную электронную схему площадью около 10 квадратных миллиметров. Интегральная схема способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Частью ЭВМ становятся операционные системы. Многие задачи управления памятью, устройствами ввода/вывода и другими ресурсами стали брать на себя ОС или же непосредственно аппаратная часть ЭВМ. Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Приход ЭВМ четвертого поколения связан с переходом интегральных схем на большие интегральные схемы и сверхбольшие интегральные схемы. Элементная база позволила достичь больших успехов в минимизации размеров, повышении надежности и производительности ЭВМ. Первым персональным компьютеров можно считать Altair-8800, созданным на базе Intel-8080, в 1974г. Лицо 4-го поколения в значительной мере определяется и созданием супер-ЭВМ, характеризующихся высокой производительностью. Супер-ЭВМ используются при решении задач математической физики, космологии и астрономии, моделировании сложных систем и др.

Термин компьютеры пятого поколения является ничем иным, как широкомасштабная правительственная программа в Японии по развитию компьютерной индустрии и искусственного интеллекта, предпринятая в 1980-е годы. Целью программы было создание «эпохального компьютера» с производительностью суперкомпьютера и мощными функциями искусственного интеллекта. Ожидалось добиться существенного прорыва в области решения прикладных задач искусственного интеллекта. В частности, должны были быть решены такие задачи как:

  • создание автоматического портативного переводчика с языка на язык (непосредственно с голоса);
  • автоматическое реферирование статей, поиск смысла и категоризация
  • задачи распознавания и др.

Идея саморазвития системы, по которой система сама должна менять свои внутренние правила и параметры, оказалась непродуктивной – система, переходя через определённую точку, скатывалась в состояние потери надёжности и утраты цельности, резко «глупела» и становилась неадекватной. За десять лет на разработки было истрачено более порядка 500 млн. долларов, программа завершилась, так и не достигнув цели. На сегодняшний день проект считается абсолютным провалом.


ДП ____________2_2_0_3________гр_4_4_4________________

номер специальности и группы

Рецензент __________________ _____К_у_д_р_я_ш_о_в_а____

подпись и., о., фамилия

Руководитель _______________ _____Э_п_ш_т_е_й_н________

подпись и., о., фамилия

Дипломник _________________ _____Т_к_а_ч_е_н_к_о_В_К__

подпись и., о., фамилия

г. САНКТ-ПЕТЕРБУРГ


Введение. . . . . . . . . . . 3

1. Общая часть

1.1. Описание предметной области. . . . . . 4

1.1.1. Электронные лампы. . . . . . . 4

1.1.2. Расчетные формулы. . . . . . . 11

1.2. Анализ методов решения. . . . . . . 13

1.3. Обзор средств программирования. . . . . . 14

1.4. Описание выбранного языка программирования. . . . 16

2. Специальная часть

2.1. Постановка задачи. . . . . . . . 23

2.1.1. Основание для разработки. . . . . . 23

2.1.2. Назначение программы. . . . . . 23

2.1.3. Технико-математическое описание задачи. . . . 23

2.1.4. Требования к программе. . . . . . 24

2.1.4.1. Требования к функциональным характеристикам. . 24

2.1.4.2. Требования к надёжности. . . . . . 25

2.1.4.3. Требования к техническим средствам. . . . 25

2.2. Описание схемы программы. . . . . . . 26

2.2.1. Описание схемы основной программы. . . . 26

2.2.2. Описание схемы модуля расчета термонапряжений в аноде МГП 26

2.2.3. Описание схемы модуля построения графиков. . . 27

2.3. Текст программы. . . . . . . . 28

2.4. Описание программы. . . . . . . . 33

2.4.1. Общие сведения. . . . . . . 33

2.4.2. Функциональное назначение. . . . . 33

2.4.3. Описание логической структуры. . . . . 33

2.5. Описание процесса отладки программы. . . . . 34

2.6. Пример результатов работы программы. . . . . 35
3. Экономическое обоснование проектируемой программы. . . . 36

4. Мероприятия по обеспечению безопасности жизнедеятельности. . . 40

4.1. Воздействие электрического тока на организм человека



4.2. Заземляющие устройства

Заключение. . . . . . . . . . . 42

Список литературы. . . . . . . . . . 43

Приложение 1. Схема программы. . . . 44

Приложение 2. Экранные формы. . . . 47

Приложение 3. Примеры ошибок. . . . 51


Последние несколько лет слово “компьютер” употребляется всё чаще и чаще. Если раньше компьютерами владели только фирмы с мировым авторитетом, и программы были написаны на языках низкого уровня, то на данный день компьютер имеется почти в каждой квартире, и программы пишутся на языках высокого уровня. В России ежегодно продается более миллиона компьютеров. Современные компьютеры имеют большие возможности: производят числовые расчеты, подготавливают к печати книги, на них создают рисунки, кинофильмы, музыку, осуществляют управление заводами и космическими кораблями. Компьютер является универсальным и довольно простым средством для обработки всех видов информации, используемой человеком.

Данное дипломное задание позволит работникам заводов и КБ уменьшить количество и стоимость макетов проектируемых приборов. Разрабатываемая программа обеспечит расчет температурного поля в теле анода МГП в процессе разогрева после включения прибора, а также возникающих при этом термонапряжений, разрушающе действующих на материал анода. Результаты работы этой программы дадут необходимую исходную информацию для анализа температурных напряжений в теле анода и выбора режимов эксплуатации, сохраняющих ресурс работы и обеспечивающих высокую надежность и долговечность приборов.


ОБЩАЯ ЧАСТЬ

Описание предметной области

Электронные лампы

Электронные лампы применяются для генерации, усиления, или преобразования электрических колебаний в самых разных областях науки и техники.

Принцип работы электронных ламп

Принцип действия всех радиоламп основан на явлении термоэлектронной эмиссии – это увеличение скоростей электронов до таких, что они вылетают из металла с отрицательным зарядом и могут направленно двигаться между электродами, создавая электрический ток. Для этого также необходимо, чтобы им не встречались на пути препятствия, такие как молекулы воздуха – именно поэтому в лампах создается высокий вакуум. Для получения термоэлектронной эмиссии металл надо нагреть примерно до 2000 о К. Удобнее всего нагревать металлическую нить накала электрическим током (ток накала ), как и в осветительных лампах. Такую высокую температуру выдерживает не каждый металл, большинство плавится, из-за этого в первых образцах электронных ламп применялись чисто вольфрамовые нити накала, которые накаливались до белого свечения, откуда и произошло название «лампа». Но такая яркость обходится очень дорого – нужен сильный ток (в пол-ампера для приёмной лампы). Но скоро был найден путь уменьшения тока накала. Исследования показали, что если покрыть вольфрам некоторыми другими металлами или их окислами (бария, стронция и кальция), то выход электронов облегчается (снижается так называемая ”работа выхода”). Для выхода требуются меньшие энергии, а значит и меньшая температура. Современные оксидированные нити накала работают при температуре около 700-900 о С, в связи с этим удается снизить ток накала примерно в 10-20 раз.

Надо заметить, что управление всеми потоками электронов в лампе осуществляется посредством электрических полей, образующихся вокруг электродов с разными зарядами.

Виды электронных ламп

Диод – вакуумный прибор, пропускающий электрический ток только в одном направлении (Рис.1а) и имеющий два вывода для включения в электрическую цепь (плюс вывод накала, конечно), двухэлектродная лампа была изобретена в 1904 г. физиком Дж. Флемингом. Такая электронная лампа представляет собой стеклянный или металлический баллон, из которого выкачан воздух, и двух металлических электродов: накаливаемого катода (-) и холодного анода(+). Катод бывает двух типов: прямого накала и косвенного накала . В первом случае катод представляет собой вольфрамовую нить (чаще покрытую оксидом), по которой проходит накаливающий её ток, а во втором – покрытый слоем металла с малой работой выхода цилиндр, внутри которого находится нить накала, электрически изолированная от катода. Действие катода как источника электронов основано на термоэлектронной эмиссии . На рисунке 1а показано устройство вакуумного диода с катодом прямого накала. Недостатком катодов прямого накала является то, что они не пригодны для питания их переменным током, так как при изменениях тока температура нити успевает измениться, и поток излучаемых электронов пульсирует с частотой питающего тока, поэтому сейчас применяются катоды косвенного накала.

Вольт-амперная характеристика диода (рис. 1е) имеет нелинейный характер – это объясняется накоплением электронов у катода в “облачко”. При отсутствии анодного напряжения электроны к нему не притягиваются, и анодный ток равен нулю. Анодный ток возникает при подаче положительного напряжения на анод, по мере увеличения напряжения анодный ток будет возрастать (на кривой А-Б – быстрее). При большом напряжении (в точке В) сила тока достигает наибольшей величины – это ток насыщения. У диода с активированным (оксидным) катодом не наблюдается замедления роста анодного тока, но при анодном токе выше некоторой предельной величины катод разрушается. Свойства диода оцениваются крутизной характеристики и внутренним сопротивлением лампы.

Если вывод сетки присоединить к катоду, то между сеткой и катодом не будет электрического поля, и витки сетки окажут очень слабое действие на летящие к аноду электроны – в анодной цепи установится ток покоя . Если включить между катодом и сеткой батарею так, что сетка зарядится отрицательно, то последняя начнёт отталкивать электроны обратно к катоду, а анодный ток уменьшится. При значительном отрицательном потенциале сетки даже самые быстрые электроны не смогут преодолеть её отталкивающее действие, и анодный ток прекратится, т.е. лампа будет заперта. Если сеточную батарею присоединить так, чтобы сетка была положительно заряжена относительно катода, то возникшее электрическое поле станет ускорять движение электронов. В этом случае измерительный прибор в цепи анода покажет увеличение тока.

Чем выше потенциал сетки, тем больше становится анодный ток. При этом некоторая часть электронов притягивается и к сетке, создавая сеточный ток , но при правильной конструкции лампы количество этих электронов невелико. Только те электроны, которые окажутся в непосредственной близости от витков сетки, будут притянуты к ней и создадут ток в сеточной цепи – он будет незначителен.

Коэффициент усиления и мощности у триодов различны. При большом анодном токе аноды подвергаются сильной электронной бомбардировке, что приводит к их значительному нагреванию и даже разрушению, поэтому аноды делают массивными, чернят, приваривают специальные охлаждающие ребра или применяют водное охлаждение, о котором рассказано ниже. Водное охлаждение применено и в импульсном генераторном триоде ГИ-11 (БМ), не так давно разработанном петербургскими учеными.

Экранированные лампы могут хорошо работать с небольшими сеточными напряжениями, но иногда при работе тетродов вторичные электроны, выбитые из анода, долетают до экранной сетки, создавая ток и сильные искажения сигнала – это явление называют динатронным эффектом . Пентоды являются решением этой проблемы.

Способ устранения неприятных последствий динатронного эффекта очевиден: надо не пускать вторичные электроны к экранирующей сетке. Это можно сделать введением в лампу еще одной сетки – третьей по счету, которая будет защитной , так получились пентоды – от греческого слова «пента» - пять (рис. 1г). Третья сетка располагается между анодом и экранирующей сеткой и соединяется с катодом, следовательно, оказывается заряженной отрицательно относительно катода. Поэтому вторичные электроны будут отталкиваться этой сеткой обратно к аноду, но в то же время, будучи достаточно редкой, эта защитная сетка не препятствует электронам основного анодного тока. У современных (на 1972 год) высокочастотных пентодов коэффициент усиления доходит до нескольких тысяч, а емкость сетка – анод измеряется тысячными долями пикофарады. Благодаря этому пентод является прекрасной лампой для усиления колебаний высокой частоты. Но пентоды с большим успехом применяются и для усиления низкой (звуковой) частоты, в частности в оконечных каскадах.

Конструктивно низкочастотные пентоды несколько отличаются от высоко- частотных. Для усиления НЧ не нужно иметь слишком большие коэффициенты усиления, но зато необходимо иметь большой прямолинейный участок характеристики, так как приходится усиливать большие напряжения, поэтому делают сравнительно редкие экранирующие сетки. При этом коэффициент усиления не получается очень большим, а вся характеристика сдвигается влево, поэтому больший её участок становится пригодным для использования. Низкочастотные пентоды должны отдавать большую мощность, следовательно, делаются массивными и их аноды нуждаются в охлаждении.

Существуют также и Лучевые тетроды – мощные низкочастотные лампы без защитных сеток, в которых витки экранирующих сеток расположены точно за витками управляющих сеток. При этом поток электронов рассекается на отдельные пучки (лучи), летящие прямо к аноду, а он отнесен несколько дальше и выбитые из него вторичные электроны не могут долететь до экранирующей сетки, а притягиваются анодом обратно, не нарушая нормальной работы лампы. Коэффициент усиления у таких ламп в несколько раз выше, чем у обычных тетродов, т.к. электроны от катода летят прямыми лучами между витками сеток и не разлетаются, а направляются к аноду полем экранирующих пластин, расположенных на путях возможной утечки около анода лампы, которые подключены к минусу источника питания через катод. У лучевых ламп удается создать очень выгодную форму характеристики, позволяющую получить большую выходную мощность при небольшом напряжении сигнала на сетке.

Конструкции радиоламп

Для аппаратуры малой мощности, такой как радиоприемник, лампы старались делать как можно меньших размеров (пальчиковые лампы). Их часто называют приёмно-усилительными лампами. Существуют и сверхминиатюрные лампы (толщиной с карандаш) с мягкими выводами. В мощной аппаратуре радиоузлов и в радиопередатчиках применяют лампы значительно больших размеров, развивающие в анодной цепи гораздо большую мощность. Такие лампы имеют массивные аноды с принудительным воздушным или водяным охлаждением. Для этого аноды делают конусоподобными из меди или других термоустойчивых металлов, к ним приваривают полые ребра или трубки, по которым пропускают охлажденную воду. Мощные лампы с медными анодами и водяным охлаждением, изобретенные в 1923 г. М. А. Бонч-Бруевичем, применяются в мощных радиопередатчиках всего мира (там, где нельзя применить полупроводниковые приборы).

Существует несколько способов охлаждения анода:

· принудительное воздушное;

· принудительное водное;

· естественное (рассеяние).

Для уменьшения нагрева анода его часто снабжают ребрами или крылышками.

За время существования радиоламп их конструкции претерпели серьезные изменения. Первые образцы приемно-усилительных ламп отличались довольно значительными размерами и потребляли очень большой ток накала. По мере совершенствования конструкций и технологии производства размеры ламп уменьшались, лампы становились более прочными, экономичными, их качество улучшалось. Приемно-усилительные лампы наших дней очень мало похожи на первые радиолампы, хотя основные принципы их работы не изменились.

Современные приемно-усилительные лампы выпускаются почти исключительно пальчикового типа (длиной 5-7 сантиметров). Внутренняя арматура и выводы всех электродов укреплены непосредственно на плоском стеклянном дне лампы и выходят наружу в виде тонких, но прочных штырьков, расположенных несимметрично. К каждому из штырьков присоединяется вывод одного из электродов лампы. Подключение электродов (цоколевка) ламп одного и того же типа всегда совершенно одинакова.

Для обеспечения правильности вставления штырьков лампы в панельку применяют два способа: несимметричное расположение штырьков и создание направляющего ключа на цоколе из пластмассы (Рис. 1д), который входит в паз, расположенный на панельке.

В массовом производстве аноды ламп имеют цилиндрическую форму и сделаны из меди или термоустойчивых сплавов. Для упрощения и удешевления моделирования и производства таких электронных ламп и предназначена разрабатываемая программа.


Конструкции и обозначения электронных ламп на схемах

А) Б)

В)

Г)

Д) Е)

а) – диод с прямым накалом (две конструкции и схематическое обозначение);

б) – схема триода с косвенным накалом (с третьим электродом – сеткой);

в) – конструкция и схематическое обозначение тетрода с прямым накалом.

г) – конструкция и схематическое обозначение пентода с прямым накалом.

д) – октальный цоколь радиолампы с направляющим (в панельку) выступом.

е) – анодная вольт-амперная характеристика вакуумного диода.

Расчетные формулы

Распределение температуры по толщине стенки анода определяется решением дифференциального уравнения:

на решение которого накладываются граничные условия:

На внутренней (нагреваемой) поверхности:

(2)

На наружной (охлаждаемой) поверхности:

(3)

с начальным условием: T(r,0) = T o = 300 о K. (4)

Уравнение (1) интегрируется до тех пор, пока не достигается установившийся режим (завершается разогрев), т.е. выполняется условие .

В уравнении (3): ε – коэффициент черноты поверхности; σ о = 5.67*10 -12 – постоянная Стефана-Больцмана.

По результатам интегрирования уравнения (1) термонапряжение в аноде вычисляется в виде:

(5)

T ср. (r,t) – средняя температура анода в сечении с координатой r .

Интеграл в уравнении (5) вычисляется методом Симпсона :

Где число разбиений n = 2m – чётное, а шаг h = b-a/2m. M – число пространственных интервалов.

Формулы расчета температур в конечно-разностном представлении:

Граничные условия на поверхностях анода:

R внутр. : . (2’)

R наруж.: (3’)

Здесь: i, j – номера пространственного и временного интервалов, k – наружная стенка;

Δr и Δ t – шаги пространственно-временной сетки по координате и по времени;

n – число пространственных интервалов в пределах толщины стенки анода (R нар – R вн).

Принятые в проекте обозначения:

R нар, R внутр. – наружный и внутренний радиусы анода (см);

t – время работы после включения накала (сек);

r – координата в сечении анода (см); R вн. ≤ r ≤ R нар.

T(r,t) – температура в сечении с координатой ‘r’ в момент времени ‘t’;

λ – теплопроводность материала анода (вт/см.*град.);

α – температуропроводность материала анода (медь=1.1);

E – модуль упругости (кг/см²);

α т – коэффициент линейного расширения (1/град);

ε коэффициент черноты поверхности;

σ о = 5.67*10 -12 (Вт/См 2 град 4) – постоянная Стефана-Больцмана;

q– подводимая к аноду мощность (вт / см²);

T 0 – температура окружающей среды (град K).


Анализ методов решения

Дифференциальное уравнение (1) – (3), (4) можно решить двумя способами: неявным (абсолютно сходящимся) методом и явным (относительно сходящимся) методом конечно-разностной аппроксимации. Различие этих методов состоит в том, что в неявном методе шаг Δt задается любым, а в явном методе он ограничен и берется очень маленьким.

Отсюда вытекает различие в условиях устойчивости схем: .

В явной схеме ω<1/2, а в неявной схеме ω не ограничена. Это приводит к тому, что в явной схеме значение температуры в данный момент времени находится с помощью значения температуры в предыдущий момент времени, а в неявной схеме значение температуры в данный момент времени находится с помощью значения температуры в тот же момент времени.

Уравнение неявной схемы сразу решить нельзя, надо составлять систему уравнений, что на много усложняет схему программы. Преимущество неявной схемы в том, что, задавая нужный шаг, можно резко сократить количество итераций, в то время как в явном методе количество итераций будет составлять десятки тысяч. Однако при современном быстродействии компьютеров разница в несколько тысяч итераций во время работы программы не составит и секунды, а простой и удобный алгоритм способствует более качественному и быстрому написанию и отладке программы. Поэтому при разработке данной программы применялся явный метод конечно – разностной аппроксимации.