Метод записи данных на жесткий магнитный диск. Жесткий диск (магнитный накопитель, винчестер, HDD)

  • 01.08.2019

Приветствую, друзья!

Сегодня мы с вами поговорим о такой штуке, как винчестер. Редкий пользователь компьютера не слышал о нем!

Винчестер, он же HDD (Hard Disk Drive), он же жесткий диск - это устройство для хранения информации.

HDD получил свое жаргонное название по имени знаменитой винтовки, с которой белые люди завоевывали Америку. Одна из первых моделей жестких дисков обозначалась «30/30», что совпадало с калибром этого огнестрельного оружия.

Ниже будет идти речь о компьютерных винчестерах.

Как устроен компьютерный винчестер?

Мы рассмотрим, ка утроен традиционный (электромеханический) винчестер, применяющийся в персональных компьютерах. Основа его - один или несколько информационных дисков. В первых моделях винчестеров использовались диски из алюминия.

Но те первые модели имели большой размер и малую емкость.

Гибкие и жесткие диски

Те «винты» (еще одно жаргонное название) имели физические размеры и объем, примерно равный дисководу гибких дисков 5,25 дюйма. На заре компьютерной индустрии данные хранились и на гибких дисках (дискетах) 5,25 и 3,5 дюймов.

Привод для чтения и записи таких дисков назывался FDD (Floppy Disk Drive).

Эти диски были сделаны из круглого куска пластика с нанесенным на обе стороны ферромагнитным покрытием. Они были тонкими и гибкими, поэтому привод и получил такое название. Для защиты от внешних воздействий эти диски помещались в квадратный пластиковый футляр.

Диски в HDD имеют похожее строение, но они толще и не гнутся, что и отражается в названии. На такой диск наносится с помощью центрифуги тонкий ферромагнитный слой из окислов металлов. Данные записываются и считываются с помощью магнитных головок.

При записи в магнитную головку подается информационный сигнал, который меняет ориентацию доменов (ферромагнитных частиц) в ферромагнитном слое.

При считывании намагниченные участки наводят ток в головке, который затем обрабатывается схемой управления (контроллером). Требования к скорости и объемам данных постоянно росли. В эту область были направлены лучшие умы мира. И жесткие диски, как и остальное компьютерное «железо» непрерывно совершенствовались.

Диски стали делать из стекла и стеклокерамики. Это позволило уменьшить их вес, толщину и увеличить скорость вращения.

Скорость вращения диска возросла с 3600 об/мин до 5400, 7200, а потом до 10 000 и даже до 15 00о об/мин! Для сравнения скажем, что скорость вращения диска в FDD имела величину 360 об/мин.

Чем больше скорость вращения, тем быстрее считываются данные.

Ферромагнитный слой

Ферромагнитный слой на поверхность дисков может наноситься двумя способами - гальваническим осаждением и вакуумным напылением. В первом случае диск погружается в раствор солей металлов, и на него осаждается тонкая пленка металла (кобальта).

При вакуумном напылении диск помещают в герметичную камеру, откачивают из нее воздух и с помощью электрического разряда осаждают частицы металла.

Сверху на магнитный слой наносят защитное углеродистое покрытие. Оно предохраняет тонкий магнитный слой от разрушения (и потери информации) при возможном соприкосновении с головкой.

Винчестер может иметь один физический диск или несколько. В последнем случае диски собраны в единую конструкцию и вращаются синхронно. Каждый диск имеет две стороны с ферромагнитным слоем, данные считываются двумя различными головками (расположенными сверху и снизу).

Головки также собраны в единую конструкцию и перемещаются синхронно.

Механизм перемещения головок содержит в себе катушку с проводом и неподвижно закрепленный постоянный магнит. При подаче току в катушку в ней генерируется магнитное поле, взаимодействующее с магнитом. Возникающая при этом сила двигает катушку со всей подвижной частью механизма (и головками тоже).

Механизм содержит в себе пружину, которая при отсутствии питания перемещает головки в исходное положение (зону парковки). Это предохраняет головки и диски от повреждения.

Отметим, что небольшие неодимовые магниты, создающие постоянное магнитное поле, очень сильны!

В рабочем состоянии диски вращаются с постоянной скоростью, головки «парят» над диском. При вращении возникает аэродинамический поток, приподнимающий головки. По мере совершенствовании технологии расстояние между головками и диском уменьшается.

К настоящему времени доведено до нескольких десятков нанометров!

Уменьшение расстояния позволяет увеличить плотность записи информации. Таким образом, в тот же самый объем можно втиснуть больше информации.

Считывающие и записывающие головки

В современных винчестерах применяются магниторезистивные головки .

Кристалл магниторезистора может изменять свое сопротивление в зависимости от величина и направления магнитного поля. При прохождении головки над областями с различной намагниченностью ее сопротивление меняется, что улавливается схемой управления.

Головка винчестера содержит в себе, собственно, две головки - считывающую и записывающую. Записывающая головка работает на том же принципе, что и головка в старых магнитофонах, в которых использовались кассеты с магнитной лентой.

Она содержит разомкнутый сердечник, в зазоре которого создается магнитное поле, изменяющее ориентацию магнитных доменов на поверхности диска. «Обмотка» головки выполнена печатным способом с помощью фотолитографии.

Шпиндель и гермоблок

Основной двигатель винчестера (шпиндель), крутящий диск, содержит в себе гидродинамический подшипник . Он отличается от шарикоподшипника тем, что он имеет гораздо меньшее радиальное биение.

В современных винчестерах плотность записи информации очень высока, дорожки располагаются очень близко друг к другу.

Большая величина радиального биения не дала бы увеличить плотность записи, либо (при уменьшении расстояния между дорожками) головка «скакала» бы по соседним дорожкам в течение одного оборота. Гидродинамический подшипник содержит в себе тонкий слой смазки между подвижной и неподвижной частью.

В заключение скажем, что шпиндель, диски, головка с приводом помещены в отдельный отсек. Первые модели винчестеров содержали негерметичные отсеки, снабженные фильтром с очень мелкими ячейками для выравнивания давления.

Потом появились герметичные отсеки, которые имели в себе отверстие, закрытое гибкой мембраной. Мембрана может изгибаться в обе стороны, компенсируя перепад давлений воздуха внутри и вне отсека с головками.

В следующей части статьи мы продолжим знакомство с тем, как устроен и как работает винчестер.

С вами был Виктор Геронда. До встречи на блоге!

Жесткие диски

Выполнил студент
группы 40-101Б.
Каримов К.Р.
Преподаватель:
Усов П.А.

1. Принцип работы жесткого диска.. 3

2. Устройство диска.. 5

3. Работа жесткого диска.. 10

4. Объем, скорость и время доступа.. 12

5. Интерфейсы жестких дисков.. 14

6. Внешние жесткие диски.. 16

Принцип работы жесткого диска

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин (у некоторых моделей она доходит до 15000 оборотов в минуту) постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферромагнитным слоем. Диски изготовлены. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей. Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Устройство диска

Типовой винчестер состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате - вся управляющая электроника, за исключением предусилителя, размещенного внутри гермоблока в непосредственной близости от головок.

Под дисками расположен двигатель - плоский, как во floppy-дисководах, или встроенный в шпиндель дискового пакета. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока и постоянно очищается фильтром, установленным на одной из его сторон.

Ближе к разъемам, с левой или правой стороны от шпинделя, находится поворотный позиционер, несколько напоминающий по виду башенный кран: с одной стороны оси, находятся обращенные к дискам тонкие, длинные и легкие несущие магнитных головок, а с другой - короткий и более массивный хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков. Угол между осями позиционера и шпинделя подобран вместе с расстоянием от оси позиционера до головок так, чтобы ось головки при поворотах как можно меньше отклонялась от касательной дорожки.

В более ранних моделях коромысло было закреплено на оси шагового двигателя, и расстояние между дорожками определялось величиной шага. В современных моделях используется так называемый линейный двигатель, который не имеет какой-либо дискретности, а установка на дорожку производится по сигналам, записанным на дисках, что дает значительное увеличение точности привода и плотности записи на дисках.

Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением; динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение. Такая система привода получила название Voice Coil (звуковая катушка) - по аналогии с диффузором громкоговорителя.

На хвостовике обычно расположена так называемая магнитная защелка - маленький постоянный магнит, который при крайнем внутреннем положении головок (landing zone - посадочная зона) притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В ряде дорогих моделей (обычно SCSI) для фиксации позиционера предусмотрен специальный электромагнит, якорь которого в свободном положении блокирует движение коромысла. В посадочной зоне дисков информация не записывается.

В оставшемся свободном пространстве размещен предусилитель сигнала, снятого с головок, и их коммутатор. Позиционер соединен с платой предусилителя гибким ленточным кабелем, однако в отдельных винчестерах (в частности - некоторые модели Maxtor AV) питание обмотки подведено отдельными одножильными проводами, которые имеют тенденцию ломаться при активной работе. Гермоблок заполнен обычным обеспыленным воздухом под атмосферным давлением. В крышках гермоблоков некоторых винчестеров специально делаются небольшие окна, заклеенные тонкой пленкой, которые служат для выравнивания давления внутри и снаружи. В ряде моделей окно закрывается воздухопроницаемым фильтром. У одних моделей винчестеров оси шпинделя и позиционера закреплены только в одном месте - на корпусе винчестера, у других они дополнительно крепятся винтами к крышке гермоблока. Вторые модели более чувствительны к микродеформации при креплении - достаточно сильной затяжки крепежных винтов, чтобы возник недопустимый перекос осей. В ряде случаев такой перекос может стать труднообратимым или необратимым совсем. Плата электроники - съемная, подключается к гермоблоку через один - два разъема различной конструкции. На плате расположены основной процессор винчестера, ПЗУ с программой, рабочее ОЗУ, которое обычно используется и в качестве дискового буфера, цифровой сигнальный процессор (DSP) для подготовки записываемых и обработки считанных сигналов, и интерфейсная логика. На одних винчестерах программа процессора полностью хранится в ПЗУ, на других определенная ее часть записана в служебной области диска. На диске также могут быть записаны параметры накопителя (модель, серийный номер и т.п.). Некоторые винчестеры хранят эту информацию в электрически репрограммируемом ПЗУ (EEPROM).

Многие винчестеры имеют на плате электроники специальный технологический интерфейс с разъемом, через который при помощи стендового оборудования можно выполнять различные сервисные операции с накопителем - тестирование, форматирование, переназначение дефектных участков и т.п. У современных накопителей марки Conner технологический интерфейс выполнен в стандарте последовательного интерфейса, что позволяет подключать его через адаптер к алфавитно-цифровому терминалу или COM-порту компьютера. В ПЗУ записана так называемая тест-мониторная система (ТМОС), которая воспринимает команды, подаваемые с терминала, выполняет их и выводит результаты обратно на терминал. Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитными поверхностями; первоначальная разметка (форматирование) производилась потребителем по его усмотрению, и могла быть выполнена любое количество раз. Для современных моделей разметка производится в процессе изготовления; при этом на диски записывается сервоинформация - специальные метки, необходимые для стабилизации скорости вращения, поиска секторов и слежения за положением головок на поверхностях. Не так давно для записи сервоинформации использовалась отдельная поверхность (dedicated - выделенная), по которой настраивались головки всех остальных поверхностей. Такая система требовала высокой жесткости крепления головок, чтобы между ними не возникало расхождений после начальной разметки. Ныне сервоинформация записывается в промежутках между секторами (embedded - встроенная), что позволяет увеличить полезную емкость пакета и снять ограничение на жесткость подвижной системы. В некоторых современных моделях применяется комбинированная система слежения - встроенная сервоинформация в сочетании с выделенной поверхностью; при этом грубая настройка выполняется по выделенной поверхности, а точная - по встроенным меткам.

Поскольку сервоинформация представляет собой опорную разметку диска, контроллер винчестера не в состоянии самостоятельно восстановить ее в случае порчи. При программном форматировании такого винчестера возможна только перезапись заголовков и контрольных сумм секторов данных.

При начальной разметке и тестировании современного винчестера на заводе почти всегда обнаруживаются дефектные сектора, которые заносятся в специальную таблицу переназначения. При обычной работе контроллер винчестера подменяет эти сектора резервными, которые специально оставля- ются для этой цели на каждой дорожке, группе дорожек или выделенной зоне диска. Благодаря этому новый винчестер создает видимость полного отсутствия дефектов поверхности, хотя на самом деле они есть почти всегда.

При включении питания процессор винчестера выполняет тестирование электроники, после чего выдает команду включения шпиндельного двигателя. При достижении некоторой критической скорости вращения плотность увлекаемого поверхностями дисков воздуха становится достаточной для преодоления силы прижима головок к поверхности и поднятия их на высоту от долей до единиц микрон над поверхностями дисков - головки "всплывают". С этого момента и до снижения скорости ниже критической головки "висят" на воздушной подушке и совершенно не касаются поверхностей дисков.

После достижения дисками скорости вращения, близкой к номинальной (обычно - 3600, 4500, 5400 или 7200 об/мин) головки выводятся из зоны парковки и начинается поиск сервометок для точной стабилизации скорости вращения. Затем выполняется считывание информации из служебной зоны - в частности, таблицы переназначения дефектных участков.

В завершение инициализации выполняется тестирование позиционера путем перебора заданной последовательности дорожек - если оно проходит успешно, процессор выставляет на интерфейс признак готовности и переходит в режим работы по интерфейсу.

Во время работы постоянно работает система слежения за положением головки на диске: из непрерывно считываемого сигнала выделяется сигнал рассогласования, который подается в схему обратной связи, управляющую током обмотки позиционера. В результате отклонения головки от центра дорожки в обмотке возникает сигнал, стремящийся вернуть ее на место.

Для согласования скоростей потоков данных - на уровне считывания/записи и внешнего интерфейса - винчестеры имеют промежуточный буфер, часто ошибочно называемый кэшем, объемом обычно в несколько десятков или сотен килобайт. В ряде моделей (например, Quantum) буфер размещается в общем рабочем ОЗУ, куда вначале загружается оверлейная часть микропрограммы управления, отчего действительный объем буфера получается меньшим, чем полный объем ОЗУ (80-90 кб при ОЗУ 128 кб у Quantum). У других моделей (Conner, Caviar) ОЗУ буфера и процессора сделаны раздельными.

При отключении питания процессор, используя энергию, оставшуюся в конденсаторах платы либо извлекая ее из обмоток двигателя, который при этом работает как генератор, выдает команду на установку позиционера в парковочное положение, которая успевает выполниться до снижения скорости вращения ниже критической. В некоторых винчестерах (Quantum) этому способствует помещенное между дисками подпружиненное коромысло, постоянно испытывающее давление воздуха. При ослаблении воздушного потока коромысло дополнительно толкает позиционер в парковочное положение, где тот фиксируется защелкой. Движению головок в сторону шпинделя способствует также центростремительная сила, возникающая из-за вращения дисков.

Работа жесткого диска

Теперь - собственно о процессе работы винчестера. После начальной настройки электроники и механики микрокомпьютер винчестера переходит в режим ожидания команд от контроллера, расположенного на системной плате или интерфейсной карте. Получив команду, он включает нужную головку, по сервоимпульсам отыскивает нужную дорожку, дожидается, пока до головки "доедет" нужный сектор, и выполняет считывание или запись информации. Если контроллер запросил чтение/запись не одного сектора, а нескольких - винчестер может работать в так называемом блочном режиме, используя ОЗУ в качестве буфера и совмещая чтение/запись с передачей информации к контроллеру или от него.

Для оптимального использования поверхности дисков применяется так называемая зоновая запись (Zoned Bit Recording - ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и информационную емкость), информация записывается с большей плотностью, чем на внутренних. Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому файлы, расположенные ближе к "началу" винчестера, в целом будут обрабатываться быстрее файлов, расположенных ближе к его "концу".

Теперь о том, откуда берутся неправдоподобно большие количества головок, указанные в параметрах винчестеров. Когда-то эти числа - число цилиндров, головок и секторов на дороже - действительно обозначали реальные физические параметры (геометрию) винчестера. Однако при использовании ZBR количество секторов меняется от дорожки к дорожке, и для каждого винчестера эти числа различны - поэтому стала использоваться так называемая логическая геометрия, когда винчестер сообщает контроллеру некие условные параметры, а при получении команд сам преобразует логические адреса в физические. При этом в винчестере с логической геометрией, например, в 520 цилиндров, 128 головок и 63 сектора (общий объем - 2 Гб) находится, скорее всего, два диска - и четыре головки чтения/записи.

В винчестерах последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood - максимальное правдоподобие при неполном отклике) и S.M.A.R.T. (Self Monitoring Analysis and Report Technology - технология самостоятельного следящего анализа и отчетности). Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска - уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов, и на основании максимальной похожести делается заключение о приеме того или иного кодового слова - примерно так же мы читаем слова, в которых пропущены или искажены буквы.

Винчестер, в котором реализована технология S.M.A.R.T., ведет статистику своих рабочих параметров (количество старт/стопов и наработанных часов, время разгона шпинделя, обнаруженные/исправленные ошибки и т.п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или в служебных зонах диска. Эта информация накапливается в течение всей жизни винчестера и может быть в любой момент затребована программами анализа; по ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.


Похожая информация.



Компьютер – незаменимая составляющая человеческого общества. Он обрабатывает картинки, звуки, числа, слова. К счастью всю информацию можно сохранить, чтобы не потерять когда компьютер выключается.

Задача жесткого диска внутри компьютера – сохранять и выдавать информацию очень быстро. Жесткий диск очень удивительное изобретение компьютерной индустрии. Он может хранить астрономическое количество информации. Этот миниатюрный прибор записывает практически не ограниченное количество информации, пользуясь законами физики.

Если случайно произвести форматирование жесткого диска, то восстановить данные с него будет можно, но долго и дорого.

Как работает жесткий диск?

Чтобы понять – нужно сломать. Жесткий диск состоит из пяти основных частей:

Защищать диск необходимо, если мы хотим пользоваться этим устройством годами. А какие могут быть повреждения? Повреждения диска это не метафора. В таких тонких слоях, вес головки приравнивается к весу 747 самолетов, а вес 747 самолетов сопоставим с весом ста тысяч пассажиров летящих на скорости 100 километров в час. Отклонение в доли миллиметра и все…

Какую же важную роль играет сила трения, когда коромысло начинает считывать информацию, смещаясь до 60 раз в секунду. Двигатель коромысла невидим, потому что эта электромагнитная система работает на взаимодействии двух силах природы – электричества и магнетизма. Такое взаимодействие разгоняет коромысло до скоростей света.

До этого речь шла о компонентах, теперь поговорим о хранении данных. Данные хранятся в узких дорожках на поверхности диска. При производстве на диске создается более двухсот тысяч таких дорожек. Каждая дорожка разделена на секторы. Карта дорожек и секторов позволяет головке определить, куда записать или где считать информацию. Поверхность диска гладкая и блестящая, но при более близком рассмотрении структура оказывается сложнее. Ферримагнитная пленка на поверхности запоминает всю записанную информацию. Головка намагничивает микроскопическую область на пленке устанавливая магнитный момент такой ячейки в одно из состояний «0» или «1», каждый такой ноль и единица называется битами. Значение бита соответствует ориентации магнитного поля плюсу или минусу и не стоит беспокоиться за сохранности данных, потому что фотография хорошего качества занимает около 29 миллионов таких ячеек и разбросана по 12 различным секторам. Звучит впечатляюще, но в действительности такое невероятное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности включает в себя 31 миллиард битов. Вот это я понимаю память.

Жесткий диск записывает и выдает информацию на скоростях, которую трудно представить. Используя законы магнетизма, тонкая пленка может запомнить множество разных энциклопедий или сотни тысяч фотографий легко. Жесткий диск на самом деле изумительно миниатюрный прибор, записывающий любую информацию в маленьких битах. Этот шедевр инженерной мысли расширяет рамки разумной физики бит за битом.

Жёсткий диск («винчестер», hdd, hard disc drive — eng.) — накопитель информации основанный на магнитных пластинах и эффекте магнетизма.

Применяется повсеместно в персональных компьютерах, ноутбуках, серверах и так далее.

Устройство жёсткого диска. Как жёсткий диск работает.



В полу герметичном блоке находятся двусторонние пластины, с нанесённым на них магнитным слоем , посаженные на вал двигателя и вращающиеся со скоростью от 5400 оборотов в минуту.Блок не совсем герметичен, но самое главное он не пропускает мелкие частицы и не допускает перепадов влажности . Всё это пагубно сказывается на сроке службы и качестве работы жёсткого диска.

В современных жёстких дисках, для вала используются . Это даёт меньший шум при работе, значительно увеличивает долговечность и уменьшает шанс заклинивания вала из-за разрушившегося .

Считывание и запись производится с помощью блока головок .

В рабочем состоянии, головки парят над поверхностью диска на расстоянии ~10нм . Они имеют аэродинамическую форму и поднимаются над поверхностью диска за счёт восходящего потока от крутящейся пластины. Магнитные головки могут находится с двух сторон пластины, если с каждой стороны магнитного диска нанесены магнитные слои.

Соединённый блок головок имеет фиксированное положение , то есть головки перемещаются все вместе.

Всеми головками, управляет специальный привод основанный на электромагнетизме .

Неодимовый магнит создаёт магнитное поле , в котором с высокой скоростью реакции под воздействием тока, может перемещаться блок головок. Это лучший и самый быстрый вариант перемещения блока головок, а ведь когда то блок головок перемещался механически, с помощью шестерёнок.

Когда диск выключается, чтобы головки не опустились на диск и не повредили его, они убираются в зону парковки головок (парковочная зона, parking zone).

Это также, позволяет без особых ограничений транспортировать выключенные жёсткие диски. В выключенном состоянии, диск может выдержать большие нагрузки и не повредиться. Во включенном состоянии, даже небольшой толчёк под определённым углом может разрушить магнитный слой пластины или повредить головки при касании о диск.

Помимо герметичной части, у современных жёстких дисков есть наружная плата управления . Когда то, все платы управления были вставлены в материнскую плату компьютера в слоты расширения. Это было не удобно в плане универсальности и возможностей. Сейчас у жёстких дисков, вся управляющая диском электроника, и интерфейса расположены на небольшой плате в нижней части жёсткого диска. Благодаря этому, можно настроить каждый диск под определённые, выгодные с точки зрения его строения параметры, давая ему выигрыш в скорости, либо более тихую работу к примеру.

Для подключения интерфейса и питания используются стандартные общепринятые разъёмы / и Molex /Power SATA .

Особенности.

Жёсткие диски являются самыми ёмкими хранителями информации и относительно надёжными . Объёмы дисков постоянно растут, но в последнее время это связано с некоторыми сложностями и для дальнейшего расширения объёма, требуются новые технологии. Можно сказать, что жёсткие диски практически вышли на прямую в достижении максимальных возможностей. Распространению жёстких дисков в основном поспособствовало соотношение ценаобъём . В большинстве случаев, гигабайт объёма диска стоит меньше чем 2.5 рубля .

Плюсы и минусы жёстких дисков в сравнении с .

До появления твёрдотельных SSD (solid state drive ) — накопителей, у жёстких дисков не было конкурентов. Теперь у жёстких дисков есть направление куда нужно стремиться.

Минусы жёстких дисков (hard drive)(ssd) накопителями:

  • низкая скорость последовательного чтения
  • низкая скорость доступа
  • низкая скорость чтения
  • немного более низкая скорость записи
  • вибрации и небольшой шум при работе

Хотя с другой стороны, у жёстких дисков есть другие, более весомые преимущества, к которым SSD накопителям стремиться и стремиться.

Плюсы жёстких дисков (hard drive) в сравнении с твёрдотельными (ssd) накопителями:

  • значительно лучший показатель объёмцена
  • лучший показатель надёжности
  • больший максимальный объём
  • при выходе из строя, в разы больший шанс восстановить данные
  • лучший вариант для использования в медиа центрах, благодаря компактности и большому объёму 2.5 накопителей

О том, на что стоит обращать внимание при выборе жёсткого диска, можно посмотреть в нашей статье ««. Если вам необходим ремонт жесткого диска или восстановление информации, можно обратиться к .

Лекция №5: Накопители информации

План

1. Жесткие диски
2. Твердотельные накопители

1. Жесткие диски

Историческая справка

В ходе развития жёстких дисков сменилось шесть типоразмеров – форм-факторов.

Рисунок 1. Типоразмеры HDD

1956 год – жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).
1980 год – первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
1981 год – 5,25-дюймовый Shugart ST-412, 10 Мб.
1986 год – стандарты SCSI, ATA(IDE).
1991 год – максимальная ёмкость 100 Мб.
1995 год – максимальная ёмкость 2 Гб.
1997 год – максимальная ёмкость 10 Гб.
1998 год – стандарты UDMA/33 и ATAPI.
1999 год – IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
2002 год – стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
2003 год – появление SATA.
2005 год – максимальная ёмкость 500 Гб.
– стандарт Serial ATA 3G (или SATA II), появление SAS (Serial Attached SCSI).
2006 год – применение перпендикулярного метода записи в коммерческих накопителях.
– появление первых «гибридных» жёстких дисков, содержащих блок флэш-памяти.
2007 год – Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
2009 год – на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
– Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи - 333 Гб на одной пластине)
– появление стандарта SATA 3.0 (SATA 6G).
2010 год – компания Seagate приступает к разработки HDD объемом 3ТБ.

Определение и устройство HDD
Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard Disk Drive, HDD ), жёсткий диск , винчестер , в компьютерном сленге «винт» , хард , хард диск – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Принципиально HDD состоит из следующих основных блоков:
Блок электроники включает в себя контакты и микросхему, на которой расположены: контроллер управления HDD, разъемы питания, блок перемычек, разъем для шлейфов (интерфейс подключения).
Механический блок состоит из магнитных пластин, шпинделя, коромысла, осей вращения коромысла, сервопривода коромысла, головок чтения и записи.
Корпус – это конструкция в которой расположены все элементы HDD.

Рисунок 2. Схема устройства HDD

Рисунок 3. Устройство HDD

Принципы хранения информации на HDD
Информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала (оксид железа), чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси.
Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых разделена на секторы по 512 байт, состоящие из горизонтально ориентированных доменов. Ориентация доменов в магнитном слое служит для распознавания двоичной информации (0 или 1). Размер доменов определяет плотность записи данных с целью, адресации пространства поверхности пластин диска, которые делятся на дорожки – концентрические кольцевые области. Каждая дорожка делится на равные отрезки – секторы .

Цилиндр – совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора – конкретный сектор на дорожке.

Организация считывания/записи данных происходит благодаря головкам чтения/записи (ГЧЗ). В рабочем режиме ГЧЗ не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм ). Отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне (зона парковки), где исключён их нештатный контакт с поверхностью дисков.

Рисунок 4. Организация пластин HDD.

Режимы адресации

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder head sector , CHS ) и линейная адресация блоков (англ. linear block addressing , LBA ).

CHS
При этом способе сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра , номером головки и номером сектора . В современных дисках со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами»
Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов. Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нем. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA – была введена функция авто определения геометрии (команда Identify Drive).

LBA
При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Стандарты ATA требуют однозначного соответствия между режимами CHS и LBA:
LBA = [ (Cylinder * no of heads + heads) * sectors/track ] + (Sector-1)
Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.
Характеристики HDD

В настоящее время выделяют следующие характеристики HDD:

Интерфейс (англ. interface ) – совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии правил (протокола) обмена.
Серийно выпускаемые жёсткие диски могут использовать интерфейсы:

Ёмкость (англ. capacity ) - количество данных, которые могут храниться накопителем. С момента создания первых жестких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная емкость непрерывно увеличивается. Ёмкость современных жестких дисков (с форм-фактором 3.5 дюйма) на начало 2010г. достигает 2000 Гб (2 Терабайта). Однако компания Seagate подтвердила разработку HDD с объемом 3ТБ.

Примечание: в отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ.

Физический размер (форм-фактор) (англ. dimension ). Почти все современные (2001-2008 года) накопители для персональных компьютеров и серверов имеют ширину либо 3.5, либо 2.5 дюйма - под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1.8 дюйма, 1.3 дюйма, 1 дюйм и 0.85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5.25 дюймов.

Время произвольного доступа (англ. random access time ) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс), самым большим из актуальных - диски для портативных устройств (Seagate Momentus 5400.3 - 12,5).

Скорость вращения шпинделя (англ. spindle speed ) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability ) - определяется как среднее время наработки на отказ (MTBF ). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G shock rating ) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ) при последовательном доступе:

  • внутренняя зона диска: от 44,2 до 74,5 Мб/с;
  • внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В дисках 2009 года он обычно варьируется от 8 до 64 Мб.

Плотность записи на пластине (поверхностная плотность) зависит от расстояния между дорожками (поперечная плотность) и минимального размера магнитного домена (продольная плотность). Обобщающим критерием выступает плотность записи на единицу площади диска или емкость пластины. Чем выше плотность записи, тем больше скорость обмена данными между головками и буфером (внутренняя скорость передачи данных). Постепенно резервы роста, обусловленные отмеченным выше технологическим скачком, пошли на убыль. К 2003 г. типовая емкость пластин жестких дисков достигла 80 Гбайт. В 2004 г. появились диски с пластинами емкостью 100 Мбайт, в 2005 г. — 133 Мбайт, в 2009 – 333ГБ

Минимальной адресуемой областью данных на жёстком диске является сектор . Размер сектора традиционно равен 512 байт. В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году.

В окончательной версии Windows Vista, вышедшей в 2007 году, присутствует ограниченная поддержка дисков с таким размером сектора.

Технологии записи данных на жесткие диски

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи
Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи
Метод перпендикулярной записи - это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современныхобразцов - 60 Гбит/см². Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи
Метод тепловой магнитной записи (англ. Heat- assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, плотность записи которых 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см². Широкого распространения данной технологии следует ожидать в 2011-2012 годах.

Технология RAID

RAID (англ. redundant array of independent/inexpensive disks) избыточный массив независимых/недорогих жёстких дисков - матрица из нескольких дисков управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

RAID 0

RAID 0 («Striping») представляет собой дисковый массив из 2 или более дисков, в котором информация разбита на блоки А n и последовательно записана на жесткие диски. Соответственно информация записывается и читается одновременно, что увеличивает скорость.

Рисунок 5. Схема RAID 0

К сожалению, при отказе одного из дисков информация необратимо теряется, поэтому применяется либо в домашних условиях, либо для хранения файла подкачки, своп файла.

RAID 1

RAID 1 (Mirroring — «зеркалирование»). В данном случае один диск полностью повторяет другой, что гарантирует работоспособность при поломке одного диска, но объем полезного пространства уменьшается вдвое. Поскольку диски покупаются одновременно, в случае бракованной партии возможен отказ обоих дисков. Скорость записи приблизительно равна скорости записи на один диск, возможно чтение сразу с двух дисков (если контроллер поддерживает данную функцию), что увеличивает скорость.

Рисунок 6. Схема RAID 1

Применяется чаще всего в малых офисах под базы данных, либо для хранения операционной системы.

RAID 10

RAID 10 (RAID 1+0). Сочетает в себе принципы RAID 0 и RAID 1. При его применении каждый жесткий диск имеет свою «зеркальную пару», при это используется половина полезного объема. Работоспособен пока существует один рабочий диск из каждой пары. Наиболее высокие показатели записи/перезаписи, сопоставимы с RAID 5 по скорости чтения. Применяется для хранения баз данных, при высокой нагрузке.

RAID 5

RAID 5. В данном случае все данные разбиваются на блоки и для каждого набора считается контрольная сумма, которая хранится на одном из дисков – циклически записывается на все диски массива (попеременно на каждый), и используется для восстановления данных. Устойчив к потере не более чем одного диска.

Рисунок 7. Схема RAID 5

RAID 5 имеет высокие показатели чтения – информация считывается почти со всех дисков, но уменьшенную производительность при записи – требуется вычислять контрольную сумму. Но самая критичная операция перезапись, так как она проходит в несколько этапов:
1) Чтение данных
2) Чтение контрольной суммы
3) Сравнение новых и старых данных
4) Запись новых данных
5) Запись новой контрольной суммы
6) Применяются при необходимости большого объема, и высокой скорости чтения.

RAID 6

RAID 6 (ADG). Логическое продолжение RAID 5. Отличие заключается в том что контрольная сумма высчитывается 2 раза, и, как следствие имеет большую надежность (устойчив при поломке более 2 дисков), и меньшую производительность.

Рисунок 8. Схема RAID 6

Организация работы RAID обеспечивается RAID-контроллерами, которые могут быть: встроенными в материнскую плату, внутренними (в виде платы) и внешними.

Рисунок 9. Внутренний RAID контроллер

Два или более дисков подключаются к контроллеру в сервере либо внешняя дисковая полка подключается к контроллеру, в зависимости от выбранного уровня отказоустойчивости, защищает от поломки одного или более дисков, сохраняя работоспособность.

При наличии энергонезависимого кэша и использовании SAS дисков, защищает от проблем, связанных с перебоями электропитания, за исключением тех случаев, когда происходит электрическое повреждение оборудование. Но при повреждении сервера возможна потеря данных.

Защищает данные от:
— аппаратных проблем — отказ, порча, поломка оборудования. Частично, только от отказа жестких дисков;
— сбои электропитания – частично, защищает данные, хранимые в буфере контроллера в очереди на запись, но ограниченное время и только при наличии аккумулятора на контроллере.

Не защищает от:
— программных сбоев;
— человеческого фактора;
— инфраструктурных проблем (хотя все соединения, как правило, находятся внутри сервера);
— аварий;
— катастроф.

Основная цель применения – защита данных от потери при отказе жесткого диска, так же, одна из причин внедрения — потребность в повышенной производительности дисковой подсистемы.

RAID контроллеры поставляют многие компании: IBM, DELL, SUN, HP, Adaptec, 3ware, LSI, и прочие.

Внешний RAID массив

Рисунок 10. Внешний RAID массив

Начальный уровень. Диски и контроллер вынесены в отдельную внешнюю систему. Один или несколько серверов могут быть подключены к внешнему массиву различными интерфейсами, к примеру SAS, iSCSI, FC. Почти все такие системы имеют дублирование вентиляторов и блоков питания, многие предусматривают возможность установки дублирующего контроллера. Сами по себе, внешние RAID массивы более производительны и надежны по сравнению с внутренними RAID контроллерами и могут расширяться до более чем сотни дисков (при помощи дисковых полок).

На данный момент во многих моделях есть продвинутые средства мониторинга и управления, как самим массивом, так и данными на нём. Средства контроля за состоянием дисков заранее оповещают о возможном отказе, большинство достойных производителей меняют диски только на основании данных сообщений, до факта неработоспособности. У некоторых моделей есть возможно делать мгновенные снимки – (snapshot), что позволяет защитить данные и упрощает резервное копирование.

Защищает данные от:
— аппаратных проблем – частично, при наличии дублирования всех систем.
— Программных сбоев – частично, некоторые массивы обладают функциями создания мгновенных копий, что поможет создавать множественные снимки;
— инфраструктурных проблем – защищают при условии дублирования всех массивов вне сервера;
— сбои электропитания – частично, защищает данные в буфере контроллера на запись при наличии аккумулятора. Наличие дублированных блоков питания гарантирует большую надежность.

Не защищают от:
— человеческого фактора;
— аварий;
— катастроф.

Причиной внедрения является либо потребность в консолидации ресурсов хранения, их более простом управлении, возможности одновременного доступа (например, при создании кластера), либо потребность в высокой производительности, либо потребность в большей надежности (дублирование путей к контроллеру).

Типичные представители класса: Xyratex 5xxx/6xxx, Dell MD3000, IBM 3XXX, HP MSA 2000.

2. Твердотельные накопители

Рисунок 11. Накопитель SSD

Твердотельный накопитель (англ. SSD, solid-state drive) – компьютерное запоминающее устройство на основе микросхем памяти, управляемые контроллером. SSD накопители не содержат движущихся механических частей.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флэш-памяти.

В настоящее время твердотельные накопители используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например, копания Samsung в 2011 году продала бизнес по производству жёстких дисков компании Seagate.

Существуют гибридные жесткие диски, такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления). Пока, такие диски используются, в основном, в переносных устройствах (ноутбуках, сотовых телефонах и т. п.).

Рисунок 12. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 13. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 14. Блок электроники гибридного накопителя Seagate Momentus XT 500 GB

История развития

1978 год – американская компания StorageTek разработала первый полупроводниковый накопитель современного типа (основанный на RAM-памяти).
1982 год – американская компания Cray представила полупроводниковый накопитель на RAM-памяти для своих суперкомпьютеров Cray-1 со скоростью 100 МБит/с и Cray X-MP со скоростью 320 МБит/с, объемом 8, 16 или 32 миллиона 64 разрядных слов.
1995 год – израильская компания M-Systems представила первый полупроводниковый накопитель на flash-памяти.
2008 год – Южнокорейской компании Mtron Storage Technology удалось создать SSD накопитель со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с, который она продемонстрировала на выставке в Сеуле. Объём данного накопителя - 128 ГБ. По заявлению компании, выпуск таких устройств начнётся уже в 2009 году.
2009 год – Super Talent Technology выпустила SSD объёмом 512 гигабайт., OCZ представляет SSD объёмом 1 терабайт.

В настоящее время наиболее заметными компаниями, которые интенсивно развивают SSD-направление в своей деятельности, можно назвать Intel, Kingston, Samsung Electronics, SanDisk, Corsair, Renice, OCZ Technology, Crucial и ADATA. Кроме того, свой интерес к этому рынку демонстрирует Toshiba.

Устройство и функционирование

SSD накопители бывают двух типов:

NAND SSD
NAND SSD – накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились относительно недавно с гораздо более низкой стоимостью (от 2 долларов США за гигабайт), и, начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям – жестким дискам – в скорости записи, но компенсировали это высокой скоростью поиска информации (начального позиционирования). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, в разы превосходящие возможности жестких дисков. Характеризуются относительно небольшими размерами и низким энергопотреблением.

RAM SSD
RAM SSD– это накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ ПК) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.

Преимущества и недостатки
Преимущества , по сравнению с жёсткими дисками (HDD):

  • отсутствие движущихся частей;
  • высокая скорость чтения/записи, нередко превосходящая пропускную способность интерфейса жесткого диска (SAS/SATA II 3 Gb/s, SAS/SATA III 6 Gb/s, SCSI, Fibre Channel и т. д.);
  • низкое энергопотребление;
  • полное отсутствие шума из-за отсутствия движущихся частей и охлаждающих вентиляторов;
  • высокая механическая стойкость;
  • широкий диапазон рабочих температур;
  • стабильность времени считывания файлов вне зависимости от их расположения или фрагментации;
  • малые габариты и вес;
  • большой модернизационный потенциал как у самих накопителей так и у технологий их производства.
  • намного меньшая чувствительность к внешним электромагнитным полям.

Недостатки :

  • Главный недостаток SSD - ограниченное количество циклов перезаписи. Обычная (MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 10 000 раз. Более дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) - более 100 000 раз Для борьбы с неравномерным износом применяются схемы балансирования нагрузки. Контроллер хранит информацию о том, сколько раз какие блоки перезаписывались и при необходимости «меняет их местами»;
  • Проблема совместимости SSD накопителей с устаревшими и даже многими актуальными версиями ОС семейства Microsoft Windows, которые не учитывают специфику SSD накопителей и дополнительно изнашивают их. Использование операционными системами механизма свопинга (подкачки) на SSD также, с большой вероятностью, уменьшает срок эксплуатации накопителя;
  • Цена гигабайта SSD-накопителей существенно выше цены гигабайта HDD. К тому же, стоимость SSD прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит от количества пластин и медленнее растёт при увеличении объёма накопителя.

Microsoft Windows и компьютеры данной платформы с твердотельными накопителями.

В ОС Windows 7 введена специальная оптимизация для работы с твердотельными накопителями. При наличии SSD-накопителей, эта операционная система работает с ними иначе, чем с обычными HDD-дисками. Например, Windows 7 не применяет к SSD-диску дефрагментацию, технологии Superfetch и ReadyBoost и другие техники упреждающего чтения, ускоряющие загрузку приложений с обычных HDD-дисков.

Предыдущие версии Microsoft Windows такой специальной оптимизации не имеют и рассчитаны на работу только с обычными жесткими дисками. Поэтому, например, некоторые файловые операции Windows Vista, не будучи отключенными, могут уменьшить срок службы SSD-накопителя. Операция дефрагментации должна быть отключена, так как она практически никак не влияет на производительность SSD-носителя и лишь дополнительно изнашивает его.

Компания ASUS ещё в 2007 г. выпустила нетбук EEE PC 701 с SSD-накопителем объёмом 4Гб. Компания Dell 9 сентября 2011 года заявила о первой на рынке комплектации ноутбуков Dell Precision твердотельной памятью объемами 512Гб одним накопителем и 1Тб двумя накопителями для моделей компьютеров M4600 и M6600 соответственно. Производитель установил цену за один 512Гб SATA3 накопитель на момент объявления в $1120 долларов США.

На SSD-накопителе работают планшеты компании Acer - модели Iconia Tab W500 и W501, Fujitsu Stylistic Q550 под управлением Windows 7.

Mac OS X и компьютеры Макинтош с твердотельными накопителями

Операционная система Mac OS X начиная с версии 10.7 (Lion) полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти.

С 2010 года компания Apple представила компьютеры линейки Air полностью комплектуемые только твердотельной памятью на основе Флеш-NAND памяти. До 2010 г. покупатель мог выбрать для данного компьютера обычный жесткий диск в комплектации, но дальнейшее развитие линейки в пользу максимального облегчения и уменьшения корпуса компьютеров данной серии потребовало полного отказа от обычных жестких дисков в пользу твердотельных накопителей. Объем комплектуемой памяти в компьютерах серии Air составляет от 64Гб до 512Гб. По данным J.P. Morgan с момента представления было продано 420 000 компьютеров этой серии полностью на твердотельной Флэш-NAND памяти.

3. Магнитные и оптические накопители

Самостоятельное изучение.