Принцип работы сканера. Как работает сканер

  • 13.06.2019

Дигитайзер (digitizer) - это кодирующее устройство, обеспечивающее ввод двумерного (в том числе и полутонового) или трехмерного (3D дигитайзеры) изображения в компьютер в виде растровой таблицы.

Задача получения 3D-моделей реальных объектов стоит перед промышленными дизайнерами, инженерами, художниками, аниматорами, разработчиками игровых приложений. Измерение геометрии сложных пространственных форм является основным требованием для современных производителей технологической оснастки.

Основные области применения дигитайзеры:

    Мультипликация

    Оцифровывание географических карт для работы с географическими информационными системами (ГИС)

    Инженерное проектирование, создание прототипов и обратный инжениринг

    Научная визуализация

Примечание: Обычно процесс обработки изображения дигитайзеров называют сканированием (Не путать со сканером!).

Простейшим дигитайзером является графический планшет.

Рис. Графический планшет

В состав устройства входит специальный указатель с датчиком, называемый пером. Собственный контроллер посылает импульсы по ортогональной сетке проводников, расположенной под плоскостью планшета. Получив два таких сигнала, контроллер преобразует их в координаты, передаваемые в ПК. Компьютер переводит эту информацию в координаты точки на экране монитора, соответствующие положению указателя на планшете. С помощью пера Вы рисуете на планшете, при этом графические редакторы могут воспринимать его как кисть, карандаш, мелок и т.д. Перевернув перо, Вы можете стереть изображение. Дигитайзеры, как следует из названия, являются инструментом оцифровки трехмерных объектов. Для дальнейшей обработки и редактирования результатов сканирования существует множество различных программ.

    1. 3D дигитайзеры

Рис. 3D дигитайзер

Одним из примеров полнофункционального решения для оцифровки объектов любой формы служит недорогой дигитайзер из модельного ряда MicroScribe-3D производства компании Immersion Corporation . На несимметричной основе прикреплен трехшарнирный рычаг, оканчивающийся пером-датчиком. Шарниры с низким уровнем трения обеспечивают практически абсолютную свободу перемещения стального пера. Дигитайзер MicroScribe может оцифровывать предметы, находящиеся в радиусе до 840 мм. Рычаг устройств - жесткий, наличие шарниров позволяет провести дугу с максимальным углом в 330°. Наконечник «руки» может иметь разную форму: в виде шарика или острой иголочки - для снятия более точных показаний. В комплекте со сканером поставляются также ножные педали, которые играют роль правой и левой кнопок мыши.

Рис. Дигитайзер MicroScribe-3D.

Перед каждой оцифровкой дигитайзер должен быть откалиброван. Пользователь выбирает три реперные точки (переднюю правую, переднюю левую и заднюю правую) и вводит их координаты в компьютер с помощью ножных педалей. После этого можно приступать непосредственно к оцифровке. Механические дигитайзеры обладают достаточно высокой точностью - до 0,2 мм. Модели из серии MicroScribe-3D могут снимать координаты со скоростью 1000 точек в секунду и передают информацию со скоростью 38 Кбит/с. Перед сканированием многие дизайнеры расчерчивают объект, вырисовывают линии, по которым пройдет перо.

Рис. Подготовка объекта к оцифровыванию.

Оцифровывать можно в полуавтоматическом и ручном режимах. Контактный щуп, установленный на складной арматуре с шарнирными соединениями, считывает информацию о том, в каком месте находится головка, и транслирует эту информацию в координаты X, Y и Z в трехмерном пространстве. Оцифрованные данные в дальнейшем обработываются с помощью специальных прикладных программ (AutoCad, Autodesk, Maya, Rhinoceros и др.).

На подготовку к сканированию и саму оцифровку сложного объекта может уйти несколько часов, но с накоплением опыта работы с дигитайзером это время значительно сокращается В процессе сканирования объекта, по мере того как координаты точек попадают в компьютер, на мониторе вырисовывается пространственная модель. Для построения 3D-образов можно использовать программы от Immersion Corporation (набор Digitizing Software Application), которые позволяют представлять отсканированные объекты различными способами, например в виде точек, линий, проволочного каркаса, сплайнов, NURBS (неоднородных рациональных B-сплайнов), а также редактировать и сохранять 3D-образы в файлах форматов dxf, IGES, obj, txt, 3ds для последующего импортирования в другие приложения.

Специалисты по заказным моделям для оцифровки моделей с телевизионным качеством используют более дорогие дигитайзеры для оцифровки своих объектов. Например, используют мобильные координатно-измерительные машины (КИМ) FaroArm производства фирмыFARO Technologies (США). КИМ FARO состоит из опорной плиты, которая крепится к любому подходящему месту и нескольких, соединенных между собой шарнирами, колен. Конструкция очень похожа на строение человеческой руки. У КИМ FARO так же есть своеобразные кистевой, локтевой и плечевой суставы. В каждом шарнире есть датчик контроля угловых перемещений, который в режиме реального времени следит за углом поворота колена, в результате чего программное обеспечение просчитывает координаты откалиброванного щупа - своеобразного пальца. В зависимости от числа колен имеются машины с 6-ю или 7-ю степенями свободы.

По сути, это контактный щуп, который при помощи нескольких потенциометров, установленных на складной арматуре с шарнирными соединениями, считывает информацию о том, в каком месте находится головка, и преобразует эту информацию в координаты X, Y и Z в трехмерном пространстве. Достаточно сделать необходимое количество замеров, и сетка готова. В сканере применена система противовесов; он автоматически учитывает изменения температуры и компенсирует соответствующие расширения и сжатия материалов. Это портативное устройство может работать с объектами вписывающимися в сферу диаметром до 3,65 м и имеет точность до 0,3 мм.

Рис. Мобильные координатно-измерительные машины Faro Arm

Трехмерные дигитайзеры используются в качестве систем трехмерного боди-сканирования (3D body scan, т.е. «трехмерное сканирование человеческого тела»). Разработка этих систем была связана с требованиями быстрого обмера большого количества человек (армия), получения точного компьютерного изображения (киноиндустрия) и индивидуального пошива. Трехмерное боди-сканирование применяется также в медицине, мультипликации и при создании систем виртуальной реальности (VRML).

Рис. Система боди-сканирования WB4

Примеры систем боди-сканирования:

    Cyberware Whole Body Color 3D Scanner (производитель Cyberwear ). Сейчас существуют две модели полномасштабных боди-сканеров: WB4 и WBX (WB=Whole Body, т.е. «тело целиком»).

    Symcad (Французская компания TELMAT Industrie )

В геоинформатике, компьютерной графике, системах автоматического проектирования (САПР), картографии и научной обработке результатов измерения дигитайзер используют в качестве устройства для ручного цифрования графической и картографической информации в виде множества или последовательности точек, положение которых описывается прямоугольными декартовыми координатами плоскости дигитайзера.

Сканер – очень полезное изобретение ХХ века. Во время огромного круговорота различной документации сканер используется очень широко в офисах и в домашних условиях. Вообще сканером называют устройство, которое позволяет переносить информацию или изображения, расположенные на поверхности, в цифровой формат. Процесс преобразования информации называется сканированием. Этот процесс довольно непростой. Наверное, многим становилось интересно, как работает сканер. Попробуем же разобраться в этом замысловатом механизме в данной статье.

Технические принципы работы сканера

Оптика сканера состоит из зеркал и объектива. Источник света посылает световые лучи на оригинал, который необходимо получить на экране компьютера. После этого свет, отразившись, попадает на ту самую оптику. В результате этого получается электрический сигнал, который содержит информацию об активности цвета в точке сканируемого изображения. Далее цветовой сигнал поступает через аппаратный интерфейс на компьютер, на котором информация расшифровывается специальной программой, которая работает со сканером.

Информация полностью показывается на экране компьютера. Чтобы еще лучше понять, как работает сканер, нужно разобраться в устройстве этого механизма. Самой главной деталью устройства можно назвать считывающую головку, которая двигается вдоль и поперек изображения. На этой головке находится фотоприемник. Известны два типа фотопринимающей матрицы.

  • Одна из них – ПДС-матрица (прибор с зарядовой связью), которая состоит из множества датчиков, преобразующих падающий на них свет
  • Другая – КДИ-матрица (контактный датчик изображения). В КДИ-сканерах используются светодиоды, причем в сканировании цветного изображения обязательно наличие трех светодиодов на пиксел.

Как сканер передает информацию

Сейчас со сканированием сталкиваются абсолютно все. Например, на кассе супермаркета сканируют штрих-код, нанесенный на пачку товара, и на экране появляется наименование с ценой и суммой покупки. А все же интересно, как работает сканер штрих-кода, как ему удается передать такую информацию на экран.

Штрих-кодовые сканеры бывают светодиодными, лазерными и имидж-сканеры. В светодиодных устройствах светоизлучающим элементом является светодиод. Считывается информация ПЗС-матрицей. Также используются лазерные устройства, которые более удобные.

Имидж-сканеры – пик моды. Они самые надежные, быстрые, качественные и ударостойкие. Также они способны считать любой штрих-код. В штрих-коде закладывается информация о продукте, а при направлении светового луча она считывается и преобразуется на экран компьютера или другого устройства. Принцип работы таких сканеров такой же, как и у обычных. Однако, вся сложность заключается в том, что сканируется не сама информация, которая расположена на оригинале, а зашифрованная информация в специальные коды.

» Работа со сканером (faq)

Сканер — может, и не самый востребованный периферийный девайс, но ведь знаете, как бывает: дадут редкую книжку, и что делать? Хорошо, когда есть чем ее оцифровать. Причем будет ли это отдельный девайс или включенный в МФУ не так уж и важно. В этой статье собрана информация с которой станет максимально эффективной и полезной.

Как работает типичный бытовой сканер?

Можно сказать, что по существу сканер — большой фотоаппарат, только узкоспециализированный, предназначенный для съемки документов. Есть источник света (вот такой вот фотик — снимает исключи-тельно а свете «вспышки»), есть система зеркал, есть матрица, которая фиксирует отраженный от документа свет, есть преобразователи аналогового сигнала в цифровую форму и конверторы для сохранения данных в разных форматах. В отличие от фотокамеры, сканер не «снимает» весь объект целиком. Линейка сенсоров движется вдоль листа, делая снимки полосами, целостное изображе-ние из этих снимков создает ПО.

Какие виды сканеров бывают?

Вообще разных сканеров много, но для обычного пользователя, не профи и не маньяка, актуальны в основном планшетные сканеры, реже — ручные, они же «щетки». «Щетки» дороги, и у них нет механизма, обеспечивающего плавную и точную «построчную» съемку документа, так что с похмелья пользоваться не рекомендуется. Такой девайс пригодится в качестве дополнения к ноуту, если вам приходится много возиться с документами или вы тайком в читальном зале книжки сканите. Брать «щетку» домой смысла нет. Планшетный, самый обычный сканер — «сканер вульгарно» из двух частей, ровно такой, как вы себе представили, — оптимальное решение для дома, и даже, пожалуй, единственно верное, Понадобится какую-нибудь картинку или распечатку перевести в цифровой вид -нет проблем, дешево, сердито, достаточ-но качественно. Если сканер хороший, разумеется. Остается упомянуть еще пленочные, или слайд-сканеры, потому как производители периодически разрешаются моделями этого типа для простого пользо-вателя. Эти сканеры предназначены для оцифровки негативов, позитивов и про-чих снимков на пленках. На самом деле данные устройства нужны только фотографам, которые по каким-то причинам не хотят слезать со своих пленочных ап-паратов, ну и, может, частнику-стоматологу потребуются, чтобы оцифровать многолетний архив зубных снимков… А рядовым юзерам — вряд ли.

Многофункциональное устройство или отдельный сканер?

Отдельные планшетники сейчас встреча-ются все реже, интегрированные в МФУ-все чаще. Раньше народ плевался от ка-чества сканирования «комбайнов», и небезосновательно, но сейчас уже предос-таточно хороших МФУ, которые можно не только листами с текстом кормить. Старые предубеждения неактуальны. При работе со сканером теперь не особо важно МФУ это или обычный сканер.

Вот интересно, что за аббревиатуры такие — CCD и CIS?

Это разные виды матриц, фиксирующих отраженный / пропущенный объектом свет. CCD (Charge-Coupled Device, по-на-шему — ПЗС, прибор с зарядовой связью) — классическая матрица, такие ставят, например, в фотоаппараты и видеока-меры. CIS, Contact Image Sensor — более экономичное решение. Сканирующие элементы расположены близко к поверхнос-ти, не требуется фокусировка, а значит, и оптическая система с зеркалами. Кроме того, у старых и новых скане-ров различается способ подсветки: вмес-те с контактным сенсором используются светодиоды, а в сканерах с CCD-матрица-ми применяются лампы. Комбинирован-ные сканеры, с LED-освещением и ПЗС, редкость, по крайней мере пока.

Какая технология все же лучше, CCD или CIS?

Благодатная тема для холивара… Мы не перетестировали все существующие в природе модели МФУ и сканеров, однако давайте исходить из того, что известно нам и на чем сходится большинство. Девайсы на ПЗС громоздки, они едят заметно больше энергии, не любят встря-сок и ударов, дороже обходятся при изго-товлении, а потому и стоят в магазинах больше. Самый же существенный их недо-статок — необходимость ухода за оптичес-кой системой, которая загрязняется про-сто с течением времени, независимо от того, 10 или 100 часов в месяц трудится ваш аппарат. Оптика не любит небрежного подхода и кривых рук, так что уход за сканером -дело не плевое. CIS-сканеры меньше, неприхотливей, дешевле, некоторые способны питаться от порта USB, но у них свои недостатки. Как правило, LED-освещение неспособно дать равномерный и стабильный свет, соответственно, цветопередача страдает. Возможно, проблему можно решить, но усложнение производства бюджетных устройств повлечет за собой рост цены, а кому оно надо? Кроме того, технология контактных сенсоров предполагает, что объект сканирования будет достаточно плотно прилегать к стеклу, — с толстыми журналами и книгами могут возникнуть траблы. На-сколько серьезные? Достаточные, чтобы у программы FineReader случились трудности с распознаванием текста. Про изображения можно не говорить.

Что такое при работе со сканером глу-бина резкости?

Сканер, конечно, не совсем фотоаппарат, но при работе с книгами или другими трехмерными объектами расстояние от сенсора до сканируемой поверхности получается неодинаковым; соответ-ственно, какая-никакая, а глубина резко-сти нужна. У вышеупомянутых CIS-девайсов ее нет совсем, поскольку нету оптической системы.

Зачем сканеру автофокус, и в каж-дой ли модели он присутствует?

Для того чтобы четче снимать не идеаль-но ровные поверхности, что особенно актуально для сканирования объектов с большим увеличением. В некоторых моделях пленочных сканеров при работе со сканером, если верить производителям, автофокус срабатывает до миллиона раз за съемку. В обычном, многоцелевом-бытовом сканере эта фича в общем не нужна.

Что такое оптическое разрешение при работе со сканером?

Это максимальное количество пикселей на дюйм (по длине), которое матрица может зафиксировать, для CCD-сканера — без смещения каретки с фотоэлементами. Оптическое разрешение определяется количеством ПЗС-элементов в линейке, но только по длине.

Что такое механическое разреше-ние при работе со сканером?

Это другая составляющая его разреше-ния, зависит от максимального количес-тва шагов, которые может сделать ка-ретка с фотоэлементами. Нередко быва-ет больше оптического. Например, раз-решение 600 х 1200 означает, что матри-ца сканера обеспечивает съемку с раз-решением 600 точек на дюйм и при съем-ке дюйма поверхности каретка совершит 1200 перемещений.

Что такое интерполяционное раз-решение при работе со сканером?

Максимальное разрешение, которого может добиться ПО сканера с помощью программного увеличения. Новые пиксели просто «придумываются» софтом на основе данных о цветах соседних точек. Таким образом, увеличивается количест-во пикселей, но никак не качество изо-бражения — новой информации в таком снимке нет и быть не может.

А что такое разрядность (глубина) цвета при работе со сканером?

Разрядность цвета указывает количество бит, которое используется для хранения информации о цвете одного пикселя. Чем выше разрядность, тем больше оттенков. Некоторые девайсы могут иметь внешнюю и внутреннюю разрядность — более высокая внутренняя используется для цветовой коррекции до передачи информации на ПК. Считается, что 16,7 миллиона оттенков более чем достаточно — без приборов человек больше не различит.

Для чего нужен 48-битный цвет, если и 24-битный — в буквальном смысле за глаза?

Для того чтобы иметь некоторый запас оттенков при обработке изображения на ПК. Когда вы корректируете экспозицию, то рискуете потерять некоторые оттенки на фото, здесь же за счет «лишних» цве-тов потерь удастся избежать. При работе со сканером лучше иметь запас этого самого цвета.

Что за путаница с 8-16-и 24-48-битным цветом при работе со сканером?

Это разные обозначения одного и того же. Когда говорят о 8-битном цвете, имеют в виду разрядность в одном цветовом канале, а когда о 24-битном, то сразу во всех трех. Та же петрушка с 16 и 48 бита-ми. В общем простая математика: 8 = 24, 16 = 48 (смайл).

Что из себя представляет диапа-зон оптической плотности при работе со сканером?

Динамический диапазон сканера — то ко-личество градаций яркости, которое он способен передать. Чем больше этот па-раметр, тем лучше девайс будет справляться и с изображениями, где перепады яркости невелики либо, наоборот, очень большие. Как правило, оптический диа-пазон ограничен «сверху» глубиной цве-та. Параметр численно выражается деся-тичным логарифмом отношения интенсивности падающего на оригинал света к интенсивности отраженного света.

Какие важные качества работы со сканером не описываются основными техничес-кими характеристиками?

Не описывается цветопередача, которая может зависеть от разных параметров, например от качества оптики или качес-тва света. Не описываются шумы, кото-рые появляются на изображении в про-цессе сканирования. Все это надо смот-реть на пробных сканах.

Ска́нер (англ. scanner) - устройство, которое создаёт цифровое изображение сканируемого объекта. Полученное изображение может быть сохранено как графический файл, или, если оригинал содержал текст, распознано посредством программы распознавания текста и сохранено как текстовый файл.

Рассмотрим принцип действия планшетных сканеров, как наиболее распространённых моделей. Сканируемый объект кладётся на стекло планшета сканируемой поверхностью вниз. Под стеклом располагается подвижная лампа, движение которой регулируется шаговым двигателем.

Рис. 28. Устройство планшетного сканера.

Свет, отражённый от объекта, через систему зеркал попадает на чувствительную матрицу (CCD - Couple-Charged Device), далее на АЦП и передаётся в компьютер. За каждый шаг двигателя сканируется полоска объекта, потом все полоски объединяются программным обеспечением в общее изображение.

В зависимости от способа сканирования объекта и самих объектов сканирования существуют следующие виды сканеров:

Планшетные - наиболее распространённые, поскольку обеспечивают максимальное удобство для пользователя - высокое качество и приемлемую скорость сканирования. Представляет собой планшет, внутри которого под прозрачным стеклом расположен механизм сканирования.

Ручные - в них отсутствует двигатель, следовательно, объект приходится сканировать вручную, единственным его плюсом является дешевизна и мобильность, при этом он имеет массу недостатков - низкое разрешение, малую скорость работы, узкая полоса сканирования, возможны перекосы изображения, поскольку пользователю будет трудно перемещать сканер с постоянной скоростью.

Листопротяжные - лист бумаги вставляется в щель и протягивается по направляющим роликам внутри сканера мимо ламы. Имеет меньшие размеры, по сравнению с планшетным, однако может сканировать только отдельные листы. Многие модели имеют устройство автоматической подачи, что позволяет быстро сканировать большое количество документов, причем в ряде моделей – с двух сторон за один прогон.

Планетарные - применяются для сканирования книг или легко повреждающихся документов. При сканировании нет контакта со сканируемым объектом (как в планшетных сканерах).

Барабанные - применяются в полиграфии, имеют большое разрешение (около 10 тысяч точек на дюйм). Оригинал располагается на внутренней или внешней стенке прозрачного цилиндра (барабана).

Слайд-сканеры - как ясно из названия, служат для сканирования плёночных слайдов, выпускаются как самостоятельные устройства, так и в виде дополнительных модулей к обычным сканерам.

Сканеры штрих-кода - небольшие, компактные модели для сканирования штрих-кодов товара в магазинах.

Характеристики сканеров

Формата сканируемой поверхности: А4 (стандартный печатный лист), A 3, слайд-сканеры под формат пленки 13х18 и 18х24…

Оптическое разрешение. Разрешение измеряется в точках на дюйм (dots per inch - dpi). Указывается два значения, например 600x1200 dpi, горизонтальное - определяется матрицей CCD, вертикальное - определяется количеством шагов двигателя на дюйм.

Интерполированное разрешение. Искусственное разрешение сканера достигается при помощи программного обеспечения. Его практически не применяют, потому что лучшие результаты можно получить, увеличив разрешение с помощью графических программ после сканирования. Используется производителями в рекламных целях.

Скорость работы. Измеряется в страницах в минуту, при этом имеются в виду страницы определенного формата и определенное разрешение сканнера, из числа возможных.

Глубина цвета. Определяется качеством матрицы CCD и разрядностью АЦП. Измеряется количеством оттенков, которые устройство способно распознать. 24 бита соответствует 16777216 оттенков. Современные сканеры выпускают с глубиной цвета 24, 30, 36 бит. Несмотря на то, что графические адаптеры пока не могут работать с глубиной цвета больше 24 бит, такая избыточность позволяет сохранить больше оттенков при преобразованиях картинки в графических редакторах.

Основные производители: Fujitsu, Mustek, Hewlett-Packard (HP ).

Сканером называется устройство, позволяющее вводить в компьютер в графическом виде текст, рисунки, слайды, фотографии и др. На рис. 2.11 изображена общая схема устройства сканера. Свет, идущий от источника освещения, попадает на оригинал в определенной точке. Отразившись от него, свет попадает на оптическую систему сканера. Она состоит из зеркал и объектива (иногда роль оптической системы может играть просто призма). Оптическая система фокусирует свет на фотопринимающем элементе, роль которого - преобразо­вание интенсивности падающего света в электронный вид.

Принцип работы сканера состоит в следующем: в результате преобразования света получается электрический сигнал, содержащий информацию об активности цвета в исходной точке сканируемого изображения. После оцифровки аналогового сигнала в АЦП цифровой сигнал через аппаратный интерфейс сканера идет в компьютер, где его получает и анализирует программа для работы со сканером. После окончания одного такого цикла (освещение оригинала - получение сигнала - преобразование сигнала - получение его программой) источник света и приемник светового отражения перемещается относительно оригинала.


Основной деталью планшетного сканера является считывающая головка, двигающаяся вдоль сканируемого изображения. Важнейшей частью считывающей головки является фотоприемник. На сегодняшний день наиболее распространены два типа фотопринимающей матрицы: ПЗС-матрица (прибор с зарядовой связью, в английских обозначениях - CCD, Couple-Charged Device) и КДИ-матрица (контактный датчик изображения, в английских обозначениях - CIS, Contact Image Sensor).

Основой элемента ПЗС-матриц является фототранзистор, выполненный по технологии МОП (металл-оксид -полупроводник). ПЗС-матрица состоит из множества миниатюрных датчиков, преобразующих падающий на них свет в пропорциональный его интенсивности электрический заряд. Эта технология используется и во многих других приборах для считывания изображений, от мощнейших телескопов до приборов ночного видения.

Данному виду фотоэлементов присущи свои преимущества и недостатки. Среди преимуществ ПЗС необходимо отметить следующие:

  • Высокая чувствительность . Квантовая эффективность ПЗС чрезвычайно высока и может достигать 95%. Для сравнения, квантовая эффективность человеческого глаза - около 1%, лучшие фотоэмульсии имеют квантовую эффективность до 3%, фотоэлектронные умножители (светоприемники в барабанных сканерах) - до 20%. Квантовая эффективность определяет способность светоприемника переводить свет в электрические сигналы, то есть выражает эффективность перевода попавших на него квантов (частиц света) в электрический сигнал.
  • Широкий спектральный диапазон . ПЗС может реагировать на свет, начиная от гамма- и рентгеновского излучения и заканчивая инфракрасным излучением. Такого диапазона не дает на текущий момент ни одна из матричных технологий.

Принципиального различия между КДИ- и ПЗС матрицами нет. КДИ-сканеры отличаются от ПЗС-сканеров тем, что в них матрица растянута на всю ширину рабочей области, поэтому полностью отсутствует оптическая система.

В КДИ-модификациях сканеров источник освещения заме­няется светодиодами . При этом для цветного сканирования возникает необходимость в трех светодиодах на пиксел, в соответствии со стандартным разложением цвета RGB. Зеркала и объектив в КДИ-сканерах не представлены, так как эта технология обеспечивает прямую проекцию полной повер­хности рабочей области прямо на считывающую матрицу.

Излучение, идущее от светодиодов, отражается от оригинала и, пройдя через линзу, фокусируется на датчике изобра­жения. Датчик изображения - фототранзисторы, сделанные на основе МОП –технологии (аналогично ПЗС). В результате получается аналоговый сигнал, который усиливается в видеоусилителе и идет в АЦП.

Отсутствие оптической системы в таком сканере налагает свои ограничения на такую технологию. Если, например, полный датчик изоб­ражения длиной 216 мм (формат А4) состоит из 54 меньших датчиков, каждый из которых имеет 96 светочувствительных элементов (одно из лучших значений), то в результате получится 24 элементов на миллиметр, что в пересчете на дюймы дает 600 элементов на дюйм.

Для сканирования полноцветного изображения используются три светодиода на один элемент датчика: красный, зеленый и синий, - которые при сканировании включаются по очереди.

В основном положительные стороны КДИ-сканеров объясняются отсутствием оптической системы. Однако в целом они достаточно поверхностные, и большинство из них не связаны с качеством изображения. В этом отношении ПЗС-сканеры явно выигрывают в следующем.

Лучшая глубина резкости. Глубина резкости КДИ-ска­неров ±0,3 мм, тогда как для сканеров с ПЗС она равна ±3 мм. Это означает, что трехмерные предметы, находящиеся на расстоянии 3 мм от общего уровня, будут нормально отсканированы ПЗС-сканером, а изображение, полученное КДИ-сканером, будет нерезким и размытым. На практике такими предметами зачастую являются развернутые толстые книги.

Дольше срок службы. Сканер на основе ПЗС обеспечивает стабильное и неизменное качество в течение 10 000 часов работы, тогда как у КДИ-сканеров после 500 ча­сов работы происходит падение яркости на величину до 30%.

Лучшая чувствительность к оттенкам. ПЗС-сканеры различают уровни оттенков с погрешностью ±20%, в то время как КДИ сканеры - ±40%. Соответственно, передача деталей у ПЗС-сканеров будет значительно лучше.

Меньшая чувствительность к посторонней засветке. Это преимущество связано с тем, что ПЗС-линейка невелика по длине, и благодаря системе зеркал «лишний» свет на нее не проецируется. В КДИ-сканерах линейка значительно больше, оптическая система практически отсутствует, поэтому любое лишнее освещение сразу зна­чительно влияет на результат сканирования.

Разрешение устройства сканера. Максимальное разрешение профессиональных ПЗС-сканеров на данный момент - 3000 ppi, тогда как для КДИ-сканеров верхний предел - 600 ppi.

Характеристики сканеров

* Цветность сканера . Сканеры делятся на цветные, черно-белые (полутоновые) и штриховые черно-белые.

* Разрешение сканера (resolution) - это совокупность параметров, характеризующих минимальный размер деталей изображения, который сканер в состоянии считать.

Для любого сканера независимо от его типа важно разрешение , которое он поддерживает. Оно может колебаться от 100-150 dpi до нескольких тысяч dpi. Наибольшее оно у барабанных сканеров, немного меньше у планшетных. Планшетные сканеры обычно имеют разрешение не менее 300 dpi, обычно около 600. У хороших планшетных сканеров эта цифра может достигать 1200, 2400 dpi или даже больше (до 4000-6000 dpi). А вот у ручных и роликовых оно обычно около 150-300.

Разрешение должно соответствовать задачам, для которых предназначен сканер. Для того, чтобы сканировать фотографии и сохранять их в виде рисунков, чтобы потом посматривать на мониторе, вполне достаточно и 300 точек на дюйм. Для распознавания текста больше 600 тоже не нужно. Если вы хотите сканировать для того, чтобы потом сделать копию на принтере, то, каково бы высоко ни было разрешение у сканера, все упрется в то разрешение, с каким способен печатать принтер.
Разрешение делят на оптическое, механическое и интерполяционное.

Оптическое разрешение (optical resolution) характеризует минимальный размер точки по горизонтали, которую сканер в состоянии распознать. В сканерах, использующих для считывания цветовой информации матрицу (например, планшетных или листопротяжных), эта характеристика определяется отношением количества элементов в линии матрицы к ширине рабочей области. Для других типов сканеров (барабанный) она ограничивается возможностями фокусировки света на фотопринимающем элементе.

Механическое разрешение (mechanical resolution) - количество шагов, которое делает сканирующая каретка, деленное на длину пройденного ею пути. Поскольку на каждом шаге происходит считывание информации матрицей, этот параметр определяет минимальный размер точки по вертикали, которую сканер может распознать. Иногда механическое разрешение тоже называют оптическим, но это неверно, Например, если для какой-либо модели сканера указано оптическое разрешение 300х1200 ppi, то оптическим разрешением будет 300 ppi, а механическим - 1200 ppi. Обычно механическое разрешение в два раза больше оптического, встречаются и модели, в которых оно в четыре раза больше или, напротив, они равны. Ввиду того, что ПЗС-матрица не может сканировать с разрешением по горизонтали больше оптического, для добавления недостающих точек пользуются математические методы интерполяции (иначе вертикальный размер любого отсканированного квадрата получился бы больше горизонтального).

Интерполяционное разрешение - искусственно увеличенное с помощью математических методов разрешение. Программа, входящая, в комплект поставки сканера, пытается довести изображение до этого разрешения путем добавления недостающих точек (например, при реальном разрешении 3х3 программа выдает 9х9). Этот параметр не имеет ничего общего с реальными физическими параметрами ска­нера и может характеризовать только программу обработки изображения.
ПРИМЕЧАНИЕ. Разрешение сканера обычно измеряется в пикселах на дюйм (ppi, pixelperinch). Измерять данный параметр в точках на дюйм (dpi. dotsperinch) в принципе неверно, так как под dpi подразумевается фактиче­ское разрешение принтера, а это несколько иное понятие. Обычно принтер для получения одного цветного пиксела отпечатывает не­сколько точек, и каждая из них отвечает за свою составляющую цвета. Эти точки находятся очень близко, что создает эффект одного пиксела нужного цвета: они как бы сливаются. Соответственно, dpi подразуме­вает количество составляющих цвет точек на дюйм. Под ppi подразуме­вается именно количество полноцветных пикселов на дюйм.

* Разрядность (глубина цвета) - параметр, характеризую­щий количество цветов или оттенков серого (в зависимос­ти от цветности сканера). Разрядность означает, сколько бит используется сканером для представления цвета одной точки изображения. Различают разрядность внешнюю и внутреннюю. Внутренняя разрядность - это количество бит, представляющих точку для внутренних операций в сканере (то есть до прохождения сигналом АЦП и преобразования в цифровой вид). Внешняя разрядность определяет битность цвета после прохождения сигнала через АЦП. Внешняя разрядность сканеров составляет обычно 8 бит (256 оттенков серого) для полутоновых сканеров и 24 бита (по 8 бит на составляющую, итого 16,77 млн. цветов) - для цветных сканеров. Внутренняя разрядность обычно не меньше, а больше внешней. Дополнительные биты во внутренней разрядности (если они есть) используются для улучшения точности цветопе­редачи и снижения влияния искажений на цвет.

* Рабочая область сканера - максимальный формат документа, который сканер в состоянии обработать. Формат за­висит от конструкции и области применения сканера. Так, формат документа для листопротяжных и ручных сканеров ограничен только по ширине. Обычные домашние и офисные сканеры чаще всего соответствуют форматам А4 и принятому на Западе формату Legal. Профессиональные модели могут иметь фиксированные размеры, приспособленные для конкретных оригиналов (например, слайд-сканер 35-миллиметровой пленки), или просто иметь большой формат - до АО.

* Динамический диапазон - еще одна цветовая характеристи­ка. «Качество» отражения света любым оригиналом выражает оптическая плотность. Она вычисляется как десятичный логарифм отношения светового потока, падающего на оригинал, к световому потоку, отраженному от оригинала (для непрозрачных оригиналов) или прошедшему сквозь него (для негативов или слайдов). Оптическая плотность измеря­ется в OD (Optical Density), или просто D, и может меняться в диапазоне от 0,0 D для абсолютно белого (прозрачного) цвета до 4,0 D для идеально черного (непрозрачного) цвета.
Поскольку речь идет о логарифме, например, 2,0 D и 3,0 D будут различаться не на 25%, а в 10 раз. Оптические плотности для некоторых видов оригиналов приведены в табл. 1.
Диапазон оптических плотностей сканера говорит о том, какие из цветов оригинала еще будут распознаны, а какие - уже нет, то есть будут восприняты либо как полностью белые, либо как абсолютно черные.

Диапазон оптических плотностей включает в себя две характеристики: Dмин и Dмакс. Первая, Dмин - такая оптическая плотность оригинала, ниже которой сканер будет считать оригинал идеально белым. Соответственно, Dмакс - такая оптическая плотность оригинала, выше которой сканер будет считать оригинал абсолютно черным. Сам диапазон представляет собой разность Dмин – Dмакс. Диапазон оптических плотностей сканера зависит от качества и разрядности АЦП и фотоэлементов, а также от алгоритма работы контроллера сканера. В табл.2. указаны типичные динамические диапазоны для распространенных видов сканеров.

* Скорость сканирования - параметр, отражающий время, за которое будет отсканирован тот или иной документ. На са­мом деле эта характеристика не может иметь какого-либо значения, так как зависит от быстродействия компьютера, объема его оперативной памяти, от аппаратного интерфейса и т. д. Поэтому быстродействие сканера можно оценивать только для конкретного рабочего места. Иногда этот параметр указыва­ется в характеристиках сканера в миллисекундах на линию.

* Аппаратный интерфейс сканера (интерфейс передачи данных) обеспечивает обмен информацией между сканером и компьютером. От него зависит скорость передачи данных между компьютером и сканером. Эта характеристика может быть очень важна, если есть необходимость в высоком качестве отсканированных фотографий (или каких-либо других графических материалов). Например, для стандартной цветной фотографии размером 10х15 см, отсканиро­ванной с разрешением 720 ppi при разрядности цвета 24 бит (True color), потребуется около 40 Мбайт дискового про­странства. Соответственно, если скорость передачи данных между сканером и компьютером низка, то и ждать результата придется очень долго. Поэтому интерфейс передачи данных по важности ставится наравне с такими характеристиками, как разрешение и глубина цвета. Сейчас на рынке представлены сканеры с пятью типами интерфейсов:

1. Интерфейс LPT (стандартный параллельный порт Centronics). Этот интерфейс один из самых медленных, но и наиболее прост при установке сканера. Иногда встречаются улучшенные варианты - с поддерж­кой (или даже требованием) ЕРР/ЕСР. В таком случае могут возникнуть проблемы с установкой, так как не все компьютеры оборудованы такими портами. Ска­неры с интерфейсом LPT практически всегда имеют «сквозной порт», то есть сканер не монопольно использует LPT-порт, оставляя возможность подключения еще одного устройства (обычно этим устройством бывает принтер).

2. Собственный интерфейс. Его еще иногда называют ISA. Такой интерфейс реализуется в виде отдельной карты, с которой может работать сканер. Такие карты для каждой модели сканера уникальны, из-за чего могут возникнуть проблемы при замене.

3. SCSI-интерфейс - один из наиболее скоростных вариантов интерфейса передачи данных. Однако, если в комплекте со сканером не поставляется SCSI-карта, то могут возникнуть проблемы совместимости с другим контроллером SCSI. Меньше всего проблем создают контроллеры Adaptec. Если в комплект по­ставки сканера включена своя карта, то подключение и использование сканера не вызовут проблем, однако не факт, что другие SCSI-устройства смогут быть установлены на этот контроллер (например, из-за отсутствия или несовместимости драйверов).

4. Интерфейс USB - преемник LPT-интерфейса. Сто­имость USB-сканера ниже, а производительность этого интерфейса - значительно выше, чем для параллельного порта, однако не на всех компьютерах есть поддержка USB.

5. Интерфейс PCMCIA (PC card) - интерфейс для ра­боты с портативными компьютерами.

Пример характеристики сканера класса SOHO (Small Office, Home Office) Agfa Scan:

ПЗС: цветная, 5100 элементов. Сканирование производится по технологии ПЗС (CCD), причем линейка ПЗС - цветная. Количество элементов - стандартное для сканера такого класса (для профессиональных сканеров сейчас - 8640 элементов).
Проходов: 1 (трехпроходные сканеры сейчас практически отсутствуют на рынке).
Формат в отраженном свете: 216х297 мм(8”)х11,7”).Формат несколько больше А4 (210х297 мм). Форматы рабочей области сканеров могут варьироваться, но почти всегда они лежат близко к какому-либо стандартному фор­мату.
Оптический диапазон: 1,8D. Довольно низкий диапазон, но для домашнего использования вполне пригоден.
Глубина цвета: 36 бит. Здесь указана внутренняя разряд­ность. Внешняя почти всегда равна 24 битам для совмести­мости с программным обеспечением.
Скорость сканирования: серый -3,7 мс/линия, цвет - 11,1 мс/линия. Эта характеристика не имеет практического значения, так как здесь не учитывается время передачи дан­ных по интерфейсу и производительность компьютера, от которой тоже зависит скорость считывания.
Интерфейс: USB.
Размеры: ширина 330 мм, высота 105 мм, глубина 450 мм. Вес: 4 кг.
Лампа: cold cathode, автоматическое отключение. Лампа - с холодным катодом, после некоторого времени бездействия отключается для экономии электроэнергии.
Готовность к работе: - Под готовностью сканера к ра­боте подразумевается время его «нагрева» после включения. Данный сканер не требует времени для прогрева.
Температура: 10-40 °С; влажность: 20-85%. Характерис­тики окружающей среды, при которых сканер будет нормально работать. Если предполагается использовать сканер в каких-либо нестандартных условиях, на этот параметр следует обратить внимание.
Совместимость: Windows 98, MacOS on the iMac. На совместимость тоже необходимо обратить внимание, так как от нее строго зависят рамки совместимости. Например, драйверы сканера, работавшие под Windows 98, могут отказаться работать под Windows ME.