Цифро аналоговые микросхемы. Цифро-аналоговый преобразователь

  • 14.06.2019

Давайте начнем с самого начала. Цифровая музыка является (легко переносится) промежуточной формой между аналоговым оригиналом и аналоговой копией. Идеальная звуковая система создает копию в конце, которая идентична оригиналу. На 100% этого еще не произошло, но в течение последних 20 лет мы все ближе и ближе к этому. Два важнейших компонента этого процесса являются — аналого-цифровой преобразователь (АЦП) для студии и цифро-аналоговый преобразователь (ЦАП) для . Начнем с рассмотрения процесса АЦП.

Работа АЦП — это неоднократное измерения амплитуды (громкости) входящей волны звука электрического давления (электрическое напряжение), и вывод этих измерений как длинный список бинарных байтов. Таким образом, математическая «картинка» создается от формы волны. Не беспокойтесь о битах и ​​байтах. Для наших целей, это просто цифры. Так что же, этот сигнал мы записываем и пытаемся воссоздать? Единая форма волны в нашем примере является аналогом или скопирована как результат на всех частотах от всех инструментов, которые произошли в воздухе в студии , и, естественно, объединенных в воздухе и пришли в одну точку микрофона в определенном порядке как один аналоговый звук естественным образом, который обрабатывается в нашей барабанной перепонке, чтобы услышать его.

Это несчетное большое количество частот от всех инструментов и их гармоник и полученных от отражений комнаты (звуковой сцены), естественно объединены в воздухе и, естественно, «закодированы» как комплекс , и является оригинальной правдой о музыке на тот момент который мы пытаемся точно скопировать. Теперь о цифровой и портативной сущности
Частота дискретизации была определена и АЦП сделала свое дело и данные теперь просто образовались в большой файл из чисел, впрочем, они могут быть изменены в бесчисленных форматах и ​​переносятся, копируются по всему миру и, наконец, представлены в вашей комнате для прослушивания, для вашего ЦАП. Бит будет идеальный если целостность файла будет сохранена, т.е. те же самые числовые значения, которые были созданы в АЦП — представлены вашему ЦАП. Если это так, то данные будут с идеальным . Воспроизведение ЦАП (DAC) ЦАП , читая цифровые данные из файла и пытается воссоздать копию оригинального аналогового сигнала, записанного когда-то.

Типы ЦАП и как они работают ЦАП — это схема, которая преобразует цифровые данные в непрерывный аналоговый электрический эквивалент звука, который должен быть воспроизведен на высококачественной аппаратуре или наушниках. Амплитуда представляет собой цифровой номер, который происходит на основе частоты дискретизации (например, 44 100 раз в секунду). Этот процесс очень похож на бесконечную конвейерную ленту с пустыми кувшинами на нем, движущихся по заправочной станции. Размер кувшина фиксируется, и со скоростью они проходят мимо, что и определяется частотой дискретизации. Цель заполнить каждый кувшин точно по уровню, указанного в музыке. Существуют три методики, используемые для достижения этой цели; Delta Sigma, Ladder, и MSB Sign Magnitude Ladder. ЦАП Delta Sigma (Один бит) Каждый образец или кувшин заполняется на нужном уровне со многими измерительными чашками, чтобы налить и достичь целевого .
«Один бит» - это мерный стаканчик либо полный, либо пустой. С 64 разовой передискретизацией, чашка только 1/64-й от объема кувшина. Это довольно плохая чашка и она не приблизилась к тому, чтобы быть достаточно точной. Чашка должна была бы быть 1 / 16,777,216 от объем кувшина, чтобы быть . Фильтрация здесь важна.

ЦАП Ladder (Лестница)

Ladder ЦАП отличается тем, что вместо одного мерного стакана (или бита), целый ряд чашек доступных, от очень маленьких, до очень . Любую комбинацию чашки можно использовать для заполнения каждого кувшина точно по . Фильтрация не требуется, но точность определяется совокупной погрешностью всех используемых чашек.

ЦАП MSB Sign Magnitude Ladder

MSB Sign Magnitude Ladder ЦАП как Ladder ЦАП, изысканный и обрабатывает двумя способами. Потому как чашки, как правило, на 1/2 полны, когда заканчивают, и начинают с очень точных 1/2 заполненных чашек вместо пустых. Оттуда мы снова используем широкий спектр измерительных чашек добавляя или отнимая по каждой чашке.
Так как каждый сосуд заполняется точно, фильтрация не нужна. Потому как наш слух наиболее чувствителен к звуку низкого уровня наш ЦАП является наиболее точным около 1/2 полным, где мы используем самые маленькие и самые точные измерения чашек. А как насчет передискретизации? Синхронное повышение дискретизации MSB просто означает добавление еще одной банки между существующими банками и перемещает их быстрее вниз на линию. Глядя на многие банки до и после новых пустых, рассчитывает, как полные. Заключительное слово о ЦАПах Оригинальный способ Sony и Philips заключается в преобразовании цифровой информации ЦАП Ladder (лестница), добавлением резисторов, что при подключении выглядели лестницей (отсюда и название). Но для Philips это было очень трудно построить, потому что было трудно получить резисторы достаточно точные, так как 1541ЦАП (DAC) был неточен. Но тем не менее, он звучал лучше, чем следующие поколения, Дельта Сигма ЦАП. ЦАП Ladder(Лестница) технически, привлекательна потому что это, как пассивный процесс (нулевой обработки любого вида, да, я знаю сам, преобразования является процессом), что означает, что нет никакого активного отбора проб и средних обработок, только простые резисторы, которые не имеют ограничения по скорости. MSB Ladder (лестница) является самым точным. Резистор быстрее — более 5 МГц. Он имеет уровень шума в 160 дБ. И это гораздо более точные и самые высоко-прецизионные ЦАП, в современном мире.

Цифро-аналоговый преобразователь (ЦАП) - это устройство для преобразования цифрового кода в аналоговый сигнал по величине, пропорциональной значению кода.

ЦАП применяются для связи цифровых управляющих систем с устройствами, которые управляются уровнем аналогового сигнала. Также, ЦАП является составной частью во многих структурах аналого-цифровых устройств и преобразователей.

ЦАП характеризуется функцией преобразования. Она связывает изменение цифрового кода с изменением напряжения или тока. Функция преобразования ЦАП выражается следующим образом

U вых - значение выходного напряжения, соответствующее цифровому коду N вх , подаваемому на входы ЦАП.

U мах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода N мах

Величину К цап , определяемую отношением , называют коэффициентом цифроаналогового преобразования. Несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N вх представить через значения весов его разрядов, функцию преобразования можно выразить следующим образом

, где

i - номер разряда входного кода N вх ; A i - значение i -го разряда (ноль или единица); U i – вес i -го разряда; n – количество разрядов входного кода (число разрядов ЦАП).

Вес разряда определяется для конкретной разрядности, и вычисляется по следующей формуле

U ОП -опорное напряжение ЦАП

Принцип работы большинства ЦАП - этосуммирование долей аналоговых сигналов (веса разряда), в зависимости от входного кода.

ЦАП можно реализовать с помощью суммирования токов, суммирования напряжений и деления напряжений. В первом и втором случае в соответствии со значениями разрядов входного кода, суммируются сигналы генераторов токов и источников Э.Д.С. Последний способ представляет собой управляемый кодом делитель напряжения. Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов.

Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом, 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода N вх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N вх .

Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь "ток-напряжение", например, на операционном усилителе

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц

При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Основные параметры и погрешности ЦАП

Основные параметры, которые можно увидеть в справочнике:

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда (МЗР ).

4. Максимальная частота преобразования – наибольшая частота смены кода, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток потребления, диапазон выходного напряжения или тока.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики.

Точностные характеристики каждого ЦАП, прежде всего, определяются нормированными по величине погрешностями.

Погрешности делятся на динамические и статические. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП:

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение постоянного тока на выходе ЦАП при входном коде, соответствующем нулевому значению выходного напряжения. Измеряется в единицах младшего разряда. Погрешность коэффициента преобразования (масштабная) –связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Является самой плохой погрешностью с которой трудно бороться.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные.

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины.

Дифференциальная нелинейность связана с неточностью задания весов разрядов, т.е. с погрешностями элементов делителя, разбросом остаточных параметров ключевых элементов, генераторов токов и т.д.

Способы идентификации и коррекции погрешностей ЦАП

Желательно, чтобы коррекция погрешностей производилось при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В этом случае коррекция проводится введением в структуру устройства кроме БИС ЦАП дополнительных элементов. Такие методы получили название структурных.

Самым сложным процессом является обеспечение линейности, так как они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое запоминающее устройство (ЗУ) . Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

При аналоговой коррекции кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Особенности применения БИС ЦАП

Для успешного применения современных БИС ЦАП недостаточно знать перечень их основных характеристик и основные схемы их включения.

Существенное влияние на результаты применения БИС ЦАП оказывает выполнение эксплуатационных требований, обусловленных особенностями конкретной микросхемы. К таким требованиям относятся не только использование допустимых входных сигналов, напряжения источников питания, емкости и сопротивления нагрузки, но и выполнение очередности включения разных источников питания, разделение цепей подключения разных источников питания и общей шины, применение фильтров и т.д.

Для прецизионных ЦАП особое значение приобретает выходное напряжение шума. Особенность проблемы шума в ЦАП заключается в наличии на его выходе всплесков напряжения, вызванных переключением ключей внутри преобразователя. По амплитуде эти всплески могут достигать нескольких десятков значений весов МЗР и создавать трудности в работе следующих за ЦАП устройств обработки аналоговых сигналов. Решением проблемы подавления таких всплесков является использование на выходе ЦАП устройств выборки-хранения (УВХ ). УВХ управляется от цифровой части системы, формирующей новые кодовые комбинации на входе ЦАП. Перед подачей новой кодовой комбинации УВХ переводится в режим хранения, размыкая цепь передачи аналогового сигнала на выход. Благодаря этому всплеск выходного напряжения ЦАП не попадает на вывод УВХ , которое затем переводится в режим слежения, повторяя выходной сигнал ЦАП.

Специальное внимание при построении ЦАП на базе БИС необходимо уделять выбору операционного усилителя, служащего для преобразования выходного тока ЦАП в напряжение. При подаче входного кода ЦАП на выходе ОУ будет действовать ошибка D U , обусловленная его напряжением смещения и равная

,

где U см – напряжение смещения ОУ ; R ос – величина сопротивления в цепи обратной связи ОУ ; R м – сопротивление резистивной матрицы ЦАП (выходное сопротивление ЦАП), зависящее от величины поданного на его вход кода.

Поскольку отношение изменяется от 1 до 0, ошибка, обусловленная U см , изменяется в приделах (1...2)U см . Влиянием U см пренебрегают при использовании ОУ, у которого .

Вследствие большой площади транзисторных ключей в КМОП БИС существенная выходная емкость БИС ЦАП (40...120 пФ в зависимости от величины входного кода). Эта емкость оказывает существенное влияние на время установления выходного напряжения ОУ до требуемой точности. Для уменьшения этого влияния R ос шунтируют конденсатором С ос .

В ряде случаев на выходе ЦАП необходимо получать двуполярное выходное напряжение. Этого можно добиться введением на выходе смещения диапазона выходного напряжения, а для умножающих ЦАП переключением полярности источника опорного напряжения.

Следует обратить внимание, что если вы используете интегральный ЦАП, имеющий число разрядов большее чем вам нужно, то входы неиспользуемых разрядов подключают к земляной шине, однозначно определяя на них уровень логического нуля. Причем для того, чтобы работать по возможности с большим диапазоном выходного сигнала БИС ЦАП за таковые разряды принимают разряды, начиная с самого младшего.

Один из практических примеров применения ЦАП- это формирователи сигналов разной формы. Сделал небольшую модель в протеусе. С помощью ЦАП управляемого МК (Atmega8, хотя можно сделать и на Tiny), формируются сигналы различной формы. Программа написана на Си в CVAVR. По нажатию кнопки формируемый сигнал меняется.

БИС ЦАП DAC0808 National Semiconductor,8 –разрядный, высокоскоростной, включена согласно типовой схеме. Так как выход у него токовый, с помощью инвертирующего усилителя на ОУ преобразуется в напряжение.

В принципе можно даже вот такие интересные фигуры, что-то напоминает правда? Если выбрать разрядность по больше, то получится более плавные

Список литературы:
1. Бахтияров Г.Д., Малинин В.В., Школин В.П. Аналого-цифровые преобразователи/Под ред. Г.Д.Бахтиярова - М.: Сов. радио. – 1980. – 278 с.: ил.
2. Проектирование аналого-цифровых контрольно-управляющих микропроцессорных систем.
3. О.В. Шишов. - Саранск: Изд-во Мордов. ун-та 1995. - с.

Ниже вы можете скачать проект в

Аналоговые сигналы характеризуются многими техническими параметрами, одним из которых является Например, ухо человека слышит сигналы, имеющие частоту в диапазоне от 1 до 22 кГц, а видимый свет содержит частоты, измеряемые миллиардами герц. Примером записи аналогового сигнала может служить граммофонная пластинка. Фотографии, вначале черно-белые, а, затем, и цветные - тоже пример записи аналогового сигнала.

Практически всегда стоит после о котором полезно сказать несколько слов, чтобы была понятней задача, которую решают рассматриваемые нами устройства.

АЦП преобразует в цифровой. Обычно число, которое соответствует величине сигнала в момент его измерения, представляют двоичным кодом. Каждое измерение выполняют с определенной частотой, называемой частотой квантования.

Теоретически обоснована минимальная частота квантования, обеспечивающая неискаженное восстановление сигнала. Этот сигнал без искажения и должен восстановить на выходе преобразователь цифрового сигнала в аналоговый. Частота квантования должна быть не меньше двух максимальных частот преобразуемого сигнала. Например, для неискаженного преобразования звукового сигнала достаточно частоты квантования, равной 44 кГц.

Теперь понятно, что имеет на входе последовательность двоичных кодов, который он и должен преобразовать в соответствующий аналоговый сигнал.

Надежность в работе и срок службы также входят в показатели, но эти параметры зависят не от принципа работы ЦАП, а, скорее, от элементной базы и качества сборки. Независимо от принципа преобразования, цифро-аналоговые преобразователи различают по характеристикам, таким как динамический диапазон, точность преобразования и по временным показателям.

Динамический диапазон определяют для входа и выхода ЦАП, как отношение максимальной величины на входе (на выходе), к минимальной входной (выходной) величине.

Одним из временных параметров является величина, обратная частоте квантования, называемая периодом квантования. Понятно, что для ЦАП эту величину задает АЦП, с помощью которого сигнал был преобразован.

Основной же величиной, характеризующей быстродействие ЦАП, является время преобразования. Здесь приходится выбирать: большее время преобразования - более точный ЦАП, но меньше его быстродействие, и наоборот.

Рассмотрим некоторые принципы преобразования «цифра-аналог», не приводя формул и схем. Существует два принципа преобразования - последовательный и параллельный.

Последовательность цифровых кодов на входе цифро-аналоговый преобразователь преобразует в последовательность прямоугольных импульсов на выходе. Ширину импульса и последующий за ним интервал до очередного импульса определяют в зависимости от значения поступившего двоичного кода. Следовательно, на выходе низкочастотного фильтра получают аналоговый сигнал, по импульсам, поступающим на вход с переменным периодом.

Параллельное преобразование выполняют, например, с помощью сопротивлений, включенных параллельно к стабильному источнику питания. Количество сопротивлений равно разрядности поступающего на вход кода. Величина сопротивления в старшем разряде в 2 раза меньше, чем в предшествующем младшем разряде. В цепи каждого сопротивления имеется ключ. Входной код управляет ключами - там, где 1, ток проходит. Следовательно, в цепях ток будет определяться весом разряда, и цифро-аналоговый преобразователь на выходе имеет суммарный ток, который будет соответствовать записанному двоичному коду.

Цифроаналоговые преобразователи (ЦАП) — предназначены для преобразования цифровых сигналов в аналоговые. Такое преобразование необходимо, например, при восстановлении аналогового сигнала, предварительно преобразованного в цифровой для передачи на большое расстояние или хранения (таким сигналом, в частности, может быть звук). Другой пример использования такого преобразования — получение управляющего сигнала при цифровом управлении устройствами, режим работы которых определяется непосредственно аналоговым сигналом (что, в частности, имеет место при управлении двигателями).

{xtypo_quote}К основным параметрам ЦАП относят разрешающую способность, время установления, погрешность нелинейности и др.{/xtypo_quote}

Разрешающая способность — величина, обратная максимальному числу шагов квантования выходного аналогового сигнала. Время установления t уст — интервал времени от подачи кода на вход до момента, когда выход-ной сигнал войдет в заданные пределы, определяемые погрешностью. Погрешность нелинейности — максимальное отклонение графика зависимости выходного напряжения от напряжения, задаваемого цифровым сигналом, по отношению к идеальной прямой во всем диапазоне преобразования.

Как и рассматриваемые , ЦАП являются «связующим звеном» между аналоговой и цифровой электроникой. Существуют различные принципы построения АЦП.

Схема ЦАП с суммированием весовых токов

На рис. 3.88 приведена схема ЦАП с суммированием весовых токов.

Ключ S 5 замкнут только тогда, когда разомкнуты все ключи S 1 …S 4 (при этом u вых = 0). U 0

— опорное напряжение. Каждый резистор во входной цепи соответствует определенному разряду двоичного числа.

По существу этот ЦАП — инвертирующий усилитель на основе операционного усилителя. Анализ такой схемы не представляет затруднений. Так, если замкнут один ключ

S1, то u вых = −U 0 R oc / R

что соответствует в первом и нулям в остальных разрядах.

Из анализа схемы следует, что модуль выходного напряжения пропорционален числу, двоичный код которого определяется состоянием ключей S 1 …S 4 . Токи ключей S 1 …S 4 суммируются в точке «а», причем токи различных ключей различны (имеют разный «вес»). Это и определяет название схемы.

Из вышеизложенного следует, что u вых = − (U 0 R oc / R) · S 1 − (U 0 R oc / (R/2)) · S 2 - − (U 0 R oc / (R/4)) · S 3 − (U 0 R oc / (R/8)) · S 4 = = − (U 0 R oc / R) · (8S 4 + 4S 3 + 2S 2 + S 1)

где S i ,i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

Состояние ключей определяется входным преобразуемым кодом. Схема проста, но имеет недостатки: значительные изменения напряжения на ключах и использование резисторов с сильно отличающимися сопротивлениями. Требуемую точность этих сопротивлений обеспечить затруднительно.

ЦАП на основе резистивной матрицы R — 2R

Рассмотрим ЦАП на основе резистивной матрицы R — 2R(матрицы постоянного сопротивления) (рис. 3.89).

В схеме использованы так называемые перекидные ключи S 1 …S 4 , каждый из которых в одном из состояний подключен к общей точке, поэтому напряжения на ключах невелики. Ключ S 5 замкнут только тогда, когда все ключи S 1 …S 4 подключены к общей точке. Во входной цепи использованы резисторы всего с двумя различными значениями сопротивлений.

Из анализа схемы можно увидеть, что и для нее модуль выходного напряжения пропорционален числу, двоичный код которого определяется состоянием ключей S 1 …S 4 . Анализ легко выполнить, учитывая следующее. Пусть каждый из ключей S 1 …S 4 подключен к общей точке. Тогда, как легко заметить, напряжение относительно общей точки в каждой следующей из точек «a»…«d» в 2 раза больше, чем в предыдущей. К примеру, напряжение в точке «b» в 2 раза больше, чем в точке «а» (напряжения U а, U b , U c и U d в указанных точках определяются следующим образом:

Допустим, что состояние указанных ключей изменилось. Тогда напряжения в точках «a»…«d» не изменятся, так как напряжение между входами операционного усилителя практически нулевое.

Из вышеизложенного следует, что:

u вых = − (U 0 R oc / 2R) · S 4 − ((U 0 /2) R oc / 2R) · S 3 - ((U 0 /4) R oc / 2R) · S 2 − ((U 0 /8) R oc / 2R) · S 1 = − (U 0 R oc / 16R) · (8S 4 + 4S 3 + 2S 2 + S 1)

где S i , i = 1, 2, 3, 4 принимает значение 1, если соответствующий ключ замкнут, и 0, если ключ разомкнут.

ЦАП для преобразования двоично-десятичных чисел

Рассмотрим ЦАП для преобразования двоично-десятичных чисел (рис. 3.90).



Для представления каждого разряда десятичного числа используется отдельная матрица R − 2R (обозначены прямоугольниками). Z 0 …Z 3 обозначают числа, определенные состоянием ключей каждой матрицы R − 2R. Принцип действия становится понятным, если учесть, что сопротивление каждой матрицы R, и если выполнить анализ фрагмента схемы, представленного на рис. 3.91. Из анализа следует, что

U 2 = U 1 · [ (R||9R) / (8,1R + R||9R) ]

R||9R = (R · 9R) / (R + 9R) = 0,9R

Следовательно, U 2 = 0,1 U 1 . С учетом этого получим

u вых = − (U 0 R oc / 16R) · 10 −3 (10 3 · Z 3 + 10 2 · Z 2 + 10 · Z 1 + Z 0)

Наиболее распространенными являются ЦАП серий микросхем 572, 594, 1108, 1118 и др. В табл. 3.2 приведены…

Параметры некоторых ЦАП


Цифро-аналоговый преобразователь (ЦАП) – устройство, выполняющее преобразование входного цифрового сигнала (кода) в аналоговый.

ЦАП широко используется там, где необходимо с помощью цифровой информации, выдаваемой ЭВМ, управлять аналоговыми устройствами, например, осуществлять перемещения клапана, пропорциональные рассчитанному значению цифрового сигнала. ЦАП используются для согласования ЭВМ (ЦУ) с аналоговыми устройствами, в качестве внутренних узлов АЦП и цифровых измерительных приборов. В составе аналого-цифровых преобразователей ЦАП служит для формирования аналогового сигнала (тока или напряжения), с которым сравнивается преобразуемый сигнал.

Основной характеристикой ЦАП является разрешающая способность, определяемая числом разрядов n . Теоретически ЦАП, преобразующий n -разрядные двоичные коды, должен обеспечить 2n различных значений выходного сигнала с разрешающей способностью (2n – 1)-1. Абсолютное значение минимального выходного кванта напряжения определяется как предельным принимаемым числом 2n – 1, так и максимальным выходным напряжением ЦАП, называемым напряжением шкалы U шк. Так, при 12 разрядах число независимых квантов (ступенек) выходного напряжения ЦАП составляет 212 – 1 = 0,0245%. Выбранное с помощью опорного источника напряжение шкалы U шк = 10B, разделенное на это число квантов, дает абсолютную разрешающую способность ЦАП

Dx = U шк/(2n – 1) = 103 мB/ (212 – 1) = 2,45 мВ.

Характеристика преобразования (ХП) ЦАП – совокупность значений выходной аналоговой величины хi в зависимости от входного кода бi .

Характеристика преобразования (или передаточная характеристика) ЦАП изображена на рис. 3.15.

Рис. 3.15. Передаточная характеристика ЦАП; A – линейность; B – нелинейность; C – немонотонность; D – выходной сигнал; E – прямая, соединяющая идеальные значения уровней выходного сигнала; dпш – погрешность полной шкалы

Отличие реального значения разрешающей способности от теоретического обусловлено погрешностями узлов и шумами ЦАП. Точность ЦАП определяется значениями абсолютной погрешности прибора, нелинейностью и дифференциальной нелинейностью.

Абсолютная погрешность dшк представляет отклонение значения выходного напряжения (тока) от номинального расчетного, соответствующего конечной точке характеристики преобразования (см. рис. 3.15). Абсолютная погрешность обычно измеряется в единицах младшего значащего разряда (МЗР).

Нелинейность dл характеризует идентичность минимальных приращений выходного сигнала во всем диапазоне преобразования и определяется как наибольшее отклонение выходного сигнала от прямой линии абсолютной точности, проведенной через ноль и точку максимального значения выходного сигнала. Значение нелинейности не должно превышать ±0,5 единицы МЗР.

Дифференциальная нелинейность dл.диф характеризует идентичность соседних приращений сигнала. Ее определяют как минимальную разность погрешности нелинейности двух соседних квантов в выходном сигнале. Значение дифференциальной нелинейности не должно превышать удвоенное значение погрешности нелинейности. Если значение dл.диф больше единицы МЗР, то преобразователь считается немонотонным, т.е. на его выходе выходной сигнал не может наращиваться равномерно при равномерном возрастании входного кода.

Немонотонность в некоторых квантах дает уменьшение выходного сигнала при нарастании входного кода.

Аппаратурная погрешность, определяемая нестабильностью источника опорного напряжения, погрешностью ключей, резистивных матриц и выходных операционных усилителей, называется инструментальной погрешностью. Основными факторами, вызывающими возникновение погрешностей элементов, являются: технологический разброс параметров; влияние изменений окружающей среды (в основном температуры); изменение параметров во времени (старение); воздействия внешних и внутренних шумов и помех.

Все инструментальные погрешности проявляются, в основном, в следующих видах:

а) смещения нуля, характеризующего параллельный сдвиг передаточной характеристики ЦАП от усредненной прямой (вызывается напряжением смещения нуля и ненулевым входным током ОУ, а также остаточными параметрами ключей);

б) изменения коэффициента передачи, характеризующего отклонения крутизны реальной передаточной характеристики от усредненной прямой;

в) отклонения передаточной характеристики преобразователя от идеальной прямой (такая нелинейность преобразования проявляется как неидентичность приращений выходного сигнала в функции от входного кода).

К динамическим характеристикам ЦАП относятся временные параметры и максимальная частота преобразования.

Временные параметры определяют быстродействие преобразователей. Различают три временных параметра: шаг (период) квантования Dt , время преобразования (время установления выходного сигнала) t пр, длительность цикла преобразования t ц.

Шаг (период) квантования Dt – интервал времени между двумя последовательными преобразованиями. Значение, обратное периоду квантования 1/Dt = f кв, называется частотой квантования.

Время установки выходного сигнала ЦАП t пр – время от момента изменения кода на входах ЦАП до момента, когда значение выходной аналоговой величины отличается от установившегося на заданную величину (рис. 3.16).

Рис. 3.16. Определение времени t пр преобразования ЦАП

Длительность цикла преобразования t ц – время между моментом подачи входного кода и выдачей выходного аналогового сигнала (t ц = t пр). Определяется, в основном, циклограммами и временными диаграммами, описывающими работу информационно-вычислительных устройств и систем с имеющимися преобразователями.

Максимальная частота преобразования – наибольшая частота дискретизации, при которой параметры ЦАП соответствуют заданным значениям.

Работа ЦАП часто сопровождается специфическими переходными импульсами, которые представляют собой острые пики большой амплитуды в выходном сигнале, возникающие из-за разности времен открывания и закрывания аналоговых ключей в ЦАП. Особенно выбросы проявляются, когда вместо нуля в старшем значащем разряде и единиц в младших разрядах кода поступает единица в старший значащий разряд (СЗР) и код «все нули» в МЗР. Например, если входной код 011...111 сменяется кодом 10...000, а ключ старшего ЦАП открывается позже, чем закрываются ключи младших, то приращение выходного сигнала всего на один квант может сопровождаться импульсом с амплитудой 0,5U шк. Длительность этого пика будет соответствовать запаздыванию смены состояния ключей.

В настоящее время, в зависимости от значений параметров, выделяют прецизионные и быстро-действующие ЦАП. Прецизионные ЦАП имеют dл = 0,1%, а быстродействующие t уст = 100нс.