Приборы для измерения постоянных токов. Приборы для измерения силы тока и напряжения. Единицы измерения мощности электрического тока

  • 20.05.2019

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются или генераторы тока.

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «~ », для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся у вас измерительный прибор к работе:

  • Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  • Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  • Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, . Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  • Включить прибор.

Из рисунка видно, что на тестере выбрана граница измерений 300 вольт, а на мультиметре 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.

Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения .

Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.

Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.

Единицы измерения мощности электрического тока.

Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.

Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле P = А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.

На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.

Приборы для измерения электрического тока.

Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:

  1. Амперметр — хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
  2. Мультиметр — это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал .
  3. Тестер — то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
  4. Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.

Как правильно измерять силу тока.

Для того что бы измерить силу для потребителей , необходимо один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме аккумулятора или проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.

Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.

Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети, измерительное устройство переводится в режим измерения переменного тока с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в .

Все работы необходимо проводить только после снятия напряжения.

После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.

Согласитесь, что выше описанные методы очень не удобны и да же опасны!

Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.

Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.

Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.

Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!

Похожие материалы:

При проверке силовых электрических цепей часто возникает необходимость в измерении силы тока. Чтобы измерить величину постоянного тока, как правило, применяют резисторный шунт, включенный последовательно с нагрузкой, напряжение на котором пропорционально току. Однако, если возникнет необходимость в измерении больших токов, то потребуется шунт внушительной мощности, поэтому целесообразнее использовать другие методы измерения.

В связи с этим у меня возникла идея собрать измеритель тока на основе датчика Холла. Его схема представлена на рисунке.

Особенности амперметра:

  • Измерение силы переменного или постоянного тока без электрического контакта с цепью
  • Измерение истинного среднеквадратичного (TrueRMS) значения тока независимо от формы сигнала, а также максимального значения за период (приблизительно 0.5 секунды)
  • Вывод информации на символьный LCD дисплей
  • Два режима измерения (до 10А и до 50А)

Схема работает следующим образом. Провод с током располагается внутри ферритового кольца, создавая при этом магнитное поле, величина которого прямо пропорциональна силе тока. Датчик Холла, расположенный в воздушном зазоре сердечника, преобразует величину индукции поля в напряжение, и это напряжение подается на операционные усилители. ОУ необходимы, чтобы привести уровни напряжения с датчика к диапазону входных напряжений АЦП. Полученные данные обрабатываются микроконтроллером и выводятся на LCD дисплей.

Предварительный расчет схемы

В качестве сердечника использовано кольцо R20*10*7 из материала N87. Датчик Холла - SS494B.

С помощью надфиля в кольце протачивается зазор такой толщины, чтобы там поместился датчик, то есть около 2 мм. На данном этапе уже можно примерно оценить чувствительность датчика к току и максимально возможный измеряемый ток.

Эквивалентная проницаемость сердечника с зазором приблизительно равна отношению длины магнитной линии к величине зазора:

Тогда, подставив это значение в формулу расчета индукции в сердечнике и умножив это все на чувствительность датчика, найдем зависимость выходного напряжения датчика от силы тока:

Здесь K B - чувствительность датчика к индукции магнитного поля, выраженная в В/Тл (берется из даташита).

Например, в моем случае l з = 2 мм = 0,002 м, K B = 5 мВ/Гаусс = 50 В/Тл, откуда получаем:

Реальная чувствительность к току оказалась равной 0,03В/А , то есть расчет получается весьма точным.

Согласно даташиту на SS494B, максимальная измеряемая датчиком индукция равна 420 Гауссов, следовательно максимальный измеряемый ток равен:

Фото датчика в зазоре:

Расчет цепей ОУ

В амперметре имеется два канала: до 10 А (23 вывод МК), и до 50 А (24 вывод МК). Переключением режимов занимается мультиплексор АЦП.

В качестве опорного напряжения АЦП выбран внутренний ИОН, поэтому сигнал необходимо привести к диапазону 0 - 2.56 В. При измерении токов величиной ±10 А напряжение датчика составляет 2,5±0,3 В, следовательно нужно усилить и сместить его так, чтобы нулевая точка находилась точно посередине диапазона АЦП. Для этого используется ОУ IC2:A, включенный как неинвертирующий усилитель. Напряжение на его выходе описывается уравнением:

Здесь под R2 подразумеваются последовательно соединенные R2 и P2, а под R3 соответственно R3 и P3, чтобы выражение не выглядело слишком громоздким. Чтобы найти сопротивления резисторов запишем уравнение дважды (для токов -10А и +10А):

Напряжения нам известны:

Задав R4 равным 20 кОм, получаем систему из двух уравнений, где переменными являются R2 и R3. Решение системы можно легко найти с помощью математических пакетов, например MathCAD (файл расчетов приложен к статье).

Аналогичным образом рассчитывается и вторая цепь, состоящая из IC3:A и IC3:B. В ней сигнал с датчика сначала проходит через повторитель IC3:A, а затем попадает на делитель на резисторах R5, R6, P5. После ослабления сигнала, он дополнительно смещается операционным усилителем IC3:B.

Описание работы микроконтроллера

Микроконтроллер ATmega8A выполняет обработку сигналов с ОУ и вывод результатов на дисплей. Он тактируется от внутреннего генератора на 8 МГц. Фьюзы стандартные, за исключением CKSEL. В PonyProg они выставляются так:

АЦП сконфигурирован на работу с частотой 125 кГц (коэффициент деления равен 64). По окончании преобразования АЦП вызывается обработчик прерывания. В нем запоминается максимальное значение тока, а также суммируются квадраты токов последовательных выборок. Как только число выборок доходит до 5000, микроконтроллер вычисляет RMS значение тока и выводит данные на дисплей. Затем переменные обнуляются и все происходит с начала. На схеме указан дисплей WH0802A, но можно использовать любой другой дисплей с контроллером HD44780.

Прошивка микроконтроллера, проект для CodeVision AVR и файл симуляции в Proteus приложены к статье.

Настройка схемы

Настройка устройства сводится к регулировке подстроечных резисторов. Сначала нужно настроить контрастность дисплея, вращая P1.

Затем, переключившись кнопкой S1 в режим до 10А, настраиваем P2 и P3. Выкручиваем один из резисторов максимально вправо и, вращая второй резистор, добиваемся нулевых показаний прибора. Пробуем измерить ток, величина которого точно известна, при этом показания амперметра должны получиться ниже, чем есть на самом деле. Подкручиваем оба резистора немного влево, так чтобы сохранилась нулевая точка, и опять измеряем ток. На этот раз показания должны стать чуть больше. Продолжаем это до тех пор, пока не добьемся точного отображения величины тока.

Теперь переключимся в режим до 50А и настроим его. Резистором P4 выставляем ноль на дисплее. Измеряем какой-либо ток и смотрим на показания. Если амперметр завышает их, то крутим P5 влево если занижает, то крутим вправо. Опять выставляем ноль, проверяем показания при заданном токе и так далее.

Фото устройства

Измерение постоянного тока:



Из-за недостаточно точной калибровки, значения немного завышаются.

Измерение переменного тока частотой 50 Гц, в качестве нагрузки используется утюг:

В теории среднеквадратичный ток синусоиды равняется 0.707 от максимального, но, судя по показаниям, этот коэффициент равен 0.742. После проверки формы напряжения в сети, выяснилось что оно лишь напоминает синусоиду. Учитывая это, такие показания прибора выглядят вполне достоверными.

У прибора все же есть недостаток. На выходе датчика постоянно присутствуют шумы. Проходя через ОУ, они попадают на микроконтроллер, в результате чего невозможно добиться идеального нуля (вместо нуля отображается примерно 30-40 мА RMS). Это можно исправить, увеличив емкость C7, но тогда ухудшатся частотные характеристики: на высоких частотах показания будут занижаться.

Использованные источники

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATmega8A

1 DIP-28 В блокнот
IC2, IC3 Операционный усилитель

MCP6002

2 SOIC-8 В блокнот
IC4 Линейный регулятор

L78L05

1 В блокнот
IC5 Датчик Холла SS494B 1 В блокнот
C1-C7 Конденсатор 100 нФ 9 К10-17б В блокнот
R1, R3, R6, R9 Резистор

10 кОм

4 SMD 1206 В блокнот
R2 Резистор

12 кОм

1 SMD 1206 В блокнот
R4 Резистор

20 кОм

1 SMD 1206 В блокнот
R5 Резистор

6.8 кОм

1 SMD 1206 В блокнот
R7, R8 Резистор

100 кОм

2 SMD 1206 В блокнот
P1 Подстроечный резистор 10 кОм 1 3362P В блокнот
P2 Подстроечный резистор 4.7 кОм 1 3362P

В ходе эксплуатации электросети или какого-либо прибора приходится выполнять измерение силы тока.

Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.

Заодно поговорим о мерах безопасности при проведении подобных работ.

Единица измерения силы тока

Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения - ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).

Силу тока можно сравнить с напором воды. Как известно, в старину небольшие речки перегораживали плотинами, чтобы создать напор, способный вращать колесо мельницы.

Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.

Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.

Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:

Сила тока, А (переменный с частотой 50 Гц) Эффект
Менее 0,5 мА является незаметным для человека
От 0,5 до 2 мА Появляется нечувствительность к различным раздражителям
От 2 до 10 мА Болевые ощущения, спазм мышц
От 10 мА до 20 мА Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью
От 20 мА до 100 мА Дыхательный паралич
От 100 мА до 3 А Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего
Свыше 3 А Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется)

А вот еще несколько причин:

  1. Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
  2. По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.

Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:

W = U * I,

  • W – мощность, Вт;
  • U – напряжение, В;
  • I – сила тока, А.

Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.

Формула измерения силы тока

При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.

Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).

Чтобы определить активную мощность (полезная работа электричества), нужно знать фактический коэффициент мощности для данного прибора, представляющий собой соотношение активной и реактивной мощностей.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.

Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной - только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

Отметим два важных обстоятельства:

  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заземление необходимо для безопасной эксплуатации электричества. – наиболее важный компонент электрической сети.

Трансформатор 220 на 12 Вольт – назначение и рекомендации по изготовлению вы найдете .

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Видео на тему