Тоновая коррекция в Photoshop. Советы пользователю. телевизоры

  • 21.07.2019

Алгоритмы улучшения качества изображений, хранящихся в растровых графических форматах, получают всё большее распространение. На сегодняшний день их существует огромное количество и беспрерывно появляются новые. Это связано с появлением новых способов и технических средств получения, передачи и воспроизводства растровых изображений. Алгоритмы обработки изображений, в основном, ориентированы на ликвидацию недоработок в технических средствах и технологиях, работающих с изображениями. Эти недоработки можно идентифицировать не только визуально, но и пользуясь описанием технических характеристик техники и технологий.

Перед тем, как улучшать изображение, необходимо дать оценку его качеству. Человек, бросив один взгляд на изображение, может сказать яркое оно или тёмное, контрастное или нет, чёткое или размытое и т.д. Алгоритмы же работают детально, анализируя изображение попиксельно или небольшими группами пикселей. Поэтому, на основании работы алгоритма, тяжело дать общую оценку качеству изображения.

К показателям, по которым можно оценить изображение как единое целое, относятся следующие:

  • яркость;
  • контрастность;
  • преобладающий тон;
  • резкость.

Прежде чем приступить к выработке критериев и методов оценки качества, необходимо выбрать цветовую модель. Наиболее удобной представляется модель RGB по нескольким причинам:

  • эта модель достаточна проста как для понимания, так и для математического описания;
  • она применяется во многих технических устройствах и, при необходимости, преобразуется в другие цветовые модели;
  • она близка к представлениям о природе чувствительности к цвету человеческого глаза.

Требования к критериям оценки качества изображений следующие:

  • показатели качества для сравнения с критериями должны вычисляться;
  • значения критериев должны иметь относительный характер (не зависеть от диапазона яркости RGB);
  • критерии должны быть понятны и наглядны для человека.

Достаточно наглядно оценка качества изображения может быть представлена с помощью RGB-гистограмм.


Рис. 1. Гистограмма тёмного неконтрастного изображения


Рис. 2. Гистограмма светлого изображения


Рис. 3. Гистограмма сбалансированного полутонового изображения


Рис. 4. Гистограмма высококонтрастного изображения


Рис. 5. Гистограмма постеризованного изображения

Недостатком этого способа является отсутствие численного выражения для показателей качества.

Цветовую модель RGB удобно представить в виде куба в прямоугольной системе координат, где в начале координат расположена точка чёрного цвета (яркость R = G = B = 0), а вдоль осей возрастают значения яркости R, G и B. На главной диагонали куба, выходящей из начала координат, расположены ахроматические цвета.


Рис. 6. Цветовая модель RGB

В вершинах куба расположены основные цвета (красный, зелёный, синий), дополнительные к ним (жёлтый, циан и пурпурный), а также чёрный и белый. На гранях куба находятся так называемые «чистые» тона.


Рис. 7. RGB - куб и его невидимые грани

Отсутствие у цвета третей составляющей - признак «чистого» тона. Появление и увеличение доли третьей составляющей в цвете приводит к снижению насыщенности тона, т.е. к приближению данного цвета к ахроматическим цветам.

Оценка яркости изображения

Яркость изображения можно выразить как среднюю яркость всех пикселей (математическое ожидание в терминах теории вероятностей).

Яркость пикселя вычисляется по формуле:

Яркость всего изображения Y, содержащего N пикселей будет равна:

Данное выражение характеризует физическую яркость изображения. Поскольку чувствительность человеческого газа к разным частям спектра неодинакова (максимальная в жёлто-зелёной, меньше в красной, ещё меньше в синей), яркость цветного пикселя будет восприниматься субъективно в зависимости от его тональных характеристик.


Рис. 8. Чувствительность человеческого глаза к различным частям спектра


Оценка как физической (), так и видимой () яркости изображения представлена в абсолютных величинах. Перейти к относительным величинам можно разделив значение яркости на максимально возможное значение яркости:

Тогда будет лежать в диапазоне . Значение 0 будет соответствовать абсолютно чёрному изображению, а значение 1 – абсолютно белому. Изображение оптимальной яркости должно иметь значение близкое к 0.5.

Оценка контрастности изображения

Контрастность изображения бывает яркостная и тоновая.

Яркостная контрастность представляет собой разницу между физической или видимой яркостью отдельных участков изображения. Вообще говоря, вычисление физической или видимой яркости можно рассматривать как конвертацию цветного изображения в ахроматические цвета. Поэтому яркостная контрастность - это сравнение двух участков изображения, приведенных к ахроматическим цветам.

Если проанализировать RGB-гистограммы, то можно сделать вывод, что у контрастного изображения количество тёмных и светлых пикселей должно быть приблизительно одинаковым, разница в их яркости - значительна, а основное место сосредоточения пикселей - возле границ диапазона.

Хорошим критерием оценки яркостной контрастности будет дисперсия яркости пикселей изображения:

Более универсальный безразмерный критерий оценки яркостной контрастности - отношение средне-квадратического отклонения к максимально возможному значению яркости:

C изменяется в диапазоне . Значение 0 соответствует однотонному изображению, значение 1 - максимально контрастному. Оптимальное значение контрастности зависит от типа объекта, представленного на изображении.

Более сложный случай представляет тоновая контрастность. Конвертированные в оттенки серого цвета могут иметь одинаковую яркость, но визуально чётко различаться.

Можно вычислить «средний тон» пикселя для всего изображения. Его удобно выразить через средние значения RGB:

Расстояние в RGB кубе между пикселями изображения и «средним тоном» определяется по формуле:


В качестве оценки тоновой контрастности изображения можно взять среднее расстояние в RGB кубе между пикселями и «средним тоном»:

В RGB-кубе максимальное расстояние между двумя точками равно длине главой диагонали:

Хорошую тоновую контрастность будут иметь пиксели, расположенные на расстоянии , или (длины ребра RGB-куба):

=~R_max"/>

Оценка преобладающего тона

Оценка тоновой насыщенности

Тоновая насыщенность - это отличие цвета от ахроматического при их одинаковой яркости. В RGB-кубе тоновую насыщенность пикселя можно выразить как расстояние до диагонали ахроматических цветов:


Для всего изображения оценка тоновой насыщенности может быть выражена как среднее значение тоновой насыщенности для всех пикселей:

Оценка резкости изображения

Понятие резкость, как характеристику аппаратных средств и технологий, можно разделить на три составляющие:

  • резкость, как характеристика фокусировки объектива на объект;
  • резкость как характеристика оборудования, позволяющая воспроизводить без искажений яркостный переход максимального контраста;
  • резкость как результат специальной обработки исходного изображения.

Идеальное оборудование должно обеспечить вывод информации о смене цвета в элементе изображения таким образом, чтобы никакого промежутка между цветами не было.

С физической точки зрения нерезкий переход можно рассматривать как диффузное смешение двух контрастных цветов.

С точки зрения человеческого восприятия резкость — это наличие контура контрастного перехода (яркостного или тонового) между двумя соседними частями изображения.

Для оценки резкости изображения в ахроматических цветах удобно использовать яркость пикселей. Такое изображение может быть представлено прямоугольной матрицей (размерностью соответствующей размерам изображения в пикселях), элементами которой являются значения яркости пикселя.


Рис. 9. Контрастный (сверху) и неконтрастный (снизу) переходы между цветами

Поскольку в настоящее время в большинстве случаев используется квадратный пиксель, можно составить другую матрицу (матрицу яркостных контрастов), элементами которой будут разности яркости последующего и предыдущего пикселей по горизонтали или по вертикали ( или ). Можно учитывать и диагональные разности.

Значения элементов матрицы характеризуются следующим образом:

Далее осуществляется сканирование строк для разностей по горизонтали (столбцов для разностей по вертикали) матрицы яркостных контрастов. Строка (столбец) разбивается на участки, в которые входят элементы, имеющие одинаковый знак (переходые участки) или участки со значениями элементов равными 0.

Для каждого переходного участка оценивается:

Для проведения анализа матрицы яркостных контрастов необходимо определить критерии и их значения: какое значение элемента матрицы считать контрастным переходом, а какое - нет.

Порог «минимальной заметной разницы» контрастной чувствительности (JND) или дифференциальный порог определяют согласно закона Вебера-Фехнера, который формулируется следующим образом: субъективная величина ощущения, измеренная в единицах минимальной заметной разницы, пропорциональна логарифму физической величины стимула:

Закон утверждает: ощущение разницы между близкими по величине стимулами пропорциональна величине стимулов, т.е.:

Это отношение называется пороговым контрастом, а - дифференциальным порогом. В средине дифференциального порога изменения интенсивности стимула не ощутимы.

Отношение Вебера-Фехнера (пороговый контраст) составляет 1-3%.

Таким образом, для каждого переходного участка матрицы яркостных контрастов в идеальном случае или , ~0.03"/> (здесь и далее - крутизна участка).

Поскольку критерии оценки резкости связаны с локальными участками изображения, общая оценка резкости по этим критериям будет сильно зависеть от типа объекта на изображении (документ, пейзаж и т.д.). И всё же в качестве оценки резкости всего изображения можно предложить средние значения длины и крутизны для всех n переходных участков.

Для оценки резкости цветных изображений вместо разности яркости соседних пикселей можно использовать расстояние в RGB-кубе между цветами этих пикселей:


При сканировании матрицы тоновых контрастов, подобно сканированию матрицы яркостных контрастов, необходимо контролировать тенденцию изменения тона: отрезки, соединяющие пиксели в RGB-кубе должны лежать на одной прямой. Реально они могут иметь некоторое незначительное отклонение ε. Осуществить такой контроль можно сравнивая сумму длин расстояний между цветами в RGB-кубе с расстоянием между крайними точками этой ломаной линии:


Прекращение выполнения данного условия можно считать границей участка.

И для всего цветного изображения вычисляются также, как и для ахроматического изображения.

Несмотря на грубость и приблизительность предложенных критериев и методов оценки, их можно успешно использовать для предварительного отбора изображений из больших массивов в автоматическом режиме; для предварительной оценки качества изображений с целью выбора более детальных методов оценки и т.п.

Литература:

  • David H. Hubel. Eye, blain and vision. – Scientific American library a division of help. – New York.
  • А.Гонта, Е.Седов Резкость изображения и оборудование CCTV.

Не путайте яркость видимого изображения (проекции) с яркостью исходящего в сторону экрана светового потока.

Яркость проекции — это световой поток, рассеянный экраном в сторону зрителя.

Яркость изображения можно оценить с помощью следующих референсных показателей:

12-16 fL - для коммерческого кинотеатра (стандарт THX)

40-45 fL – средний показатель яркости полностью белого поля для ЖК панели

Метрические единицы: Nit или Candela/m² = Lux x к.усиления / p

1 Lux отраженный от Lambertian (референсной отражающей) поверхности равен 1 Nit

Имперские единицы: Foot Lambert = Foot Candles * к.усиления / p

Пересчет FtL в Nit: x 3,43 т.е. 16 FtL равно 55 Nits

Как правильно рассчитать ожидаемую яркость изображения?

Существует простая формула, позволяющая рассчитать ожидаемую яркость изображения.

Т.е. Яркость проектора в ANSI люменах / площадь экрана в кв.футах * к. отражения экрана = яркость в fL

В теории люмены и фут-Ламберты напрямую связаны. Один фут-Ламберт светимости, равен одному люмену на квадратный фут. Но, как обычно, не все так прямолинейно. Эта формула не учитывает посторонней засветки и ее направления, не учитывает износ лампы или калибровку проектора (которая способна снизить исходящий световой поток на 40%). Чтобы не ошибиться можно либо изначально брать лишь 70%, заявленной в спецификации яркости проектора при расчетах, либо брать как приемлемый уровень показатели от 20 до 40 fL.

Более высокая яркость позволит компенсировать негативное влияние посторонней засветки и поднять уровень реальной контрастности.

В принципе, не рекомендуется увлекаться «магией цифр» в спецификациях. При указании параметра яркость в ANSI люменах, производители не указывают все параметры измерения. Многие проекторы имеют функции оптимизации изображения, которые существенно влияют на результат. Это приводит к тому, что проектор с заявленной яркостью 700 ANSI, может быть по факту ярче проектора с показателем 1500 ANSI. Таким образом, спецификации - довольно условный источник данных для расчета ожидаемых показателей.

На какие типы делятся проекционные экраны?

Проекционные экраны делятся на различные категории:

  • По типу полотна: с гибким полотном и с жестким полотном (пластик, стекло)
  • По типу проекции: фронтальная и экраны обратной проекции
  • По исполнению: рамные, сворачиваемые и мобильные

Внутри дополнительно они делятся на подвиды:

Рамные экраны: сложно дать называния группам, очень много разных типов рам, полотно может крепиться к раме кнопками, крючками и спицами, липучкой, в больших диагоналях полотно почти всегда с люверсами.

Сворачиваемые: с электроприводом и с ручным управлением; с растяжками и без растяжек; страиваемые в потолок и настенно-потолочные.

Мобильные: на треноге, напольные, на стойках (в т.ч. тип экрана, называемый Fast-Fold, это торговая марка Da-lite, которая стала в области экранов почти тем же, что Xerox в копировальной технике).

В чём преимущество обратной проекции?

Экраны обратной проекции обеспечивают более высокое качество картинки в условиях сильной засветки (при условии отсутствия засветки в аппаратной комнате)

Для каких задач используются экраны с жестким полотном?

Жесткие экраны - это, как правило, обратная проекция, поскольку такой экран, кроме, собственно, функций экрана, выполняет функцию части стены, т.е. отделяет аппаратную от зоны просмотра, он должен изолировать зрителей от шума. В основном, это большие диагонали и, собственно, яркие и шумные проекторы.

Также есть примеры установки жестких экранов обратной проекции в уличных кинотеатрах. Проектор прячется в помещении, а в проем в стене вставляется экран, который не боится влажности.

Гибкие виниловые полотна обратной проекции заметно дешевле, и их проще транспортировать, но звукоизоляцию они не обеспечивают.

Какие существуют типы традиционных экранов (прямой проекции с гибким полотном)?

Следует разделять свойства полотна (материала) и тип экрана. Одна и та же модель экрана (рамного, электрического) и т.п. может быть выполнена с разными полотнами.

Свойства полотна определяются уровнем внешней засветки, разрешением контента (офисные полотна не предназначены для работы с высоким разрешением), яркостью проектора.

Если любитель кино или организация выбирают экран, то им следует рассматривать отдельно, какой тип экрана будет для них оптимален и отдельно - параметры полотна.

В сегменте дешевых экранов выбор невелик, обычно полотно Matte White (белое матовое) или High Contrast (слегка серое). В сегменте повыше, одна модель экрана может иметь от трех до двенадцати вариантов полотна.

В какой степени полотно экрана способно повлиять на качество изображения в различных условиях? Какую долю в стоимости системы должен составлять экран?

Свойства полотна экрана могут очень заметно влиять на качество изображения. В некоторых случаях правильно подобранное полотно в сочетании с не самым дорогим проектором может дать в итоге более качественную картинку, чем самый дорогой проектор с «неправильным» полотном.

Завязывать стоимость экрана, на стоимость проектора подход неверный.

Это как со звуком: купив более дорогой источник за счет экономии на акустике, мы получим плохой звук, поскольку это элементы системы. Аналогично в сочетании проектор – экран.

На какие параметры изображения может влиять качество полотна экрана?

Основными параметрами изображения, на которые могут повлиять свойства полотна являются:

  • яркость
  • реальная контрастность
  • цветопередача
  • равномерность яркости по полю
  • разрешение

Как качество полотна может влиять на яркость?

За счет коэффициента отражения (gain) более 1.0 изображение становится более ярким (по сравнению с эталонной отражающей поверхностью). Человеческий глаз отстраивается по самому яркому (как правило белому) цвету, и в итоге более яркое изображение воспринимается, как более контрастное. Но есть предел: после определенного порога изменения яркости уже не воспринимается. Фотометр будет видеть картинку по-другому, для него кривая восприятия ровная.

Это физиологическое свойство восприятия давно известно используется в живописи, фотографии и, соответственно, применимо в кино. Вот хороший материал на эту тему.

Как качество полотна может влиять на реальную контрастность?

Реальная контрастность измеряется при выведении «шахматки» по методике ANSI, в отличие от физиологического восприятия, измеряется фотометром. Тут учитываются свойства матрицы проектора (насколько «черный» черный), внешняя засветка и способность полотна работать с этой засветкой. Если базовый слой экрана имеет к. отражения ниже 1.0, а оптическое покрытие его повышает, то получается, что на темных участках полотно дает более темный «черный», на светлых - увеличивает яркость.

Также, полотна с к.отражения более 1.0 имеют направленную диаграмму рассеивания, т.е. свет падающий под острыми углами (фоновая засветка) рассеивается не в сторону зрителя, а под равным углу падения, противоположном направлении.

Как качество полотна может влиять на цветопередачу?

«Правильное» полотно может работать с яркостью изображения, т.е. со всем диапазоном белого света (тут мы помним, что черный, он же серый, есть разновидности белого, отличающиеся между собой только яркостью, в нем присутствует все цвета диапазона), не влияя на цветовой тон. Некачественное полотно может изменить тон изображения.

Экраны с высоким к. отражения могут начать работать как призма, разлагая цвета на компоненты, причем по разному, в зависимости от угла падения. В итоге мы получаем сдвиг по цвету, причем неравномерный по площади экрана.

Некоторые любители кино боятся ставить серый экран, поскольку полагают, что они в итоге не получат «белого» цвета, т.е. его тональность изменится. Фактически, если экран хорошего качества, он изменит только яркость проекции и контраст между участками изображения, но не повлияет на соотношение цветов в белом свете.

Как качество полотна может влиять на равномерность яркости?

Если взять точечный источник света, который изначально дает равномерную засветку экрана (некоторые проекторы изначально имеют проблемы с равномерной засветкой всей площади экрана по яркости), то в центр экрана и на его края свет будет падать под разными углами. Правильное полотно с к.отражения 1.0 должно дать равномерную яркость рассеиваемого света по всей площади. Если к.отражения более 1.0 то яркость должна быть в пределах приемлемых показателей (тут не знаю точных цифр, и есть ли по этом поводу стандарты, но понятно, что чем ровнее будут цифры яркости во всех точках экрана, тем лучше).

Как качество полотна может влиять на разрешение?

Проекционная поверхность экрана неровная, иначе она бы превратилась в зеркало, за счет микронеровностей достигается эффект рассеивания попавшего на экран света; чем меньше физический размер пикселя на экране (4K) тем более равномерными должны быть эти неровности; если они будут слишком большими или неравномерными, часть пикселей начнет отражаться в произвольном направлении, смешиваться между собой, в итоге мы фактически получаем потерю разрешения и проблемы с цветопередачей.

Почему экраны с высоким к.отражения имеют ограничение минимального проекционного расстояния?

Чем выше к.отражения, тем больше показатель неравномерности яркости изображения по всему полю экрана. Вызвано это тем, что чем ближе проектор расположен к экрану, тем больше отличаются углы падения света в центре экрана и на его края. Крайним проявлением подобной ситуации является эффект «hot spot», т.е. очень яркий блик по центру проекции.

Что такое «угол половинного падения яркости»?

Угол обзора напрямую завязан на «half gain» (угол половинного падения яркости). Данный параметр определяется экспериментальным путем: с помощью фотометра измеряется уровень отражаемого света при перпендикулярном расположении к плоскости экрана, далее фотометр начинает смещаться по радиусу, привязанному к геометрическому центру экрана. Там, где количество отраженного света падает на 50% от показателя, полученного на перпендикуляре, обозначается угол половинного падения яркости.

Угол половинного падения яркости определяет конус просмотра (угол), т.е. стандарты индустрии считают, что 50% падение яркости приемлемо для просмотра. Следует понимать, что при смещении по радиусу у нас смещается и «центр яркости» т.е. один край экрана становится ярче другого (если только экран не рассеивает свет ровно на 180 градусов).

Зная такой параметр как угол половинного падения яркости, мы знаем конус просмотра, в котором должен находиться зритель, чтобы видеть качественное изображение, т.е. максимальную ширину зрительского ряда в зависимости от дистанции просмотра.

Тангенс угла половинного падения яркости, умноженный дистанцию просмотра, даёт половину ширины зрительского ряда.

По поводу того, почему 50% считаются приемлемым показателем, возможно, есть данные на сайте ISF, но я не уверен. Государственных стандартов в этой области нет, только индустриальные, устанавливаемые авторитетными организациями ISF, THX, ANSI.

Для каких задач используют офисные экраны с соотношением сторон 1:1?

Никаких специальных особенностей у таких экранов нет. Единственно, что можно предположить, - их берут, как «универсальный» формат, т.е. выдвигают не полностью, чтобы получить 4:3, 16:10, 16:9. Как мне кажется, это сила привычки. Такие экраны выступают, как правило, в сегменте лоу-кост.

Контрастность изображения характеризует степень контраста в фотографии . Это безразмерная величина, количественно выражаемая отношением яркости самой светлой области изображения к самой темной.

Происходит от английского Contrast ratio - технический термин, используемый при определении отношения между самой сильной и самой слабой освещенностью контрольного экрана при проецировании на него белого и черного цветов.

Контрастность – одна из основных характеристик изображения, напрямую связанная с яркостью пикселей.

При увеличении контрастности изображения светлые участки (пиксели) становятся еще светлее, а темные темнее. В результате происходит перераспределение пикселей за счет среднего тонового диапазона. Часть из них переходит в света, а часть в тени.

При уменьшении контрастности изображения, наоборот происходит расширение среднего тонового диапазона за счет пограничных светов и теней. Темные пиксели становятся более светлыми, а светлые более темными и частично переходят в средние тона.

Высококонтрастное изображение вообще может не содержать средние тона. И, наоборот, малоконтрастное изображение будет иметь преимущественно серый цвет.

Есть немало изображений, снятых при неблагоприятных условиях освещения, имеющие блеклый, унылый вид. Такие изображения нуждаются в повышении контрастности.

Контрастность показывает, на сколько визуально различимы те или иные области (объекты, предметы) изображения. Она напрямую влияет на различимость деталей, четкость изображения .

Как определить контрастность изображения

Следует отметить, что контрастность изображения, величина субъективная. Одному человеку нравятся контрастные изображения, другому более мягкие тона.

По аналогии с оптическим контрастом, характеризующим различимость предмета от окружающего его фона, количественно контрастность изображения можно определить как отношение разности яркостей светлой и темной областей к светлой.

К = (В 1 – В 2) / В 1

Здесь К – контрастность изображения, В 1 - яркость самой светлой области, В 2 -яркость самой темной области.

Яркость отдельных точек изображения можно определить в фотошопе.

Если К=1, мы имеем абсолютный контраст. При К=0 контраст отсутствует. Изображение будет представлять собой серый фон. Детали будут неразличимы.

Правда это справедливо только для черно-белых изображений. Для них характерна яркосная контрастность.

На цветном изображении объекты, имеющие одинаковую яркость, могут быть хорошо различимы за счет цветовой контрастности.

Для добавления комментариев вам необходимо зарегистрироваться на сайте.

1. Линейное изменение яркости и контраста. При линейном изменении яркость и контраст в большинстве графических про­грамм (например, в программе Adobe Photoshop) оптимизируются одновременно и объединены одним диалогом.

Для линейного изменения яркости и контраста нужно выбрать из меню Изображение команду Коррекция и включить функцию Яр-


кость/Контраст. Затем в открывшемся диалоговом окнезадать нужное значение яркости и контраста 1 (рис. 209).

Рис. 209. Изображение, подвергнутое обработке, и диалоговое окно линейного изменения яркости и контраста

В диалоговом окне Яркость/Контраст всего две полосы, в ко­торых перемещением движков изменяют яркость и контраст. Для того чтобы изображение сделать более светлым, движок значения яркости перемещают вправо, более темным - влево. Аналогично увеличивают и уменьшают общий контраст изображения.

Данная функция изменения яркости и контраста позволяет пред­варительно оценить эффект обработки, для этого в диалоговом окне должен быть включен флажок Просмотр. В случае, если результат обработки устраивает пользователя, то нажимают кнопку Да.

При линейной коррекции яркость каждого элемента увеличива­ется на фиксированную величину. Например, указывая в про­граммном диалоге величину 10 единиц, программа должна следить

Команды и функции по обработке изображений приведены для программы Adobe Photoshop версии 4. 0. В более современных версиях программы названия команд и функций по обработке изображений могут отличаться.


за тем, чтобы интервал яркостей не выходил за верхний (255) и нижний (0) пределы.

Линейное изменение яркости и контраста при значительной сте­пени коррекции приводит к потере деталей изображения. Так, при выявлении деталей в светах они теряются в тенях и наоборот. Приемлемые результаты получают при небольшой коррекции ярко­сти или же, когда действие изменения ограничивается определен­ным диапазоном яркостей.

Кроме того, при линейном «осветлении», т. е. увеличении ярко­стей всех градаций на одну величину, не учитывается физиология зрения человека.

Человек воспринимает изменения яркости почти логарифмиче­ски, и поэтому, чтобы добиться равномерного осветления, адекват­но учитывающего физиологию зрения человека, его следует произ­водить нелинейно, например в соответствии с экспоненциальной (показательной) функцией. При этом потери информации будут уменьшаться.

2. Нелинейное изменение яркости и контраста. Нелинейно изменять яркость и контраст можно, используя различные функции:

Функция «Кривые», позволяющая изменять яркость и кон­
траст с помощью градационной кривой или таблицы сопоставления
значений;


Функция «Уровни», изменяющая яркость и контраст:

а) глобально, с помощью гамма-характеристики;

б) селективно, для «светов», теней и средних тонов изображения.
Такие стандартные функции имеются в каждой современной

программе обработки изображений, например в программе Adobe Photoshop.

А. Изменение яркости и контраста с помощью градационной кривой.

Яркость и контраст цифровых изображений можно изменять произвольно, задавая вид градационной кривой.

Для того чтобы воспользоваться этой функцией, нужно в меню Изображение выбрать команду Коррекция и включить функцию Кривые. При этом откроется диалоговое окно (см. рис. 200), в кото­ром нужно задать вид градационной кривой для обрабатываемого изображения.

При этом необходимо на графике зафиксировать точки, которые будут ограничивать корректируемый участок тонового диапазона, например область «светов». Для этого подводят курсор к опреде­ленной точке на градационной кривой и, нажав левую кнопку мыши, фиксируют ее. Далее в отмеченном диапазоне графика изменяют вид градационной кривой до получения требуемого результата.


Под графикам представлены две кнопки инструментов для по-строения кривых: слева - инструмент для работы с гладкой кри­вой, справа - для работы с произвольной кривой. Чем больше угол наклона градационной кривой к горизонтали, тем выше кон­траст изображения.

Если результат обработки устраивает пользователя, то нажи­мают кнопку Да в диалоговом окне.

На рис. 210 представлены обработанное изображение и вид градационной кривой, позволяющие получить более светлое изо­бражение и выявить детали в области теней.