План урока на тему полупроводниковые материалы. Разработка урока по физике на тему "электрический ток в полупроводниках". Ее исходным моментом являются "органы человека". Усиление, дополнение и замещение рабочих органов - социальная необходимость, реализу

  • 29.10.2019

Урок физики 11 класс

Тема урока:

«Полупроводники.

Собственная и примесная проводимость полупроводников. Электрический ток в полупроводниках»

Цель урока

  • Сформировать у учащихся понятие о природе электрического тока в полупроводниках, о способах измерения их свойств под действием температуры, освещённости, примесей.
  • Способствовать расширению политехнического кругозора, мотивировать к изучению предмета, совершенствовать способность к восприятию и анализу технической, научной информации.
  • Развитие коммуникативных компетенций учащихся, их умения работать в коллективе.

Материалы и оборудование:

Компьютер, проектор, электронные материалы по теме: «Полупроводники»; карточки – задания для самостоятельной работы в малых группах; набор полупроводниковых приборов НПП – 2; демонстрационный гальванометр; источник постоянного тока (4В); демонстрационный выключатель; электрическая лампа 60-100Вт на подставке; электрический паяльник; соединительные провода.

План проведения урока:

  1. Повторение изученного и актуализация темы урока.
  2. Объяснение материала темы.
  3. Самостоятельная работа учащихся в группах.
  4. Подведение итогов, задание на дом.
  1. Повторение изученного и актуализация темы урока (6мин).

Надо вспомнить:

  1. Что такое электрический ток?
  2. Что принимают за направление тока?
  3. Движением каких частиц образован электрический ток в металлических проводниках?
  4. Почему в диэлектриках не может возникать электрический ток?
  5. Как вы думаете: существует ли в природе вещества, которые по способности проводить электрический ток занимают промежуточное положение?

Да это полупроводники. Ещё чуть более полувека назад они не имели заметного практического значения. В электротехнике и радиотехнике обходились исключительно проводниками и диэлектриками. Но положение резко изменилось, когда теоретически, а затем и практически была открыта возможность управлять электрической проводимостью полупроводников.

В чём же главное отличие полупроводников от проводников и какие особенности их строения позволили широко использовать полупроводниковые приборы практически во всех электронных устройствах, позволив значительно повысить их надёжность, многократно сократить габариты, да и создать новые, о которых приходилось только мечтать: создать сотовые телефоны, миниатюрные компьютеры и т.д.?

  1. Объяснение материалов темы (15мин)
  1. Определение полупроводников

Большой класс веществ, удельное сопротивление которых больше, чем у проводников, но меньше, чем у диэлектриков и с увеличением температуры очень резко уменьшается.

К ним относятся элементы таблицы Менделеева: германий, кремний, селен, теллур, индий, мышьяк, фосфор, бор, и т.д. некоторые соединения: сернистый свиней, сернистый кадмий, закись меди и т.д.

  1. Строение полупроводников.
  1. Атомная структура кристаллической решётки кремния (проекция на экране);
  2. Нарушение парноэлектронных связей под воздействием внешних факторов: повышение температуры, освещённости.

Демонстрации зависимости электропроводности полупроводников:

Rт 10к ФС – К1

  1. Электронная проводимость чистого полупроводника (проекция)
  2. Дырочная проводимость (проекция)

Есть необходимость подчеркнуть, что дырки не являются реальными частицами. В обоих видах проводимости полупроводников движутся только валентные электроны. Проводимость отличается друг от друга лишь механизмом движения электронов. Электронная проводимость обусловлена направлением движения свободных электронов, а дырочная вызвана движением связанных электронов, переходящих от атома к атому, поочерёдно замещая друг друга в связках, что эквивалентно движению дырок в противоположном направлении.

Таким образом, в полупроводниках два типа носителей – электроны и дырки, концентрации которых в чистых полупроводниках одинаковы – собственная проводимость, она невелика.

  1. Примесная проводимость (проекция)

Существенно зависит проводимость полупроводников от наличия в их кристаллах примесей:

  1. донорные примеси – пятивалентные элементы, легко отдающие электроны (As, P) обеспечивают количественное преимущество электронов над дырками, создающие проводимость n – типа;
  2. акцепторные примеси – трёхвалентные элементы (In, B), принимающие свободные электроны, образуя дырки. Создаётся проводимость p – типа.

Демонстрация примесей и проводимости n – типа и p – типа:

n – тип p – тип

Особый интерес представляет протекание тока не отдельно в полупроводниках n – типа или p – типа, а через контакт двух полупроводников с разными типами проводимости.

  1. Самостоятельная работа учащихся в группах (20мин)

Предлагается на добровольной основе сформировать группы из 4 учеников (это надо сделать до начала урока, чтобы избежать хаотичных перемещений по кабинету и потере времени).

Каждой группе выдаётся задание, которое надлежит выполнить. Оно содержит вопросы, качественные задачи разного уровня, рассчитанные как на письменные, так и устные ответы.

  1. Подведение итогов

Заслушиваем ответы представителей групп на основные вопросы данной темы, исправляем возможные ошибки. Собираем письменные отчёты. Оценки за работу выставляем после изучения второй части темы и выполнения заданий на повторение с учётом КТУ каждого учащегося в группе.

Задание на дом: § 113; §114 учебника.


Тема урока: "Полупроводниковые приборы. Диоды"

Цель и задачи занятия:

    Образовательные:

формирование первоначального понятия о назначении, действии и основном свойстве полупроводниковых диодов.

    Воспитательные:

сформировать культуру умственного труда, развитие качеств личности - настойчивость, целеустремленность, творческую активность, самостоятельность.

    Развивающие:

обучение применению свойства односторонней проводимости.

Материально техническое оснащение урока:

рабочие тетради, компьютер преподавателя, интерактивная доска, прзентация на тему

Ход занятия:

1. Организационный момент:

(Задача: создание благоприятного психологического настроя и активация внимания).

2. Подготовка к повторению и обобщению пройденного материала

Что такое электрический ток.

Сила тока, единицы измерения.

p n переход.

Полупроводники.

Сообщение темы и цели занятия.

Полупроводники. Диоды.

Объяснение перспективы.

Чтобы изучить современную электронику, надо, прежде всего, знать принципы устройства и физические основы работы полупроводниковых приборов, их характеристики и параметры, а также важнейшие свойства, определяющие возможность их применения в электронной аппаратуре.

Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры и массу аппаратуры. Минимальная мощность для питания электронной лампы составляет 0,1 Вт, а для транзистора она может быть 1мкВт, т.е. в 100000 раз меньше.

3. Основной этап.

Новый материал

    Все вещества, встречающиеся в природе, по своим электропроводным свойствам делятся на три группы:

    Проводники,

    изоляторы (диэлектрики),

    полупроводники

    К полупроводникам относится гораздо больше веществ, чем к проводникам и изоляторам. В изготовлении радиоприборов наибольшее распространение получили 4-х валентные германий Ge и кремний Si.

    Электрический ток полупроводников обуславливается движением свободных электронов и так называемых "дырок".

    Свободные электроны, покинувшие свои атомы, создают n- проводимость (n - первая буква латинского слова negativus - отрицательный). Дырки создают в полупроводнике р - проводимость (р - первая буква латинского слова positivus- положительный).

    В чистом проводнике число свободных электронов и дырок одинаково.

    Добавляя примеси, можно получить полупроводник с преобладанием электронной или дырочной проводимостью.

    Важнейшее свойство р- и n- полупроводников - односторонняяя проводимость в месте спайки. Эта спайка называется p-n переходом.

В 4-х валентный кристалл германия (кремния) добавить 5-ти валентный мышьяк (сурьму) то получим n - проводник.

При добавлении 3-х валентного индия, получим р - проводник.

    Когда "плюс" источника соединен с р- областью, говорят что переход включен в прямом направлении, а когда минус источника тока соединен с р- областью, переход включен в обратном направлении.

    Одностороння проводимость р и n перехода является основой действия полупроводниковых диодов, транзисторов и др.

    Имея представление о полупроводнике, теперь приступим к изучению диода.

    Приставка "ди" - означает два, указывающая на две примыкающие зоны разной проводимости.

Вентиль велосипедной шины (нипель). Воздух через него может проходить лишь в одном направлении - внутрь камеры. Но существует и электрический вентиль. Это диод - полупроводниковая деталь с двумя проволочными выводами с обоих концов.

По конструкции полупроводниковые диоды могут быть плоскостными или точечными.

    Плоскостные диоды имеют большую площадь электронно- дырочного перехода и применяются в цепях, в которых протекают большие токи.

    Точечные диоды отличаются малой площадью электронно-дырочного перехода и применяются в цепях с малыми токами.

    Условно-графическое обозначение диода. Треугольник соответствует р- области и называется анодом, а прямолинейный отрезок, называется катодом, представляет n- область.

    В зависимости от назначения диода его УГО может иметь дополнительные символы.

Основные параметры, по которым характеризуются диоды.

    Прямой ток диода.

    Обратный ток диода.

Закрепление материала.

Изменение полярности подключения источника питания в цепи, содержащей полупроводниковый диод.

Соединяем последовательно батарею 3336Л и лампочку накаливания МН3,5 – 0.28 (на напряжение 3.5В и ток накала 0.28А) и подключаем эту цепь к сплавному диоду из серии Д7 или Д226 так, чтобы на анод диода непосредственно или через лампочку подавалось положительное, а на катод – отрицательное напряжение батареи (рис 3, рис.4). Лампочка должна гореть полным накалом. Затем изменяем полярность подключения цепи “батарея – лампочка” на обратную (рис. 3, рис.4). Если диод исправный – лампочка не горит. В этом опыте лампочка накаливания выполняет двойную функцию: служит индикатором тока в цепи и ограничивает ток в этой цепи до 0.28А, тем самым защищая диод от перегрузки. Последовательно с батареей и лампочкой накаливания можно включить еще миллиамперметр на ток 300…500мА, который бы фиксировал прямой и обратный ток через диод.

4.Контрольный момент:

    Начертите схему электрической цепи, состоящей из источника постоянного тока, микродвигателя, 2-х диодов, так, чтобы с помощью выключателей изменять направление вращение ротора микродвигателя.

    Определите полюса батареи для карманного фонаря с помощью полупроводникового диода.

    Самостоятельно изучите проводимость диода на демонстрационном стенде. Изучение односторонней проводимости диода.

5.Итоговый момент:

оценка успешности в достижении задач занятия (как работали, что узнали или усвоили)

6. Рефлективный момент:

определение результативности и полезности занятия через самооценку воспитанников.

7. Информационный момент:

определение перспектив следующего занятия .

8. Домашнее задание

Для закрепления пройденного материала, подумайте над следующими задачами и приведите их решение:

    Как с использованием полупроводникового диода защитить радиоаппаратуру от переполюсовки?

    Имеется электрическая цепь, в которую входят четыре последовательно соединенных элемента – две лампочки а и б и два выключателя А и Б. При этом каждый выключатель зажигает только одну, только “свою” лампочку. Для того, чтобы зажечь обе лампочки, нужно одновременно замкнуть оба выключателя.

По технологии на тему: «Полупроводниковый диод»

МБОУ «ООШ №16»

г. Гусь-Хрустальный.

План - конспект урока

по технологии

на тему: «Полупроводниковый диод»

Учитель технологии

План-конспект урока

Тема урока: «Полупроводниковый диод»

Цели урока:

1. Обучающие:

1.1. Ознакомить учащихся:

С устройством полупроводникового диода;

С технологией изготовления полупроводникового диода;

С принципами работы полупроводникового диода;

С применением полупроводникового диода на практике, в быту, в производстве;

Со схемой выпрямления переменного тока.

2. Развивающие:

2.1. Способствовать развитию познавательного интереса к предмету.

2.2. Способствовать овладению основными способами мыслительной деятельности.

3. Воспитательные:

3.1. Способствовать формированию трудовых качеств личности.

Методическое оснащение урока.

1. Материально-техническая база:

Компьютерный класс;

Мультимедиа-проектор;

Набор полупроводниковых диодов;

Электрическая батарейка, лампочка, соединительные провода.

2. Дидактическое обеспечение:

- «Радиоэлектроника, автоматика и элементы ЭВМ», М., «Просвещение», 1990;

- «Методика трудового обучения», М., «Просвещение», 1997;

- «Школа и производство» № 1, 2005;

- «Практикум по радиотехнике», М., «Просвещение»,1996;

Тест «Полупроводниковый диод».

Ход урока

1. Организационный момент.

2. Повторение пройденного материала по теме «Полупроводники».

Чтобы проверить пройденный материал и подготовить учащихся к усвоению нового материала, целесообразно задать им следующие вопросы:

1. Какие элементы относятся к полупроводникам?

2. Как происходит собственная проводимость?

3. Как происходит примесная проводимость?

4. За счет чего появляются свободные электроны?

5. Где больше проводимость в металлах или в полупроводниках?

6. Какие полупроводники являются основными?

3. Изложение нового материала о полупроводниковом диоде и схеме выпрямления переменного тока.

Полупроводниковый диод – это устройство, которое пропускает электрический ток только в одном направлении.

Устройство диода: берут кристалл кремния, обладающий проводимостью n-типа. В одну из поверхностей образца вплавляют индий. Вследствие атомов индия вглубь монокристалла германия у поверхности германия образуется область с проводимостью p-типа. Остальная часть образца германия, в которую атомы индия не проникли, по-прежнему имеет проводимость n-типа.

Между двумя областями с проводимостями разных типов возникает p-n-переход (демонстрация слайда № 1).

Получить p-n-переход не удается путем механического соединения двух полупроводников с различными типами проводимости, так как при этом получается слишком большой зазор. Толщина p-n-перехода должна быть не более межатомных расстояний. Для предотвращения вредных воздействий кристалл помещают в герметичный металлический корпус.

На электрических схемах полупроводниковый диод обозначается (демонстрация слайда № 2).

Современные полупроводниковые диоды имеют вид: (демонстрация слайда № 3).

(После этого учитель демонстрирует образцы полупроводниковых диодов).

Любой полупроводниковый диод характеризуется прямым максимальным током Iпр. маx. и обратным максимальным напряжением Uобр. max..Если ток через диод будет больше максимального тока, то p-n-переход выйдет из строя (расплавится). Если обратное напряжение будет больше максимального напряжения, которое может выдержать диод, то p-n-переход пробьется электрическим зарядом. В обоих случаях полупроводниковый диод выйдет из строя.

Подключение диода к постоянной электрической цепи.

Подключим полупроводниковый диод к источнику питания таким образом (демонстрация слайда № 4).

При таком подключении электрический ток через диод и нагрузку проходить не будет, так как нет носителей заряда через p-n-переход. Его сопротивление в этом случае будет очень большим. Говорят, что диод находится в запирающем состоянии.

Поменяем полярность источника питания. При таком подключении электрический ток проходит через диод и через нагрузку.

Говорят, что диод находится в открытом состоянии (демонстрация слайда № 5).

Схема выпрямления электрического тока.

Постоянный электрический ток можно получить при включении диода в цепь с переменным напряжением (демонстрация слайда № 6).

Рассмотрим на графике, как происходит выпрямление переменного тока (демонстрация слайда № 7).

Такое выпрямление переменного тока называется однополупериодным выпрямлением. Ток в этом случае называется пульсирующим.

Данное выпрямление переменного тока имеет широкое применение, например: если диод Д226Б включить по данной схеме, а вместо нагрузки взять лампочку мощностью 100 Вт, то такая лампочка будет гореть 7-10 лет. Схему называют схемой «вечной лампочки».

4. Закрепление нового учебного материала.

Учащиеся зарисовывают в тетрадях схему выпрямления (демонстрация слайда № 8). Далее учащимся предлагается на компьютерах в программе Elektronish Workbench составить такую схему как на слайде и получить на дисплее осциллографа выпрямленное напряжение. Чтобы сгладить пульсации выпрямленного тока к нагрузке Rn можно подключить параллельно конденсатор и рассмотреть полученное выпрямленное напряжение. Сравнить результаты.

(Учащимся может быть предложен тест «Полупроводниковый диод»).

5. Заключительная часть.

Учитель подводит итоги урока, называет главные вопросы, которые учащиеся должны хорошо знать:

Определение диода;

Устройство диода;

Подключение диода к постоянной электрической цепи;

Подключение диода к переменной электрической цепи;

Схему «вечной лампочки».

Учитель объявляет оценки за устные ответы и самостоятельную работу на компьютере.


Аукцион с использованием опорных слов как методический приём для актуализации опорных знаний, применение ИКТ, игровые моменты, позволяющие поменять виды деятельности на уроке, индивидуальная работа при закреплении изученного материала и последующая взаимопроверка выполненных заданий - всё это элементы, делающие обычный урок чуть интереснее.

Разработка урока по физике

Тема урока : Электрический ток в полупроводниках.

Цели урока:

Дидактическая - Познакомить учащихся с особым классом веществ – полупроводниками, ввести понятия собственной и примесной проводимости, изучить зависимость электропроводимости полупроводников от температуры и наличия примесей.

Развивающая: Способствовать расширению кругозора учащихся, развивать способность к восприятию и анализу технической и научной информации, умение пользоваться технической терминологией.

Воспитательная: Формировать ответственное отношение к приобретению знаний, навыки общения и самодисциплины.

МТО урока : медиа оборудование, презентация «Электрический ток в полупроводниках», содержащая анимационное пояснение к изучаемому материалу, карточки с ключевыми словами, раздаточный дидактический материал для самостоятельной работы.

Межпредметные связи. Химия. Темы: Периодическая система химических элементов Д.И.Менделеева. Ковалентная связь.

Тип урока : Урок усвоения новых знаний на основе имеющихся.

Методы и приёмы : аукцион с использованием опорных слов, применение ИКТ, использование игровых моментов для создания здоровье сберегающих условий, фронтальный опрос, индивидуальная работа, взаимопроверка.

План урока .

1. Организационный момент.

2. Актуализация опорных знаний.

3. Изучение нового материала.

3.1. Полупроводники.

3.2. Собственная проводимость полупроводников;

3.3. Примесная проводимость;

3.3.1. Донорные примеси;

3.3.2. Акцепторные примеси.

4. Закрепление изученного материала.

5. Домашнее задание.

6. Подведение итогов урока. Оценка работы учащихся.

Ход урока.

1. Организационный момент.

2. Актуализация опорных знаний (опрос в форме аукциона с использованием карточек с ключевыми словами).

Методика проведения аукциона .

Преподаватель показывает карточку с ключевыми словами (словом), а учащиеся высказываются в соответствии с заданной темой, не вдаваясь в подробности. Каждый правильный ответ – балл в копилку учащегося (карточка временно остаётся у него для подсчёта баллов в дальнейшем).

Карточка. Электрический ток

Ответ . Электрическим током называется упорядоченное направленное движение свободных заряженных частиц.

Карточка . Постоянный электрический ток.

Ответ . Электрический ток, не меняющийся ни по величине, ни по направлению называется постоянным током.

Карточка . Направление постоянного тока.

Ответ . За направление постоянного тока принято направление движения положительно заряженных частиц, т.е. от «+» к «-».

Карточка. Условия существования тока

Ответ . Для существования электрического тока необходимо наличие свободных заряженных частиц и сил, которые приводили бы эти частицы в направленное движение. Например, силы электрического поля.

Карточка. Группы веществ по электропроводимости.

Ответ . По электропроводимости вещества делятся на проводники и диэлектрики.

Карточка . Проводники.

Ответ . Проводники – это вещества, хорошо проводящие ток.

Карточка . Диэлектрики

Ответ. Диэлектрики – это вещества, не проводящие ток.

3. Изучение нового материала в сопровождении презентации.

- Записываем в тетради тему урока (слайд 1).

Мотивация к дальнейшему изучению темы (слайд 2).

Знакомимся с целями данного урока (слайд 3).

Корректируем свои представления о группах веществ по электропроводимости (слайд 4).

Записываем в тетрадь

По электрической проводимости вещества можно разделить на 3 основные группы: проводники, диэлектрики, полупроводники.

Проводники, которые хорошо проводят электрический ток (металлы, растворы электролитов, плазма и др.) Наиболее используемые проводники – Au, Ag, Cu, Al, Fe .

Диэлектрики – вещества, которые практически не проводят электрический ток (пластмассы, резина, стекло, фарфор, сухое дерево, бумага и др.)

3.1. Полупроводники

Записываем в тетрадь.

Полупроводники – вещества, проводящие ток только при определённых условиях.

Их электропроводимость зависит от температуры, освещённости, наличия примесей (Si , Ge , Se , In , As и др.).

По электрической проводимости они занимают промежуточное положение между проводниками и диэлектриками (Si, Ge, Se, In, As и др.) Кроме 12 чистых химических элементов, полупроводниками являются сернистый свинец, сернистый кадмий, закись меди, многие оксиды и сульфиды металлов, некоторые органические вещества. Наибольшее применение в технике имеют германий Ge и кремний Si (слайды 4,5,6).

Ещё чуть более полувека назад полупроводники не имели заметного практического значения. В электротехнике и радиотехнике обходились исключительно проводниками и диэлектриками. Но положение резко изменилось, когда теоретически, а затем и практически была открыта возможность управлять электрической проводимостью полупроводников.

В чём же главное отличие полупроводников от проводников, и какие особенности их строения позволили широко использовать полупроводниковые приборы практически во всех электронных устройствах?

3.2. Собственная проводимость

Записываем в тетрадь.

Проводимость чистых полупроводников называют собственной проводимостью .

Ещё раз вспоминаем условия существования тока. Повторяем механизм электропроводимости металлов, акцентируя внимание на роли электрического поля (слайд 8).

Ответ учащихся

Для существования электрического тока необходимо наличие свободных заряженных частиц и сил, которые приводили бы эти частицы в направленное движение. Это могут быть силы электрического поля, которое приводит электроны в упорядоченное движение.

Рассмотрим проводимость полупроводников на примере кремния Si (слайд 9).

Кремний – четырёхвалентный химический элемент. Каждый атом кремния во внешнем электронном слое имеет по четыре неспаренных электрона, которые образуют электронные пары (ковалентные связи) с четырьмя соседними атомами. Таким образом, в полупроводнике отсутствуют свободные заряженные частицы, способные создавать ток.

Но так бывает при обычных условиях, при невысоких температурах.

- Что произойдёт, если увеличить температуру вещества (слайд 10)?

При увеличении температуры энергия и скорости движения электронов увеличиваются и некоторые из них отрываются от своих атомов, становясь свободными электронами . Оставшиеся вакантные места с некомпенсированным положительным зарядом (виртуальные заряженные частицы ), называют дырками. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток.

Чтобы понять, как же перемещаются дырки (вакантное место), проводим игру «Пустой стул» .

Методика проведения игры .

Суть игры заключается в следующем. На одном из рядов за первой партой освобождаем стул. Это исходная позиция. Учащийся, сидящий за второй партой, пересаживается на него. Таким образом, свободный стул оказывается уже не за первой, а за второй партой. Теперь учащийся, сидящий за третьей партой, занимает освободившееся место, и пустым оказывается стул за третьей партой и т.д. Таким образом, вакантное место – пустой стул (в полупроводнике это дырка) перемещается всё дальше и дальше от первой парты, двигаясь в сторону противоположную движению участников игры (в полупроводнике – в сторону, противоположную движению электронов).

Игра помогает снять напряжение и продолжить дальнейшее успешное изучение учебного материала.

Записываем в тетрадь.

Электрический ток в чистых полупроводниках создаётся свободными электронами и дырками, которых одинаковое количество.

Это собственная проводимость полупроводников.

При увеличении температуры число свободных электронов и дырок становится больше, проводимость полупроводников растет, сопротивление уменьшается.

Записываем в тетрадь.

При увеличении температуры проводимость полупроводников растет, сопротивление уменьшается.

Задание учащимся.

Сравните и объясните графики зависимости сопротивления металлов и полупроводников от температуры (слайд 11).

Ответы учащихся по слайду.

При увеличении температуры сопротивление металлов возрастает. Это объясняется тем, что при увеличении температуры ионы в узлах кристаллической решётки колеблются интенсивнее, хаотичность движения свободных электронов возрастает, и суммарный заряд, проходящий через поперечное сечение проводника в единицу времени уменьшается.

При увеличении температуры сопротивление полупроводников уменьшается. Это объясняется тем, что при нагревании полупроводников в них становится больше свободных носителей заряда, что приводит к увеличению силы тока, а это равносильно уменьшению сопротивления.

3.3 Примесная проводимость полупроводников (слайды 12,13,14).

Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников. Поэтому для увеличения проводимости в чистые полупроводники внедряют примеси (легируют), которые бывают донорные и акцепторные

Записываем в тетрадь

Проводимость полупроводников с добавлением примесей называется примесной проводимостью. Примеси бывают донорные и акцепторные

3.3.1. Донорные примеси.

Если добавить в чистый расплавленный кремний незначительное количество мышьяка (примерно 10-5 %), после твердения образуется обычная кристаллическая решетка кремния, но в некоторых узлах решетки вместо атомов кремния будут находиться атомы мышьяка.

Мышьяк, как известно, пятивалентный элемент. Четырёхвалентные электроны образуют парные электронные связи с соседними атомами кремния. Пятому валентному электрону связи не хватит, при этом он будет слабо связан с атомом Мышьяка, который легко становится свободным. В результате каждый атом примеси отдаст один свободный электрон.

Электроны из атомов кремния могут становиться свободными, образуя дырку, поэтому в кристалле могут одновременно существовать и свободные электроны и дырки. Однако свободных электронов во много раз будет больше, чем дырок.

Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n-типа.

Записываем в тетрадь

Примеси, атомы которых легко отдают электроны, называются донорными (полупроводник n -типа).

3.3.2. Акцепторные примеси

Если в кремний добавить незначительное количество трехвалентного индия, то характер проводимости полупроводника изменится. Поскольку индий имеет три валентных электрона, то он может установить ковалентную связь только с тремя соседними атомами. Для установления связи с четвертым атомом электрона не хватит. Индий «одолжит» электрон у соседних атомов, в результате каждый атом Индия образует одно вакантное место - дырку.

В случае акцепторной примеси основными носителями заряда во время прохождения электрического тока через полупроводник являются дырки. Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р-типа.

Записываем в тетрадь

Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными (полупроводник р-типа).

4. Закрепление изученного материала .

4.1. Фронтальный опрос (слайд 16).

Что такое полупроводники?

Какими частицами создаётся ток в полупроводниках?

Чем примесная проводимость отличается от собственной проводимости?

Для чего легируют чистые полупроводники?

Что такое полупроводник р – типа?

Что такое полупроводник n – типа?

Почему с увеличением температуры сопротивление полупроводников падает?

4.2. Самостоятельная работа по карточкам .

Установите соответствие, какие физические термины и высказывания необходимы для рассказа по темам «Электрический ток в металлах», «Электрический ток газах», «Электрический ток в растворах электролитов», «Электрический ток в полупроводниках»?

Условие: при выполнении работы исправления не допускаются .

Металлы Газы Растворы электролитов Полупроводники

1. Ионы, 2. Электроны, 3. Примеси, 4. Дырка, 5. Сопротивление возрастает с ростом температуры, 6. Рекомбинация, 7. При нагревании сопротивление уменьшается, 8. Проводник, 9. Кристаллическая решётка, 10. Электрическая дуга, 11. Самостоятельный разряд,12. Огни святого Эльма, 13. Донорная, 14. Диэлектрик, 15. Электронное облако, 16. Вакуумный диод, 17. Газоразрядная трубка, 18. Акцепторная, 19. Собственная проводимость, 20. Вакуум, 21. Сверхпроводимость, 22. Ионизация, 23. Электролитическая диссоциация, 24. Электроды, 25.Электролиз, 26. Кинескоп, 27. Гальванопластика.

После выполнения задания учащиеся обмениваются карточками и проверяют друг друга, делая исправления , оценивая работу товарища.

Затем работы проверяются ещё раз с помощью ключа и передаются преподавателю.

Ключ к заданию

Металлы – 1, 2, 5, 8, 9, 21.

Газы – 1,2,6,7,10,11,12,14,17,22.

Растворы электролитов – 1,6,7,23,24,25,27.

Полупроводники – 1,2,3,4,7,9,13,18,19.

5. Домашнее задание:

1. Подготовить сравнительную таблицу «Электрический ток в различных средах».

2. Подготовить сообщение «Первое практическое применение полупроводниковых термоэлементов в годы ВОВ» («Партизанский котелок») – по желанию.

6. Подведение итогов. Оценка работы учащихся.

Использованная литература

Физика: Учеб. для 10 кл. общеобразоват. учреждений/ Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский-- 12- е изд.-М. : Просвещение, 2010. - 336 с.,: ил.-ISBN 5-01 011578-8.

Электронный учебник «Открытая физика», Физикон