Что такое ПЗС-матрица? Приборы с зарядовой связью (ПЗС). Принцип работы ПЗС

  • 23.06.2019

Введение

В данной курсовой работе я рассмотрю общие сведения о приборах с зарядовой связью, параметры, историю создания, характеристики современных ПЗС-камер среднего инфракрасного диапазона.

В результате выполнения курсовой работы изучил литературу по созданию, принципу действия, технических характеристиках и применении ПЗС-камер среднего ИК диапазона.

ПЗС. Физический принцип работы ПЗС. ПЗС-матрица

Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл -- диэлектрик-- полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис. 1). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур .

Рисунок 1 - Структура ПЗС

Основные функциональные назначения фото-чувствительных ПЗС - преобразование оптических изображений в последовательность электрических импульсов (формирование видеосигнала), а также хранение и обработка цифровой и аналоговой информации.

ПЗС изготовляют на основе монокристаллического кремния. Для этого на поверхности кремниевой пластины методом термического окисления создаётся тонкая (0,1-0,15 мкм) диэлектрическая плёнка диоксида кремния. Этот процесс осуществляется таким образом, чтобы обеспечить совершенство границы раздела полупроводник - диэлектрик и минимизировать концентрацию рекомбинаций центров на границе. Электроды отдельных МДП-элементов производятся из алюминия, их длина составляет 3-7 мкм, зазор между электродами 0,2-3 мкм. Типичное число МДП-элементов 500-2000 в линейном и в матричном ПЗС; площадь пластины Под крайними электродами каждой строки изготовляют p- n - переходы, предназначенные для ввода - вывода порции зарядов (зарядовых пакетов) электрич. способом (инжекция p- n -переходом). При фотоэлектрич. вводе зарядовых пакетов ПЗС освещают с фронтальной или тыльной стороны. При фронтальном освещении во избежание затеняющего действия электродов алюминий обычно заменяют плёнками сильнолегированного поликристаллического кремния (поликремния), прозрачного в видимой и ближней ИК-областях спектра.

Принцип работы ПЗС

Общий принцип работы ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение, то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности вглубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей -- дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик -- полупроводник и локализуются в узком приповерхностном слое.

Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента, либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода. Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.

Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.

Принцип действия ПЗС на примере фрагмента строки ФПЗС, управляемой трёхтактовой (трёхфазной) схемой, иллюстрируется на рисунке 2. В течение такта I (восприятие, накопление и хранение видеоинформации) к электродам 1, 4, 7 прикладывается т. н. напряжение хранения Uxp, оттесняющее основные носители - дырки в случае кремния р-типа - в глубь полупроводника и образующее обеднённые слои глубиной 0,5-2 мкм - потенциальные ямы для электронов. Освещение поверхности ФПЗС порождает в объёме кремния избыточные электронно-дырочные пары, при этом электроны стягиваются в потенциальные ямы, локализуются в тонком (0,01 мкм) приповерхностном слое под электродами 1, 4,7, образуя сигнальные зарядовые пакеты.

зарядовый связь камера инфракрасный

Рисунок 2 - схема работы трёхфазного прибора с зарядовой связью - сдвигового регистра

Величина заряда в каждом пакете пропорциональна экспозиции поверхности вблизи данного электрода. В хорошо сформированных МДП-структурах образующиеся заряды вблизи электродов могут относительно долго сохраняться, однако постепенно вследствие генерации носителей заряда примесными центрами, дефектами в объёме или на границе раздела эти заряды будут накапливаться в потенциальных ямах, пока не превысят сигнальные заряды и даже полностью заполнят ямы.

Во время такта II (перенос зарядов) к электродам 2, 5, 8 и так далее прикладывается, напряжение считывания, более высокое, чем напряжение хранения. Поэтому под электродами 2, 5 и 8 возникают более глубокие потенц. ямы, чем под электронами 1, 4 и 7, и вследствие близости электродов 1 и 2, 4 и 5,7 и 8 барьеры между ними исчезают и электроны перетекают в соседние, более глубокие потенциальные ямы.

Во время такта III напряжение на электродах 2, 5, 8 снижается до а с электродов 1, 4, 7 снимается.

Т. о. осуществляется перенос всех зарядовых пакетов вдоль строки ПЗС вправо на один шаг, равный расстоянию между соседними электродами.

Во всё время работы на электродах, непосредственно не подключённых к потенциалам или поддерживается небольшое напряжение смещения (1-3 В), обеспечивающее обеднение носителями заряда всей поверхности полупроводника и ослабление на ней рекомбинации эффектов.

Повторяя процесс коммутации напряжений многократно, выводят через крайний r- h-переход последовательно все зарядовые пакеты, возбуждённые, напр., светом в строке. При этом в выходной цепи возникают импульсы напряжения, пропорциональные величине заряда данного пакета. Картина освещённости трансформируется в поверхностный зарядовый рельеф, который после продвижения вдоль всей строки преобразуется в последовательность электрических импульсов. Чем больше число элементов в строке или матрице (число 1- ИК приемники; 2- буферные элементы; 3 - ПЗС происходит неполная передача зарядового пакета от одного электрода к соседнему и усиливаются обусловленные этим искажением информации. Чтобы избежать искажений накопленного видеосигнала из-за продолжающегося во время переноса освещения, на кристалле ФПЗС создают пространственно разделённые области восприятия - накопления и хранения - считывания, причём в первых обеспечивают максимальную фоточувствительность, а вторые, наоборот, экранируют от света. В линейном ФПЗС (рис. 3, а) заряды, накопленные в строке 1 за один цикл, передаются в регистр 2 (из чётных элементов) и в регистр 3 (из нечётных). В то время, как по этим регистрам информация передаётся через выход 4 в схему объединения сигналов 5, в строке 1 накапливается новый видеокадр. В ФПЗС с кадровым переносом (рисунок 3) информация, воспринятая матрицей накопления 7, быстро "сбрасывается" в матрицу хранения 2, из которой последовательно считывается ПЗС-регистром 3; в это же время матрица 1 накапливает новый кадр.

Рисунок 3 - накопление и считывание информации в линейном (a), матричном (б) фоточувствительном приборе с зарядовой связью и в приборе с зарядовой инжекцией.

Кроме ПЗС простейшей структуры (рисунок 1) получили распространение и другие их разновидности, в частности приборы с поликремниевыми перекрывающимися электродами (рисунок 4), в которых обеспечиваются активное фотовоздействие на всю поверхность полупроводника и малый зазор между электродами, и приборы с асимметрией приповерхностных свойств (напр., слоем диэлектрика переменной толщины - рисунок 4), работающие в двухтактовом режиме. Принципиально отлична структура ПЗС с объёмным каналом (рисунок 4), образованным диффузией примесей. Накопление, хранение, перенос заряда происходят в объёме полупроводника, где меньше, чем на поверхности, рекомбинация центров и выше подвижность носителей. Следствием этого является увеличение на порядок значения и уменьшение по сравнению со всеми разновидностями ПЗС с поверхностным каналом.

Рисунок 4 - Разновидности приборов с зарядовой связью с поверхностным и объёмным каналами.

Для восприятия цветных изображений используют один из двух способов: разделение оптического потока с помощью призмы на красный, зелёный, синий, восприятие каждого из них специальным ФПЗС - кристаллом, смешение импульсов от всех трёх кристаллов в единый видеосигнал; создание на поверхности ФПЗС плёночного штрихового или мозаичного кодирующего светофильтра, образующего растр из разноцветных триад.

Матрица является главным структурным элементом фотоаппарата и одним из ключевых параметров, принимаемых во внимание пользователем при выборе фотокамеры. Матрицы современных цифровых фотоаппаратов можно классифицировать по нескольким прознакам, но основным и наиболее распространенным всеже является деление матриц по методу считывания заряда , на: матрицы CCD типа и CMOS матрицы. В данной статье мы рассмотрим принципы работы, а также достоинства и недостатки этих двух типов матриц, так как именно они повсеместно используются в современных фото- и видеотехнике.

CCD матрица

Матрицу CCD называют еще ПЗС-матрицей (Приборы с Зарядовой Связью). ПЗС матрица представляет собой прямоугольную пластину светочувствительных элементов (фотодиодов), расположенных на полупроводниковом кристалле кремния. В основе принципа ее действия лежит построчное перемещение зарядов, которые накопились в прорехах, образованных фотонами в атомах кремния. То есть, при столкновении с фотодиодом, фотон света поглощается и при этом выделяется электрон (происходит внутренний фотоэффект). В результате образуется заряд, который нужно как-то сохранить для дальнейшей обработки. Для этой цели в кремниевой подложке матрицы встроен полупроводник, над которым располагается прозрачный электрод из поликристаллического кремния. И в результате подачи на данный электрод электрического потенциала в обеднённой зоне под полупроводником образуется так называемая потенциальная яма, в которой и хранится полученный от фотонов зарад. При считывании с матрицы электрического заряда осуществляется перенос зарядов (хранящихся в потенциальных ямах) по электродам переноса к краю матрицы (последовательный регистр сдвига) и в сторону усилителя, который усиливает сигнал и передает его в аналогово-цифровой преобразователь (АЦП), откуда преобразованный сигнал направляется в процессор, который обрабатывает сигнал и сохраняет полученное изображение на карту памяти.

Для изготовления ПЗС-матриц используются поликремневые фотодиоды. Такие матрицы отличаются небольшими размерами и позволяют получать достаточно качественные фотографии при съемке с нормальным освещением.

Преимущества ПЗС-матриц :

  1. Кконструкция матрицы обеспечивает высокую плотность размещения фотоэлементов (пикселей) на подложке;
  2. Высокая эффективность (отношение зарегистрированных фотонов к их общему числу, составляет около 95%);
  3. Высокая чувствительность;
  4. Хорошая цветопередача (при достаточном освещении).

Недостатки ПЗС-матриц:

  1. Высокий уровень шума на высоких ISO (на низких ISO, уровень шума умеренный);
  2. Низкая скорость работы в сравнении с CMOS-матрицами;
  3. Высокое энергопотребление;
  4. Более сложная технология считывания сигнала, так как необходимо много управляющих микросхем;
  5. Производство обходится дороже чем CMOS-матриц.

CMOS матрица

Матрица CMOS , или КМОП-матрица (Комплементарные Металл-Оксидные Полупроводники) использует активные точечные сенсоры. В отличие от ПЗС-матриц, КМОП-матрица содержат отдельный транзистор в каждом светочувствительном элементе (пикселе) в результате чего преобразование заряда выполняется непосредственно в пикселе. Полученный заряд может быть считан из каждого пикселя индивидуально, поэтому отпадает необходимость переноса заряда (как это происходит в ПЗС-матрицах). Пиксели КМОП-матрицы интегрируется непосредственно с аналогово-цифровым преобразователем или даже с процессором. В результате применения такой рациональной технологии происходит экономия энергии за счет сокращения цепочек действий по сравнению с матрицами CCD, а также удешевление устройства за счет более простой конструкции.


Краткий принцип работы КМОП-матрицы: 1) Перед съемкой на транзистор сброса подается сигнал сброса. 2) Во время экспозиции свет проникает через линзу и фильтр на фотодиод и в результате фотосинтеза в потенциальной яме накапливается заряд. 3) Считывается значение полученного напряжения. 4) Обработка данных и сохранение изображения.

Преимущества КМОП-матриц :

  1. Низкое энергопотребление (особенно в ждущих режимах);
  2. Высокое быстродействие;
  3. Требует меньше затрат при производстве, благодаря схожести технологии с производством микросхем;
  4. Единство технологии с другими цифровыми элементами, что позволяет объединить на одном кристале аналоговую, цифровую и обрабатывающую части (т.е. кроме захвата света в пикселе можно преобразовать, обработать и очистить сигнал от шума).
  5. Возможность произвольного доступа к каждому пикселю или группе пикселей, что позволяет уменьшить размер захваченного изображения и увеличить скорость считывания.

Недостатки КМОП-матриц:

  1. Фотодиод занимает малую площать пикселя, в результате получается низкая светочувствительность матрицы, но в современных КМОП-матрицах этот минус практически устранен;
  2. Наличие теплового шума от нагревающихся транзисторов внутри пикселя в процессе считывания.
  3. Относительно большие размеры, фтооборудование с таким типом матриц отличается большим весом и размерами.

Кроме вышеупомянутых типов, существуют еще трехслойные матрицы, каждый слой которых представляет собой CCD. Отличие состоит в том, что ячейки могут одновременно воспринимать три цвета, которые образуются дихроидными призмами при попадании на них пучка света. Затем каждый пучок направляется на отдельную матрицу. В результате яркость синего, красного и зеленого цветов определяется на фотоэлементе сразу. Трехслойные матрицы применяют в видеокамерах высокого уровня, которые имеют специальное обозначение - 3CCD .

Подводя итоги хотелось бы отметить, что с развитием технологий производства CCD и CMOS матриц, меняются и их характеристики, поэтому все сложнее сказать какая из матриц однозначно лучше, но при этом в последнее время в производстве зеркальных фотокамер все большей популярностью пользуются КМОП-матрицы. На основе характерных особенностей различных видов матриц, можно составить четкое представление, почему профессиональная фототехника, обеспечивающая высокое качество съемок, довольно громоздкая и тяжелая. Эту информацию обязательно следует помнить при выборе фотоаппарата - то есть, учитывать физические размеры матрицы, а не количество пикселей.

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

Общее устройство и принцип работы

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Обозначения на схеме субпикселя ПЗС : 1 - фотоны света, прошедшие через объектив фотоаппарата ;
2 - ;
3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;
4 - прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова ;
5 - оксид кремния;
6 - кремниевый канал n-типа: зона генерации носителей - зона внутреннего фотоэффекта ;
7 - зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда ;
8 - кремниевая подложка p-типа .

Классификация по способу буферизации

Матрицы с полнокадровым переносом

Сформированное объективом изображение попадает на ПЗС-матрицу, то есть лучи света падают на светочувствительную поверхность ПЗС-элементов, задача которых-преобразовать энергию фотонов в электрический заряд. Происходит это примерно следующим образом.

Для фотона, упавшего на ПЗС-элемент, есть три варианта развития событий- он либо «срикошетит» от поверхности, либо будет поглощён в толще полупроводника (материала матрицы), либо «пробьёт насквозь» её «рабочую зону». Очевидно, что от разработчиков требуется создать такой сенсор, в котором потери от «рикошета» и «прострела навылет» были бы минимизированы. Те же фотоны, которые были поглощены матрицей, образуют пару электрон-дырка, если произошло взаимодействие с атомом кристаллической решётки полупроводника, или же только электрон (либо дырку), если взаимодействие было с атомами донорных либо акцепторных примесей, а оба перечисленных явления называются внутренним фотоэффектом. Разумеется, внутренним фотоэффектом работа сенсора не ограничивается - необходимо сохранить «отнятые» у полупроводника носители заряда в специальном хранилище, а затем их считать.

Элемент ПЗС-матрицы

В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p-типа оснащается каналами из полупроводника n-типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n -типа создаётся потенциальная яма, назначение которой- хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком, и усилить его.

Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига, которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.

Таким образом, при помощи регистра можно преобразовать в аналоговый сигнал заряды строки из ПЗС-элементов. Фактически, последовательный регистр сдвига в ПЗС-матрицах реализуется с помощью тех же самых ПЗС-элементов, объединённых в строку. Работа такого устройства базируется на способности приборов с зарядовой связью (именно это обозначает аббревиатура ПЗС) обмениваться зарядами своих потенциальных ям. Обмен осуществляется благодаря наличию специальных электродов переноса (transfer gate), расположенных между соседними ПЗС-элементами. При подаче на ближайший электрод повышенного потенциала заряд «перетекает» под него из потенциальной ямы. Между ПЗС-элементами могут располагаться от двух до четырёх электродов переноса, от их количества зависит «фазность» регистра сдвига, который может называться двухфазным, трёхфазным либо четырёхфазным.

Подача потенциалов на электроды переноса синхронизирована таким образом, что перемещение зарядов потенциальных ям всех ПЗС-элементов регистра происходит одновременно. И за один цикл переноса ПЗС-элементы как бы «передают по цепочке» заряды слева направо (или же справа налево). Ну а оказавшийся «крайним» ПЗС-элемент отдаёт свой заряд устройству, расположенному на выходе регистра- то есть усилителю.

В целом, последовательный регистр сдвига является устройством с параллельным входом и последовательным выходом. Поэтому после считывания всех зарядов из регистра есть возможность подать на его вход новую строку, затем следующую и таким образом сформировать непрерывный аналоговый сигнал на основе двумерного массива фототоков. В свою очередь, входной параллельный поток для последовательного регистра сдвига (то есть строки двумерного массива фототоков) обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая именуется параллельным регистром сдвига, а вся конструкция в целом как раз и является устройством, именуемым ПЗС-матрицей.

«Вертикальные» последовательные регистры сдвига, составляющие параллельный, называются столбцами ПЗС-матрицы, а их работа полностью синхронизирована. Двумерный массив фототоков ПЗС-матрицы одновременно смещается вниз на одну строку, причём происходит это только после того, как заряды предыдущей строки из расположенного «в самом низу» последовательного регистра сдвига ушли на усилитель. До освобождения последовательного регистра параллельный вынужден простаивать. Ну а сама ПЗС-матрица для нормальной работы обязательно должна быть подключена к микросхеме (или их набору), подающей потенциалы на электроды как последовательного, так и параллельного регистров сдвига, а также синхронизирующей работу обоих регистров. Кроме того, нужен тактовый генератор.

Полнокадровая матрица

Данный тип сенсора является наиболее простым с конструктивной точки зрения и именуется полнокадровой ПЗС-матрицей (full-frame CCD-matrix). Помимо микросхем «обвязки», такой тип матриц нуждается также в механическом затворе, перекрывающем световой поток после окончания экспонирования. До полного закрытия затвора считывание зарядов начинать нельзя - при рабочем цикле параллельного регистра сдвига к фототоку каждого из его пикселов добавятся лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full-frame matrix smear).

Таким образом, скорость считывания кадра в такой схеме ограничена скоростью работы как параллельного, так и последовательного регистров сдвига. Также очевидно, что необходимо перекрывать световой поток, идущий с объектива, до завершения процесса считывания, поэтому интервал между экспонированием тоже зависит от скорости считывания.

Матрицы с буферизацией кадра

Существует усовершенствованный вариант полнокадровой матрицы, в котором заряды параллельного регистра не поступают построчно на вход последовательного, а «складируются» в буферном параллельном регистре. Данный регистр расположен под основным параллельным регистром сдвига, фототоки построчно перемещаются в буферный регистр и уже из него поступают на вход последовательного регистра сдвига. Поверхность буферного регистра покрыта непрозрачной (чаще металлической) панелью, а вся система получила название матрицы с буферизацией кадра (frame - transfer CCD). Матрица с буферизацией кадра В данной схеме потенциальные ямы основного параллельного регистра сдвига «опорожняются» заметно быстрее, так как при переносе строк в буфер нет необходимости для каждой строки ожидать полный цикл последовательного регистра. Поэтому интервал между экспонированием сокращается, правда при этом также падает скорость считывания- строке приходится «путешествовать» на вдвое большее расстояние. Таким образом, интервал между экспонированием сокращается только для двух кадров, хотя стоимость устройства за счёт буферного регистра заметно возрастает. Однако наиболее заметным недостатком матриц с буферизацией кадра является удлинившийся «маршрут» фототоков, который негативно сказывается на сохранности их величин. И в любом случае между кадрами должен срабатывать механический затвор, так что о непрерывном видеосигнале говорить не приходится.

Матрицы с буферизацией столбцов

Специально для видеотехники был разработан новый тип матриц, в котором интервал между экспонированием был минимизирован не для пары кадров, а для непрерывного потока. Разумеется, для обеспечения этой непрерывности пришлось предусмотреть отказ от механического затвора.

Фактически данная схема, получившая наименование матрицы с буферизацией столбцов (interline CCD -matrix), в чём-то сходна с системами с буферизацией кадра- в ней также используется буферный параллельный регистр сдвига, ПЗС-элементы которого скрыты под непрозрачным покрытием. Однако буфер этот не располагается единым блоком под основным параллельным регистром- его столбцы «перетасованы» между столбцами основного регистра. В результате рядом с каждым столбцом основного регистра находится столбец буфера, а сразу же после экспонирования фототоки перемещаются не «сверху вниз», а «слева направо» (или «справа налево») и всего за один рабочий цикл попадают в буферный регистр, целиком и полностью освобождая потенциальные ямы для следующего экспонирования. Попавшие в буферный регистр заряды в обычном порядке считываются через последовательный регистр сдвига, то есть «сверху вниз». Поскольку сброс фототоков в буферный регистр происходит всего за один цикл, даже при отсутствии механического затвора не наблюдается ничего похожего на «размазывание» заряда в полнокадровой матрице. А вот время экспонирования для каждого кадра в большинстве случаев по продолжительности соответствует интервалу, затрачиваемому на полное считывание буферного параллельного регистра. Благодаря всему этому появляется возможность создать видеосигнал с высокой частотой кадров- не менее 30кадров секунду. Матрица с буферизацией столбцов Зачастую в отечественной литературе матрицы с буферизацией столбцов ошибочно именуют «чересстрочными». Вызвано это, наверное, тем, что английские наименования «interline» (буферизация строк) и «interlaced» (чересстрочная развёртка) звучат очень похоже. На деле же при считывании за один такт всех строк можно говорить о матрице с прогрессивной разверткой (progressive scan), а когда за первый такт считываются нечётные строки, а за второй- чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan).

Размеры матриц фотоаппаратов

Обозначение Ширина Высота Диагональ Площадь Пример
Полнокадровые,
плёнка типа 135 .
1 - 1,01 35,8 - 36 23,8 - 24 43 - 43,3 852-864 Canon EOS 5D , Canon EOS-1Ds (КМОП-матрица)
APS-H 1,26 - 1,28 28,1 - 28,7 18,7 - 19,1 33,8 - 34,5 525,5 - 548,2 Canon EOS-1D Mark III (КМОП-матрица)
1,33 27 18 32,4 486 Leica M8
APS-C , , 1.8" 1,44 - 1,74 20,7 - 25,1 13,8 - 16,7 24,9 - 30,1 285,7 - 419,2 Pentax K10D
Foveon X3 1,74 20,7 13,8 24,9 285,7 Sigma SD14
4/3 " 1,92 - 2 17,3 - 18 13 −13,5 21,6 - 22,5 224,9 - 243 Olympus E-330
1" 2,7 12,8 9,6 16 122,9 Sony ProMavica MVC-5000
2/3" 3,93 8,8 6,6 11 58,1 Pentax EI-2000
1/1,6" ≈4 8 6 10 48 Panasonic Lumix DMC-LX3
1/1,65" ≈4 Panasonic Lumix DMC-LX2
1/1,7" ≈4,5 7,6 5,7 9,5 43,3 Canon PowerShot G10
1/1,8" 4,84 7,176 5,319 8,9 38,2 Casio EXILIM EX-F1
1/1,9" ≈5 Samsung Digimax V6
1/2" 5,41 6,4 4,8 8 30,7 Sony DSC-D700
1/2,3" ≈6 6,16 4,62 7,70 28,46 Olympus SP-560 UZ
1/2,35" ≈6 Pentax Optio V10
1/2,4" ≈6 Fujifilm FinePix S8000fd
1/2,5" 5,99 5,8 4,3 7,2 24,9 Panasonic Lumix DMC-FZ8
1/2,6" ≈6 HP Photosmart M447
1/2,7" 6,56 5,27 3,96 6,6 20,9 Olympus C-900 zoom
1/2,8" ≈7 Canon DC40
1/2,9" ≈7 Sony HDR-SR7E
1/3" 7,21 4,8 3,6 6 17,3 Canon PowerShot A460
1/3,1" ≈7 Sony HDR-SR12E
1/3,2" 7,62 4,536 3,416 5,7 15,5 Canon HF100
1/3,4" ≈8 Canon MVX35i
1/3,6" 8,65 4 3 5 12 JVC GR-DZ7
1/3,9" ≈9 Canon DC22
1/4" Canon XM2
1/4,5" Samsung VP-HMX10C
1/4,7" Panasonic NV-GS500EE-S
1/5" Sony DCR-SR80E
1/5,5" JVC Everio GZ-HD7
1/6" 14,71 2,4 1,7 2,9 4,1 Sony DCR-DVD308E
1/8" Sony DCR-SR45E

Размеры матриц цифровых кинокамер

Обозначение соответствие
формату
кинопленки
Ширина

Что такое ПЗС-матрица?

Немного истории

В качестве приёмника света раньше использовались фотоматериалы: фотопластинки, фотоплёнка, фотобумага. Позже появились телевизионные камеры и ФЭУ (фото-электрический умножитель).
В конце 60-х - начале 70-х годов начали разрабатываться так называемые "Приборы с Зарядовой Связью", что сокращённо пишется как ПЗС. На английском языке это выглядит как "charge-coupled devices" или сокращённо - CCD. В принципе ПЗС-матриц лежал факт, что кремний способен реагировать на видимый свет. И этот факт привёл к мысли что этот принцип может использоваться для получения изображений светящихся объектов.

Астрономы были одними из первых, кто распознал экстраординарные способности ПЗС для регистрации изображений. В 1972 году группа исследователей из JPL (Лаборатория Реактивного Движения, США) основала программу развития ПЗС для астрономии и космических исследований. Три года спустя, совместно с учеными Аризонского университета, эта команда получила первое астрономическое ПЗС изображение. На снимке Урана в ближнем инфракрасном диапазоне с помощью полутораметрового телескопа были обнаружены темные пятна возле южного полюса планеты, свидетельствующие о наличии там метана...

Применение ПЗС-матриц на сегодняшний день нашло широкое применение: цифровые фотокамеры, видеокамеры; ПЗС-матрица как фотокамеры стало возможным встраивать даже в мобильные телефоны.

Устройство ПЗС

Типичное устройство ПЗС (рис.1): на полупроводниковой поверхности находится тонкий (0.1-0.15 мкм) слой диэлектрика (обычно окисла), на котором располагаются полоски проводящих электродов (из металла или поликристаллического кремния). Эти электроды образуют линейную или матричную регулярную систему, причем расстояния между электродами столь малы, что существенными являются эффекты взаимного влияния соседних электродов. Принцип работы ПЗС основан на возникновении, хранении и направленной передаче зарядовых пакетов в потенциальных ямах, образующихся в приповерхностном слое полупроводника при приложении к электродам внешних электрических напряжений.



Рис. 1. Принципиальное устройство ПЗС-матрицы.

На рис. 1 символами С1, С2 и С3 обозначены МОП-конденсаторы (металл-окисел-полупроводник).

Если к какому-либо электроду приложить положительное напряжение U, то в МДП-структуре возникает электрическое поле, под действием которого основные носители (дырки) очень быстро (за единицы пикосекунд) уходят от поверхности полупроводника. В результате у поверхности образуется обедненный слой, толщина которого составляет доли или единицы микрометра. Неосновные носители (электроны), генерированные в обедненном слое под действием каких-либо процессов (например, тепловых) или попавшие туда из нейтральных областей полупроводника под действием диффузии, будут перемещаться (под действием поля) к границе раздела полупроводник-диэлектрик и локализоваться в узком инверсном слое. Таким образом, у поверхности возникает потенциальная яма для электронов, в которую они скатываются из обедненного слоя под действием поля. Генерированные в обедненном слое основные носители (дырки) под действием поля выбрасываются в нейтральную часть полупроводника.
В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются.

Размер светочувствительного пикселя матриц составляет от одного-двух до нескольких десятков микрон. Размер же кристаллов галоидного серебра в светочувствительном слое фотопленки колеблется от 0.1 (позитивные эмульсии) до 1 микрона (высокочувствительные негативные).

Одним из основных параметров матрицы является, так называемая, квантовая эффективность. Это название отражает эффективность преобразования поглощенных фотонов (квантов) в фотоэлектроны и схоже фотографическому понятию светочувствительности. Поскольку энергия световых квантов зависит от их цвета (длины волны), невозможно однозначно определить сколько электронов родится в пикселе матрицы при поглощении им например потока из ста разнородных фотонов. Поэтому квантовая эффективность обычно дается в паспорте на матрицу как функция от длины волны, и на отдельных участках спектра может достигать 80%. Это гораздо больше, чем у фотоэмульсии или глаза (примерно 1%).

Какие бывают ПЗС-матрицы?

Если пиксели выстроены в один ряд, то приемник называется ПЗС-линейкой, если же участок поверхности заполнен ровными рядами - тогда приемник называется ПЗС-матрицей.

ПЗС-линейка имела широкий круг применения в 80-х и 90-х годах для астрономических наблюдений. Достаточно было провести изображение по ПЗС-линейке и оно появлялось на мониторе компьютера. Но это процесс сопровождался многими трудностями и поэтому в настоящее время ПЗС-линейки всё больше вытесняются ПЗС-матрицами.

Нежелательные эффекты

Одним из нежелательных побочных эффектов переноса заряда на ПЗС-матрице, который может мешать наблюдениям, являются яркие вертикальные полосы (столбы) на месте ярких зон изображения небольшой площади. Также к возможным нежелательным эффектам ПЗС-матриц можно отнести: высокий темновой шум, наличие "слепых" или "горячих" пикселей, неравномерность чувствительности по полю матрицы. Для уменьшения темнового шума используют автономное охлаждение ПЗС-матриц до температур -20°С и ниже. Либо же снимается темновой кадр (например с закрытым объективом) с такой же длительностью (экспозицией) и температурой, с какими был произведён предыдущий кадр. Впоследствии специальной программой на компьютере вычитается темновой кадр из изображения.

Телевизионные камеры на базе ПЗС-матриц хороши тем, что они дают возможность получать изображения со скоростью до 25 кадров в секунду с разрешением 752 x 582 пикселей. Но непригодность нектороых камер этого типа для астрономических наблюдений состоит в том, что в них производителем реализуются внутренние предобработки изображения (читать - искажения) для лучшего восприятия получаемых кадров зрением. Это и АРУ (автоматизированная регулировка управления) и т.н. эффект "резких границ" и прочие.

Прогресс…

В целом, использование ПЗС-приемников значительно удобнее, чем использование нецифровых приемников света, поскольку полученные данные сразу оказываются в виде, пригодном для обработки на компьютере и, кроме того, скорость получения отдельных кадров очень высока (от нескольких кадров в секунду до минут).

В настоящий момент быстрыми темпами развивается и совершенствуется производство ПЗС-матриц. Увеличивается количество "мегапикселей" матриц - количества отдельных пикселей на единицу площади матрицы. Улучшается качество изображений получаемых с помощью ПЗС-матриц и т.д.

Использованные источники:
1. 1. Виктор Белов. С точностью до десятых долей микрона.
2. 2. С.Е.Гурьянов. Знакомьтесь - ПЗС.

Впервые принцип ПЗС с идеей сохранять и затем считывать электронные заряды был разработан двумя инженерами корпорации BELL в конце 60-х годов в ходе поиска новых типов памяти для ЭВМ, способных заменить память на ферритовых кольцах (да – да, была и такая память). Эта идея оказалась бесперспективной, но способность кремния реагировать на видимый спектр излучения была замечена и мысль использовать этот принцип для обработки изображений получила своё развитие.

Начнем с расшифровки термина.

Аббревиатура ПЗС означает "Приборы с Зарядовой Связью" - этот термин образовался от английского "Сharge-Сoupled Devices" (CCD).

Данный тип приборов в настоящее время имеет очень широкий круг применений в самых различных оптоэлектронных устройствах для регистрации изображения. В быту это цифровые фотоаппараты, видеокамеры, различные сканеры.

Что же отличает ПЗС-приемник от обычного полупроводникового фотодиода, имеющего светочувствительную площадку и два электрических контакта для съема электрического сигнала?

Во-первых , таких светочувствительных площадок (часто их называют пикселами - элементами, принимающими свет и преобразующими его в электрические заряды) в ПЗС-приемнике очень много, от нескольких тысяч до нескольких сотен тысяч и даже нескольких миллионов. Размеры отдельных пикселов одинаковы и могут быть от единиц до десятков микрон. Пиксели могут быть выстроены в один ряд - тогда приемник называется ПЗС-линейкой, или ровными рядами заполнять участок поверхности - тогда приемник называют ПЗС-матрицей.

Раcположение светоприемных элементов (прямоугольники синего цвета) в ПЗС-линейке и ПЗС-матрице.

Во-вторых , в ПЗС-приёмнике, внешне похожем на обычную микросхему, нет огромного числа электрических контактов для вывода электрических сигналов, которые, казалось бы, должны идти от каждого светоприемного элемента. Зато к ПЗС-приемнику подключается электронная схема, которая позволяет извлекать с каждого светочувствительного элемента электрический сигнал, пропорциональный его засветке.

Действие ПЗС можно описать следующим образом: каждый светочувствительный элемент - пиксель - работает как копилка для электронов. Электроны возникают в пикселях под действием света, пришедшего от источника. В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света, как ведро, выставленное на улицу во время дождя. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются. Все это возможно за счет определенной структуры кристалла, где размещаются светочувствительные элементы, и электрической схемы управления.

Практически точно так же работает и ПЗС-матрица. После экспонирования (засветки проецируемым изображением) электронная схема управления прибором подаёт на него сложный набор импульсных напряжений, которые начинают сдвигать столбцы с накопленными в пикселях электронами к краю матрицы, где находится аналогичный измерительный ПЗС-регистр, заряды в котором сдвигаются уже в перпендикулярном направлении и попадают на измерительный элемент, создавая в нем сигналы, пропорциональные отдельным зарядам. Таким образом, для каждого последующего момента времени мы можем получить значение накопленного заряда и сообразить, какому пикселю на матрице (номер строки и номер столбца) он соответствует.

Кратко о физике процесса.

Для начала отметим, что ПЗС относятся к изделиям так называемой функциональной электроники, Их нельзя представить как совокупность отдельных радиоэлементов - транзисторов, сопротивлений и конденсаторов. В основе работы лежит принцип зарядовой связи. Принцип зарядовой связи использует два известных из электростатики положения:

  1. одноимённые заряды отталкиваются,
  2. заряды стремятся расположиться там, где их потенциальная энергия минимальна. Т.е. грубо – «рыба ищет там, где глубже».

Для начала представим себе МОП-конденсатор (МОП - сокращение от слов металл-окисел- полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов. В электрофизике «дыркой» называют заряд, обратный заряду электрона, т.е. положительный заряд.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, возникшие здесь под действием света, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. сваливаются в потенциальную яму (рис. 1).


Рис. 1
Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и в конце концов могут полностью его скомпенсировать, так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Пусть теперь рядом с затвором расположен ещё один затвор, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 2). Если только затворы расположены достаточно близко, их потенциальные ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если она «глубже».
Рис. 2
Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в то место, где потенциальная яма глубже.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры. Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. (Термин шина в электронике - проводник электрического тока, соединящиий однотипные элементы, тактовая шина - проводники по которым передается смещенное по фазе напряжение.) Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3).


Рис. 3
Простейший трёхфазный ПЗС-регистр.
Заряд в каждой потенциальной яме разный.

Это и есть простейший трёхфазный регистр сдвига на ПЗС. Тактовые диаграммы работы такого регистра показаны на рис. 4.




Рис. 4
Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов.
При смене потенциалов происходит передвижение зарядов.

Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и, по крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.

Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп-каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 5).


Рис. 5.
Вид на регистр "сверху".
Канал переноса в боковом направлении ограничивается стоп-каналами.

Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме.

Проблемы

Если при производстве цифровых приборов разброс параметров по пластине может достигать нескольких крат без заметного влияния на параметры получаемых приборов (поскольку работа идёт с дискретными уровнями напряжения), то в ПЗС изменение, скажем, концентрации легирующей примеси на 10% уже заметно на изображении. Свои проблемы добавляет и размер кристалла, и невозможность резервирования, как в БИС памяти, так что дефектные участки приводят к негодности всего кристалла.

Итог

Разные пикселы ПЗС матрицы технологически имеют разную чувствительность к свету и эту разницу необходимо корректировать.

В цифровых КМА эта коррекция называется системой Auto Gain Control (AGC)

Как работает система AGC

Для простоты рассмотрения не будем брать что-то конкретное. Предположим, что на выходе АЦП узла ПЗС есть некие потенциальные уровни. Предположим, что 60 - средний уровень белого.



  1. Для каждого пикселя линейки ПЗС считывается значение при освещении его эталонным белым светом (а в более серьезных аппаратах – и считывание «уровня черного»).
  2. Значение сравнивается с опорным уровнем (например, средним).
  3. Разница между выходным значением и опорным уровнем запоминается для каждого пиксела.
  4. В дальнейшем, при сканировании эта разница компенсируется для каждого пиксела.

Инициализация системы AGC производится каждый раз при инициализации системы сканера. Наверное, вы замечали, что при включении машины через какое-то время каретка сканера начинает совершать поступательно-возвратные движения (елозить у ч/б полоски). Это и есть процесс инициализации системы AGC. Система так же учитывает и состояние лампы (старение).

Так же Вы наверняка обращали внимание, что малые МФУ, снабженные цветным сканером, «зажигают лампу» тремя цветами по очереди: красным, синим и зеленым. Затем только подсветка оригинала зажигается белым. Это сделано для лучшей коррекции чувствительности матрицы раздельно по каналам RGB.

Тест полутонов (SHADING TEST) позволяет инициировать эту процедуру по желанию инженера и привести значения корректировки к реальным условиям.

Попробуем рассмотреть все это на реальной, «боевой» машине. За основу возьмем широкоизвестный и популярный аппарат SAMSUNG SCX-4521 (Xerox Pe 220).

Необходимо отметить, что в нашем случае CCD становится CIS (Contact Image Sensor), но суть происходящего в корне от этого не меняется. Просто в качестве источника света используются линейки светодиодов.

Итак:

Сигнал изображения от CIS имеет уровень около 1,2 В и поступает на АЦП-секцию (САЦП) контроллера аппарата (САЦП). После САЦП аналоговый сигнал CIS будет преобразован в 8-битовый цифровой сигнал.

Процессор обработки изображения в САЦП прежде всего использует функцию коррекции тона, а затем функцию гамма-коррекции. После этого данные подаются на различные модули в соответствии с режимом работы. В режиме Text данные изображения поступают на модуль LAT, в режиме Photo данные изображения поступают на модуль "Error Diffusion", в режиме PC-Scan данные изображения поступают прямо на персональный компьютер через доступ DMA.

Перед осуществлением тестирования положите на стекло экспонирования несколько чистых листов белой бумаги. Само собой разумеется, что оптика, ч/б полоса и вообще узел сканера изнутри должны быть предварительно «вылизаны»

  1. Выберите в TECH MODE
  2. Нажмите кнопку ENTER (Ввод) для сканирования изображения.
  3. После сканирования будет распечатан "CIS SHADING PROFILE" (профиль полутонов CIS). Пример такого листа приведен ниже. Не обязательно, что он должен быть копией Вашего результата, но близок по изображению.
  4. Если распечатанное изображение сильно отличается от изображения, показанного на рисунке, значит CIS неисправен. Обратите внимание – внизу листа отчета написано “Results: OK”. Это означает, что система серьезных претензий к модулю CIS не имеет. В противном случае будут даны результаты ошибок.

Пример распечатки профиля:

Удачи Вам!!

За основу взяты материалы статей и лекций преподавателей СПбГУ (ЛГУ), СПбЭТУ (ЛЭТИ) и Axl. Спасибо им.

Материал подготовлен В. Шеленбергом