Методы и структура протокола HTTP. Особенности работы HTTP протокола

  • 14.08.2019

Вашему вниманию предлагается описание основных аспектов протокола HTTP - сетевого протокола, с начала 90-х и по сей день позволяющего вашему браузеру загружать веб-страницы. Данная статья написана для тех, кто только начинает работать с компьютерными сетями и заниматься разработкой сетевых приложений, и кому пока что сложно самостоятельно читать официальные спецификации.

HTTP - широко распространённый протокол передачи данных, изначально предназначенный для передачи гипертекстовых документов (то есть документов, которые могут содержать ссылки, позволяющие организовать переход к другим документам).

Аббревиатура HTTP расшифровывается как HyperText Transfer Protocol , «протокол передачи гипертекста». В соответствии со спецификацией OSI , HTTP является протоколом прикладного (верхнего, 7-го) уровня. Актуальная на данный момент версия протокола, HTTP 1.1, описана в спецификации RFC 2616 .

Протокол HTTP предполагает использование клиент-серверной структуры передачи данных. Клиентское приложение формирует запрос и отправляет его на сервер, после чего серверное программное обеспечение обрабатывает данный запрос, формирует ответ и передаёт его обратно клиенту. После этого клиентское приложение может продолжить отправлять другие запросы, которые будут обработаны аналогичным образом.

Задача, которая традиционно решается с помощью протокола HTTP - обмен данными между пользовательским приложением, осуществляющим доступ к веб-ресурсам (обычно это веб-браузер) и веб-сервером. На данный момент именно благодаря протоколу HTTP обеспечивается работа Всемирной паутины.

Также HTTP часто используется как протокол передачи информации для других протоколов прикладного уровня, таких как SOAP, XML-RPC и WebDAV. В таком случае говорят, что протокол HTTP используется как «транспорт».

API многих программных продуктов также подразумевает использование HTTP для передачи данных - сами данные при этом могут иметь любой формат, например, XML или JSON.

Как правило, передача данных по протоколу HTTP осуществляется через TCP/IP-соединения. Серверное программное обеспечение при этом обычно использует TCP-порт 80 (и, если порт не указан явно, то обычно клиентское программное обеспечение по умолчанию использует именно 80-й порт для открываемых HTTP-соединений), хотя может использовать и любой другой.

Как отправить HTTP-запрос?

Самый простой способ разобраться с протоколом HTTP - это попробовать обратиться к какому-нибудь веб-ресурсу вручную. Представьте, что вы браузер, и у вас есть пользователь, который очень хочет прочитать статьи Анатолия Ализара.

Предположим, что он ввёл в адресной строке следующее:

Http://alizar.сайт/

Соответственно вам, как веб-браузеру, теперь необходимо подключиться к веб-серверу по адресу alizar.сайт.

Для этого вы можете воспользоваться любой подходящей утилитой командной строки. Например, telnet:

Telnet alizar.сайт 80

Сразу уточню, что если вы вдруг передумаете, то нажмите Ctrl + «]», и затем ввод - это позволит вам закрыть HTTP-соединение. Помимо telnet можете попробовать nc (или ncat) - по вкусу.

После того, как вы подключитесь к серверу, нужно отправить HTTP-запрос. Это, кстати, очень легко - HTTP-запросы могут состоять всего из двух строчек.

Для того, чтобы сформировать HTTP-запрос, необходимо составить стартовую строку, а также задать по крайней мере один заголовок - это заголовок Host, который является обязательным, и должен присутствовать в каждом запросе. Дело в том, что преобразование доменного имени в IP-адрес осуществляется на стороне клиента, и, соответственно, когда вы открываете TCP-соединение, то удалённый сервер не обладает никакой информацией о том, какой именно адрес использовался для соединения: это мог быть, например, адрес alizar..ru или m.. Однако фактически сетевое соединение во всех случаях открывается с узлом 212.24.43.44, и даже если первоначально при открытии соединения был задан не этот IP-адрес, а какое-либо доменное имя, то сервер об этом никак не информируется - и именно поэтому этот адрес необходимо передать в заголовке Host.

Стартовая (начальная) строка запроса для HTTP 1.1 составляется по следующей схеме:

Например (такая стартовая строка может указывать на то, что запрашивается главная страница сайта):

Ну и, конечно, не забывайте, что любая технология становится намного проще и понятнее тогда, когда вы фактически начинаете ей пользоваться.

Удачи и плодотворного обучения!

Теги:

  • http
  • alizar
  • spdy
Добавить метки

Мы выпустили новую книгу «Контент-маркетинг в социальных сетях: Как засесть в голову подписчиков и влюбить их в свой бренд».

Подписаться

HTTP - это , позволяющий передавать данные. Изначально он создавался для отправки и принятия документов, содержащих внутри ссылки для выполнения перехода на сторонние ресурсы.

Аббревиатура читается как «HyperText Transfer Protocol», что в переводе означает «протокол для передачи ». HTTP относится к группе прикладного уровня на основании специфики, использующейся OSI.

Чтобы лучше понять, что значит HTTP, разберем простую аналогию. Представим, что вы общаетесь с иностранцем в социальной сети. Он отправляет вам сообщение на английском языке, вы его получаете. Но понять содержимое вы не можете, так как не достаточно владеете языком. Чтобы расшифровать сообщение, воспользуетесь словарем. Поняв суть, вы отвечаете иностранцу на русском языке и отправляете ответ. Иностранец получает ответ и с помощью переводчика расшифровывает послание. Если упростить весь механизм, протоколы интернета HTTP выполняют функцию переводчика. С их помощью браузер может переводить зашифрованное содержимое веб-страниц и отображать их содержимое.

Для чего нужен HTTP

Протокол HTTP служит для обмена информацией с помощью клиент-серверной модели. Клиент составляет и передает запрос на сервер, затем сервер обрабатывает и анализирует его, после этого создается ответ и отправляется пользователю. По окончании данного процесса клиент делает новую команду, и все повторяется.

Таким образом, протокол HTTP позволяет осуществлять обмен информацией между различными приложениями пользователей и специальными веб-серверами, а также подключаться к веб-ресурсам (как правило, браузерам). Сегодня описываемый протокол обеспечивает работу всей сети. Протокол передачи данных HTTP применяется и для передачи информации по другим протоколам более низкого уровня, например, WebDAV или SOAP. При этом протокол представляет собой средство для транспортировки. Многие программы также основываются на применении HTTP в качестве основного инструмента для обмена информацией. Данные представляются в различных форматах, к примеру, JSON или XML.

HTTP является протоколом для обмена информацией с помощью соединения IP/ ТСР. Как правило, для этого сервер использует порт 80 типа TCP. Если порт не прописан, программное обеспечение клиента будет использовать порт 80 типа TCP по умолчанию. В некоторых случаях могут использоваться и другие порты.

В протоколе HTTP используется симметричная схема шифрования, в его работе применяются симметричные криптосистемы. Симметричные криптосистемы предполагают использование одного и того же ключа для шифрования и расшифрования информации.

Чем отличается HTTP от HTTPS

Отличие можно обнаружить даже из расшифровок аббревиатур. HTTPS расшифровывается как «защита протокола передачи гипертекста». Таким образом, HTTP - самостоятельный протокол, а HTTPS - расширение для его защиты. По HTTP информация передается незащищенной, а HTTPS обеспечивает криптографическую защиту. Особенно актуально это для ресурсов с ответственной авторизацией. Это могут быть социальные сети или сайты платежных систем.

Чем опасна передача незащищенных данных? Программа-перехватчик может в любой момент передать их злоумышленникам. HTTPS имеет сложную техническую организацию, что позволяет надежно защищать информацию и исключить возможность несанкционированного доступа к ней. Отличие заключается и в портах. HTTPS, как правило, работает с портом 443.

Таким образом, HTTP применяется для передачи данных, а HTTPS позволяет осуществлять защищенную передачу данных с помощью шифрования и выполнять авторизацию на ресурсах с высоким уровнем безопасности.

Дополнительный функционал

HTTP отличается богатым функционалом, он совместим с различными расширениями. Используемая сегодня спецификация 1.1 позволяет применять заголовок Upgrade для переключения и работы через другие протоколы при обмене данными. Для этого пользователь должен отправить запрос серверу с данным заголовком. Если же сервер нуждается в переходе на специфичный обмен по иному протоколу, он возвращает клиенту запрос, в котором отображается статус «426 Upgrade Required».

Данная возможность особенно актуальна для обмена информацией через WebSocket (имеет спецификацию RFC 6455 , позволяет обмениваться данными в любой момент, без лишних HTTP-запросов). Для перехода на WebSocket один пользователь отправляет запрос с заголовком Upgrade и значением «websocket». Далее сервер отвечает «101 Switching Protocols». После этого момента начинается передача информация по WebSocket.

.) Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными, хотя данный протокол является текстовым.

Прокси-серверы

История развития

HTTP/0.9

Кроме обычного метода GET , различают ещё и . Условные запросы GET содержат заголовки If-Modified-Since , If-Match , If-Range и подобные. Частичные GET содержат в запросе Range . Порядок выполнения подобных запросов определён стандартами отдельно.

HEAD

Аналогичен методу GET , за исключением того, что в ответе сервера отсутствует тело. Запрос HEAD обычно применяется для извлечения метаданных , проверки наличия ресурса (валидация URL) и чтобы узнать, не изменился ли он с момента последнего обращения.

Заголовки ответа могут кэшироваться. При несовпадении метаданных ресурса с соответствующей информацией в кэше копия ресурса помечается как устаревшая.

POST

Применяется для передачи пользовательских данных заданному ресурсу. Например, в блогах посетители обычно могут вводить свои комментарии к записям в HTML-форму, после чего они передаются серверу методом POST и он помещает их на страницу. При этом передаваемые данные (в примере с блогами - текст комментария) включаются в тело запроса. Аналогично с помощью метода POST обычно загружаются файлы на сервер.

В отличие от метода GET , метод POST не считается идемпотентным , то есть многократное повторение одних и тех же запросов POST может возвращать разные результаты (например, после каждой отправки комментария будет появляться одна копия этого комментария).

При результате выполнения 200 (Ok) в тело ответа следует включить сообщение об итоге выполнения запроса. Если был создан ресурс, то серверу следует вернуть ответ 201 (Created) с указанием URI нового ресурса в заголовке Location .

Сообщение ответа сервера на выполнение метода POST не кэшируется.

PUT

Применяется для загрузки содержимого запроса на указанный в запросе URI. Если по заданному URI не существовало ресурса, то сервер создаёт его и возвращает статус 201 (Created). Если же был изменён ресурс, то сервер возвращает 200 (Ok) или 204 (No Content). Сервер не должен игнорировать некорректные заголовки Content-* передаваемые клиентом вместе с сообщением. Если какой-то из этих заголовков не может быть распознан или не допустим при текущих условиях, то необходимо вернуть код ошибки 501 (Not Implemented).

Фундаментальное различие методов POST и PUT заключается в понимании предназначений URI ресурсов. Метод POST предполагает, что по указанному URI будет производиться обработка передаваемого клиентом содержимого. Используя PUT , клиент предполагает, что загружаемое содержимое соответствует находящемуся по данному URI ресурсу.

Сообщения ответов сервера на метод PUT не кэшируются.

PATCH

Аналогично PUT, но применяется только к фрагменту ресурса.

DELETE

Удаляет указанный ресурс.

TRACE

Возвращает полученный запрос так, что клиент может увидеть, какую информацию промежуточные серверы добавляют или изменяют в запросе.

LINK

Устанавливает связь указанного ресурса с другими.

UNLINK

Убирает связь указанного ресурса с другими.

CONNECT

Преобразует соединение запроса в прозрачный TCP/IP туннель, обычно чтобы содействовать установлению защищенного SSL соединения через нешифрованный прокси.

Коды состояния

Код состояния является частью первой строки ответа сервера. Он представляет собой целое число из трех арабских цифр . Первая цифра указывает на класс состояния. За кодом ответа обычно следует отделённая пробелом поясняющая фраза на английском языке, которая разъясняет человеку причину именно такого ответа. Примеры:

201 Webpage Created 403 Access allowed only for registered users 507 Insufficient Storage

Клиент узнаёт по коду ответа о результатах его запроса и определяет, какие действия ему предпринимать дальше. Набор кодов состояния является стандартом, и они описаны в соответствующих документах RFC . Введение новых кодов должно производиться только после согласования с IETF . Клиент может не знать все коды состояния, но он обязан отреагировать в соответствии с классом кода.

В настоящее время выделено пять классов кодов состояния.

1xx Informational (рус. Информационный )

В этот класс выделены коды, информирующие о процессе передачи. В HTTP/1.0 сообщения с такими кодами должны игнорироваться. В HTTP/1.1 клиент должен быть готов принять этот класс сообщений как обычный ответ, но ничего отправлять серверу не нужно. Сами сообщения от сервера содержат только стартовую строку ответа и, если требуется, несколько специфичных для ответа полей заголовка. Прокси-серверы подобные сообщения должны отправлять дальше от сервера к клиенту.

2xx Success (рус. Успех )

Сообщения данного класса информируют о случаях успешного принятия и обработки запроса клиента. В зависимости от статуса сервер может ещё передать заголовки и тело сообщения.

3xx Redirection (рус. Перенаправление )

Коды класса 3xx сообщают клиенту что для успешного выполнения операции необходимо сделать другой запрос (как правило по другому URI). Из данного класса пять кодов , , , и относятся непосредственно к перенаправлениям (редирект). Адрес, по которому клиенту следует произвести запрос, сервер указывает в заголовке Location . При этом допускается использование фрагментов в целевом URI.

4xx Client Error (рус. Ошибка клиента )

Класс кодов 4xx предназначен для указания ошибок со стороны клиента. При использовании всех методов, кроме HEAD , сервер должен вернуть в теле сообщения гипертекстовое пояснение для пользователя.

Для запоминания значений кодов с 400 по 417 существуют приёмы иллюстративной мнемотехники

5xx Server Error (рус. Ошибка сервера )

Коды 5xx выделены под случаи неудачного выполнения операции по вине сервера. Для всех ситуаций, кроме использования метода HEAD , сервер должен включать в тело сообщения объяснение, которое клиент отобразит пользователю.

Заголовки

Тело сообщения

Тело HTTP сообщения (message-body), если оно присутствует, используется для передачи тела объекта, связанного с запросом или ответом. Тело сообщения (message-body) отличается от тела объекта (entity-body) только в том случае, когда применяется кодирование передачи, что указывается полем заголовка Transfer-Encoding.

Message-body = entity-body |

Поле Transfer-Encoding должно использоваться для указания любого кодирования передачи, примененного приложением в целях гарантирования безопасной и правильной передачи сообщения. Поле Transfer-Encoding - это свойство сообщения, а не объекта, и, таким образом, может быть добавлено или удалено любым приложением в цепочке запросов/ответов.

Правила, устанавливающие допустимость тела сообщения в сообщении, отличны для запросов и ответов.

Присутствие тела сообщения в запросе отмечается добавлением к заголовкам запроса поля заголовка Content-Length или Transfer-Encoding. Тело сообщения (message-body) МОЖЕТ быть добавлено в запрос только когда метод запроса допускает тело объекта (entity-body).

Включается или не включается тело сообщения (message-body) в сообщение ответа зависит как от метода запроса, так и от кода состояния ответа. Все ответы на запрос с методом HEAD не должны включать тело сообщения (message-body), даже если присутствуют поля заголовка объекта (entity-header), заставляющие поверить в присутствие объекта. Никакие ответы с кодами состояния 1xx (Информационные), 204 (Нет содержимого, No Content), и 304 (Не модифицирован, Not Modified) не должны содержать тела сообщения (message-body). Все другие ответы содержат тело сообщения, даже если оно имеет нулевую длину.

Примеры диалогов HTTP

Обычный GET-запрос

Различают два основных типа согласований:

  • Управляемое сервером (англ. Server-Driven ).
  • Управляемое клиентом (англ. Agent-Driven ).

Одновременно могут быть использованы оба типа или каждый из них по отдельности.

В основной спецификации по протоколу (RFC 2616) также выделяется так называемое прозрачное согласование (англ. Transparent Negotiation ) как предпочтительный вариант комбинирования обоих типов. Последний механизм не следует путать с независимой технологией Transparent Content Negotiation (TCN, рус. Прозрачное согласование содержимого , см. RFC 2295), которая не является частью протокола HTTP, но может использоваться с ним. У обоих существенное различие в принципе работы и самом значении слова «прозрачное» (transparent). В спецификации по HTTP под прозрачностью подразумевается, что процесс не заметен для клиента и сервера, а в технологии TCN прозрачность означает доступность полного списка вариантов ресурса для всех участников процесса доставки данных.

Управляемое сервером

При наличии нескольких версий ресурса сервер может анализировать заголовки запроса клиента, чтобы выдать, по его мнению, наиболее подходящую. В основном анализируются заголовки Accept , Accept-Charset , Accept-Encoding , Accept-Languages и User-Agent . Серверу желательно включать в ответ заголовок Vary с указанием параметров, по которым различается содержимое по запрашиваемому URI.

Географическое положение клиента можно определить по удалённому IP-адресу . Это возможно за счёт того что IP-адреса, как и доменные имена , регистрируются на конкретного человека или организацию. При регистрации указывается регион, в котором будет использоваться желаемое адресное пространство. Эти данные общедоступны, и в Интернете можно найти соответствующие свободно распространяемые базы данных и готовые программные модули для работы с ними (следует ориентироваться на ключевые слова «Geo IP»).

Следует помнить что такой метод способен определить местоположение максимум с точностью до города (отсюда определяется и страна). При этом информация актуальна только на момент регистрации адресного пространства. Например, если московский провайдер зарегистрирует диапазон адресов с указанием Москвы и начнёт предоставлять доступ клиентам из ближайшего Подмосковья, то его абоненты могут на некоторых сайтах наблюдать, что они из Москвы, а не из Красногорска или Дзержинского .

Управляемое сервером согласование имеет несколько недостатков:

  • Сервер только предполагает, какой вариант наиболее предпочтителен для конечного пользователя, но не может знать точно, что именно нужно в данный момент (например, версия на русском языке или английском).
  • Заголовков группы Accept передаётся много, а ресурсов с несколькими вариантами - мало. Из-за этого оборудование испытывает избыточную нагрузку.
  • Общему кэшу создаётся ограничение возможности выдавать один и тот же ответ на идентичные запросы от разных пользователей.
  • Передача заголовков Accept также может раскрывать некоторые сведения о его предпочтениях, таких как используемые языки, браузер, кодировка.

Управляемое клиентом

В данном случае тип содержимого определяется только на стороне клиента. Для этого сервер возвращает с кодом состояния 300 (Multiple Choices) или 406 (Not Acceptable) список вариантов, среди которых пользователь выбирает подходящий. Управляемое клиентом согласование хорошо, когда содержимое различается по самым частым параметрам (например, по языку и кодировке) и используется публичный кэш.

Основной недостаток - лишняя нагрузка, так как приходится делать дополнительный запрос, чтобы получить нужное содержимое.

Прозрачное согласование

Данное согласование полностью прозрачно для клиента и сервера. В данном случае используется общий кэш, в котором содержится список вариантов, как для управляемого клиентом согласования. Если кэш понимает все эти варианты, то он сам делает выбор, как при управляемом сервером согласовании. Это снижает нагрузки с исходного сервера и исключает дополнительный запрос со стороны клиента.

В основной спецификации по протоколу HTTP механизм прозрачного согласования подробно не описан.

Множественное содержимое

Протокол HTTP поддерживает передачу нескольких сущностей в пределах одного сообщения. Причём сущности могут передаваться не только в виде одноуровневой последовательности, но в виде иерархии с вложением элементов друг в друга. Для обозначения множественного содержимого используются медиатипы multipart/* . Работа с такими типами осуществляется по общим правилам, описанным в RFC 2046 (если иное не определено конкретным медиа типом). Если получателю не известно как работать с типом, то он обрабатывает его так же, как multipart/mixed .

Параметр boundary означает разделитель между различными типами передаваемых сообщений. Например передаваемый из формы параметр DestAddress передает значение e-mail адреса, а последущий за ним элемент AttachedFile1 отправляет двоичное содержимое изображения формата.jpg

Со стороны сервера сообщения со множественным содержимым могут посылаться в ответ на при запросе нескольких фрагментов ресурса. В этом случае используется медиа тип multipart/byteranges .

Со стороны клиента при отправке HTML -формы чаще всего пользуются методом POST . Типичный пример: страницы отправки электронных писем со вложенными файлами. При отправке такого письма браузер формирует сообщение типа multipart/form-data , интегрируя в него как отдельные части, введённые пользователем, тему письма, адрес получателя, сам текст и вложенные файлы:

POST /send-message.html HTTP/1.1 Host: mail.example.com Referer: http://mail.example.com/send-message.html User-Agent: BrowserForDummies/4.67b Content-Type: multipart/form-data; boundary="Asrf456BGe4h" Content-Length: (суммарный объём, включая дочерние заголовки) Connection: keep-alive Keep-Alive: 300 (пустая строка) (отсутствующая преамбула) --Asrf456BGe4h Content-Disposition: form-data; name="DestAddress" (пустая строка) [email protected] --Asrf456BGe4h Content-Disposition: form-data; name="MessageTitle" (пустая строка) Я негодую --Asrf456BGe4h Content-Disposition: form-data; name="MessageText" (пустая строка) Привет, Василий! Твой ручной лев, которого ты оставил у меня на прошлой неделе, разодрал весь мой диван. Пожалуйста, забери его скорее! Во вложении две фотки с последствиями. --Asrf456BGe4h Content-Disposition: form-data; name="AttachedFile1"; filename="horror-photo-1.jpg" Content-Type: image/jpeg (пустая строка) (двоичное содержимое первой фотографии) --Asrf456BGe4h Content-Disposition: form-data; name="AttachedFile2"; filename="horror-photo-2.jpg" Content-Type: image/jpeg (пустая строка) (двоичное содержимое второй фотографии) --Asrf456BGe4h-- (отсутствующий эпилог)

В примере в заголовках Content-Disposition параметр name соответствует атрибуту name в HTML-тегах и