Виды мультиплексоров sdh. Технология SDH. Синхронная цифровая иерархия. Состав оборудования. Конструктивное исполнение. Назначение

  • 31.10.2019

Поскольку в каждом комплекте оборудования узла связи одновременно производится в одном направлении передача, а другом приём, то в одном блоке монтируется и мультиплексор и демультиплексор, выполняющие взаимообратные функции объединения / разъединения (расшивки) потоков.

Мультиплексоры SDH в отличае от мультиплексоров PDH выполняют как функции мультиплексирования, так и функции терминального устройства доступа низкоскоростных каналовRDH иерархии непосредственно к своим входным портам. Кроме того они могут выполнять ещё и коммутацию, концентрацию и регенерацию. Конструктивно SDH мультиплексоры (SMUX) выполнены в виде модулей. Меняя состав модулей и программное обеспечение по управлению можно обеспечить вышеназванные функции SMUX. Однако есть различие между терминальным SMUX и SMUX ввода / вывода.

Терминальный мультиплексор (TM SMUX) является мультиплексором / демультиплексором и одновременно оконечным устройством SDH сети с каналами доступа соответствующим трибам PDH и SDH иерархий. TM SMUX может вводить каналы (трибные потоки) и коммутировать их на линейный выход или может коммутировать линейные сигналы на трибные выходы т.е. выводить. Кроме того он может осуществлять локальную коммутацию входа какого-либо трибного интерфейса на выход подобного же интерфейса. (т.е. осуществляет шлифование трибных потоков на входе, правда для потоков 1,5 и 2 .

Т.к. SDH система разрабатывалась под оптические линии связи, то и MUX имеют выходные интерфейсы на оптические линии связи. Только STM-1 может иметь или электрические, или оптические линейные выходы, а STM-4;64 имеют только оптические входы /выходы.

Причём, оказалось несложно иметь два линейных входа (каждый обеспечивает одновременно приём и передачу) их ещё называют оптический агрегатный канал приёма / передачи.

Наличие двух агрегатных каналов позволяет организовать приём / передачу по разным видам структуры сети: кольцевой, линейной, звёздообразной и т.п. При кольцевой сети - это большое преимущество SDH MUX-ов одно направление –“запад”, а в другую сторону – “ восток”.



При линейной структуре сети эти выходы называют основной и резервный.

Кольцевая структура

Мультиплексор ввода / вывода -ADM (Add / Drop Multiplexer) (или Drop / Insert) – может иметь на выходе тот же набор приборов, что и терминальный и может выводить из общего потока или вводить в него компонентные трибные потоки, осуществлять коммутацию и кроме того, позволяет осуществлять сквозное (транзитное) прохождение всего потока с одновременной регенерацией сигналов. ADM может также замыкать (шлейфовать) агрегатные оптические выходы “восточный” на “западный” и наоборот. Это позволяет в случае выхода из строя одной линии переключать поток на другую, т.е. осуществляется резирвирование. Кроме того, в случае выхода из строя самого блока ADM имеется возможность пропускать оптические сигналы минуя сам мультиплексор, т.е. в обход.




Концентратор (иногда по старому их называют ХАБом)- это мультиплексор, объединяющий несколько (обычно однотипных) потоков со стороны входных портов, поступающих от удалённых узлов сети в один распределительный узел сети SDH. Это даёт возможность организовывать структуры типа “звезда”. Ниже приведен пример организации сегмента сети.

Концентраторы позволяют уменьшить общее число портов подключенных непосредственно к основной транспортной сети. Мультиплексор распределительного узла в звездчатой структуре позволяет

локально коммутировать между собой удалённые узлы без необходимости их подключения к основной магистрали.



Регенераторы - это тоже мультиплексор (часто это более простые устройства). Регенератор имеет один оптический вход триба типа STM-N и один или два оптических агрегатных выхода.

Регенератор восстанавливает форму и амплитуду импульсов, подвергшихся затуханию в линии. Регенераторы в зависимости от используемой длины волны лазера и типа кабеля ставят через 15-40 км. Имеются проработки для более длинноволновых лазеров оптических кабелей с затуханием менее 1 дБ/км. Это позволяет ставить регенераторы через 100 и более км, а с оптическими усилителями и через 150 км.

Коммутаторы - подавляющие большинство выпускаемых разными производителями мультиплексоров ADM строятся по модульному типу. Среди этих модулей центральное место занимает модуль КРОСС-КОММУТАТОР или часто называют просто КОММУТАТОР (DXC) . Кросс-коммутатор может осуществлять ВНУТРЕННЮЮ коммутацию и ЛОКАЛЬНУЮ коммутацию.


Также возможности позволяют гибко организовывать связь и, что очень важно, позволяют осуществлять маршрутизацию. Если коммутировать локально однотипные каналы, то коммутатор будет выполнять и роль концентратора.

Для SDH систем разработаны специально синхронные коммутаторы SDXC, осуществляющие не только локальную, но и общую - сквозную коммутацию (или ещё называют ПРОХОДНУЮ) высокоскоростных потоков (34 мб/с и выше) и возможность НЕБЛОКИРУЮЩЕЙ КОММУТАЦИИ – т.е. при коммутации каких-либо каналов, остальные не должны блокироваться.


В настоящее время существуют несколько разновидностей SDXC коммутаторов. Их обозначение имеет вид SDXC n/m, где n- номер VC, который может быть принят на входе, m- максимально возможный уровень VC, который может коммутироваться. Иногда указывают целый набор номеров VC, которые могут коммутироваться.

SDXC 4/4 – и принимает и коммутирует VC-4 или потоки 140 и 155 Мбит/с.

SDXC 4/3/2/1 – принимает VC-4 или потоки 140 и 155 Мбит/с, а коммутирует (обрабатывает) VC-3; VC-2; VC-1 или потоки 34 или 45,6 Мб/с; 1,5 или 2 Мбит/с.

Oсновным элементом сети SDH является мультиплексор (см. Рисунок 1). Обычно он оснащен некоторым количеством портов PDH и SDH: например, портами PDH на 2 и 34/45 Мбит/с и портами SDH STM-1 на 155 Мбит/c и STM-4 на 622 Мбит/c. Порты мультиплексора SDH делятся на агрегатные и трибутарные. Трибутарные порты часто называют также портами ввода/вывода, а агрегатные - линейными. Эта терминология отражает типовые топологии сетей SDH, где имеется ярко выраженная магистраль в виде цепи или кольца, по которой передаются потоки данных, поступающие от пользователей сети через порты ввода/вывода (т. е. втекающие в агрегированный поток: tributary дословно означает «приток»).

Мультиплексоры SDH обычно делят на терминальные (Terminal Multiplexor, TM) и ввода/вывода (Add-Drop Multiplexor, ADM). Разница между ними состоит не в составе портов, а в положении мультиплексора в сети SDH. Терминальное устройство завершает агрегатные каналы, мультиплексируя в них большое количество каналов ввода/вывода (трибутарных). Мультиплексор ввода/вывода транзитом передает агрегатные каналы, занимая промежуточное положение на магистрали (в кольце, цепи или смешанной топологии). При этом данные трибутарных каналов вводятся в агрегатный канал или выводятся из него. Агрегатные порты мультиплексора поддерживают максимальный для данной модели уровень скорости STM-N, значение которой служит для характеристики мультиплексора в целом, например мультиплексор STM-4 или STM-64.

Иногда различают так называемые кросс-коннекторы (Digital Cross-Connect, DXC) - в отличие от мультиплексоров ввода/вывода, они выполняют коммутацию произвольных виртуальных контейнеров, а не только контейнера из агрегатного потока с соответствующим контейнером трибутарного потока. Чаще всего кросс-коннекторы реализуют соединения между трибутарными портами (точнее - виртуальными контейнерами, формируемыми из данных трибутарных портов), но могут применяться кросс-коннекторы и агрегатных портов, т. е. контейнеров VC-4 и их групп. Последний вид мультиплексоров пока встречается реже, чем остальные, так как его применение оправдано при большом количестве агрегатных портов и ячеистой топологии сети, а это существенно увеличивает стоимость как мультиплексора, так и сети в целом.

Большинство производителей выпускает универсальные мультиплексоры, которые могут использоваться в качестве терминальных, ввода/вывода и кросс-коннекторов - в зависимости от набора установленных модулей с агрегатными и трибутарными портами. Однако возможности использования таких мультиплексоров в качестве кросс-коннекторов весьма ограничен, поскольку производители часто выпускают модели мультиплексоров с возможностью установки только одной агрегатной карты с двумя портами. Конфигурация с двумя агрегатными портами является минимальной, обеспечивающей работу в сети с топологией кольцо или цепь. Такая конструкция мультиплексора не слишком дорога, но способна усложнить проектирование сети, если требуется реализовать ячеистую топологию на максимальной для мультиплексора скорости.

Кроме мультиплексоров в состав сети SDH могут входить регенераторы, они необходимы для преодоления ограничений по расстоянию между мультиплексорами, зависящих от мощности оптических передатчиков, чувствительности приемников и затухания волоконно-оптического кабеля. Регенератор преобразует оптический сигнал в электрический и обратно, восстанавливая при этом форму сигнала и его временные параметры. В настоящее время регенераторы SDH применяются достаточно редко, так как стоимость их ненамного меньше стоимости мультиплексора, а функциональные возможности несоизмеримы.

Стек протоколов SDH состоит из протоколов четырех уровней.

  • Физический уровень, названный в стандарте фотонным (photonic), имеет дело с кодированием бит информации с помощью модуляции света.
  • Уровень секции (section) поддерживает физическую целостность сети. Под секцией в технологии SDH подразумевается каждый непрерывный отрезок волоконно-оптического кабеля, посредством которого пара устройств SONET/SDH соединяется между собой, например мультиплексор и регенератор, регенератор и регенератор. Ее часто называют регенераторной секцией, имея в виду, что от оконечных устройств не требуется выполнение функций этого уровня мультиплексора. Протокол регенераторной секции имеет дело с определенной частью заголовка кадра, называемой заголовком регенераторной секции (RSOH), и на основе служебной информации может проводить тестирование секции и поддерживать операции административного контроля.
  • Уровень линии (line) отвечает за передачу данных между двумя мультиплексорами сети. Протокол этого уровня работает с кадрами уровней STS-n для выполнения различных операций мультиплексирования и демультиплексирования, а также вставки и удаления пользовательских данных. Он осуществляет также проведение операций реконфигурирования линии в случае отказа какого-либо ее элемента - оптического волокна, порта или соседнего мультиплексора. Линию часто называют мультиплексной секцией.
  • Уровень тракта (path) контролирует доставку данных между двумя конечными пользователями сети. Тракт (путь) - это составное виртуальное соединение между пользователями. Протокол тракта должен принять поступающие в пользовательском формате данные, например формате E1, и преобразовать их в синхронные кадры STM-N.

Известно, что широко распространенная технология мультиплексирования ИКМ-30 (ИКМ - импульсно-кодовая модуляция ) использует принципы образования группового тракта, который позволяет в течение 125 мкс передать информацию 32 каналов (30 пользовательских и 2 служебных). Однако по мере роста потребностей набор типов аппаратуры расширялся, и увеличивались скорости, достигаемые при передаче по физическим каналам. Появились устройства, способные за то же время 125 мкс передавать информацию для 120 каналов (ИКМ -120), 480 (ИКМ - 480), 1920 (ИКМ-1920) и 7680 каналов (ИКМ -7680). В международных документах они имеют следующие обозначения: ИКМ-30 - E1, ИКМ -120 -E2, ИКМ - 480 -E3, ИКМ-1920- E4, ИКМ -7680-E4. Для Северной Америки и Канады принята другая иерархия : 24 канала - DS-1 , 96 каналов - DS-2 , 672 канала - DS-3 , 4032 канала - DS-4 . Для Японии принята следующая иерархия : 24 канала - DS-1 , 96т каналов - DS-2 , 480 канала - DSJ-3, 1440 каналов - DSJ-4.

Эти ряды, перечисляющие возможные иерархии цифровой аппаратуры передачи информации, называются плезиохронной цифровой иерархией ПЦИ (PDH - Plesiochronous Digital Hierarchy) .

  • секционное (регенераторное) оборудование;
  • линейное (мультиплексное) оборудование;
  • маршрутное оборудование.


Рис. 9.1.

  • STM-1 - синхронный транспортный модуль первого уровня,имеет скорость 155,52 Мбит/с. Этот модуль является основой системы SDH. Путем мультиплексирования нескольких модулей STM-1 получаются модули более высоких уровней.
  • STM- 4 - синхронный транспортный модуль четвертого уровня,имеет скорость 622,08 Мбит/с.
  • В рекомендациях ITU определен модуль STM-N - синхронный транспортный модуль уровня N, где N = 1, 4, 16, 256,с соответствующим этим коэффициентам увеличением скорости.
  • В России на радиорелейных линиях применяется STM-0 синхронный транспортный модуль нулевого уровня. Он имеет скорость 51,84 Мбит/с> и не входит в иерархию SDH.

В рамках системы SONET основная единица иерархии - синхронный транспортный сигнал STS1 (Synchronous Transport Signal) уровня 1 . Остальные синхронные транспортные сигналы более высоких уровней получаются мультиплексированием и увеличением скорости в n раз. Это число может принимать 14 значений:

Сигналы выше уровня 3 принято обозначать [ 27 ] как OC ( Optical Carrier ) - оптическая несущая иерархии SONET . При этом сигналы выше 9-го уровня считаются гипотетическими электрическими синхронными транспортными сигналами. Это название указывает на проблемы с реализацией таких сигналов в электрической форме.

Принципы мультиплексирования в иерархии SDH/SONET

Принцип передачи сигналов заключается в том, что каждые 125 мс передается стандартный синхронный модуль ( рис. 9.2), который называется " синхронный транспортный модуль " ( STM - Synchronous Transport

Module ). Рассмотрим детальнее модуль STM1 [ [ 79 ] При передаче в канал он содержит 9 временных положений [ 2 ] в каждом, из которых содержатся 270 байтов (8 битовые единицы). Таким образом, требуемая скорость равна


Рис. 9.2.

Из нескольких циклов, составляющих формат модуля STM-1 (в данном случае это цикл нижнего уровня), может быть составлен мультицикл (сверхцикл), содержащий несколько циклов нижнего уровня. Для объединения нескольких модулей используется

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра СиУТ

Реферат на тему

«Цифровые транспортные сети SDH»

по дисциплине

"Транспортные и распределительные сети"

Выполнил

магистрант Бобов М.Н.

специальность 1-458002


ВВЕДЕНИЕ

1.3 Достоинства сетей SDH

2 ИЕРАРХИЯ СКОРОСТЕЙ И МЕТОДЫ МУЛЬТИПЛЕКСИРОВАНИЯ.

2.1 Иерархия скоростей

2.2 Элементы сети SDH

2.3 Стек протоколов SDH

2.4 Схема мультиплексирования SDH

3 НОВОЕ ПОКОЛЕНИЕ ПРОТОКОЛОВ SDH

3.1 Механизмы стандартов SDH нового поколения

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Технология синхронной цифровой иерархии (Synchronous Digital Hierarchy, SDH) позволяет создавать надежные транспортные сети и гибко формировать цифровые каналы в широком диапазоне скоростей - от нескольких мегабит до десятков гигабит в секунду. Основная область ее применения - первичные сети операторов связи.

Первичные сети предназначены для создания коммутируемой инфраструктуры, с помощью которой можно достаточно быстро и гибко организовать постоянный канал с двухточечной топологией между двумя пользовательскими устройствами, подключенными к такой сети. В первичных сетях применяется техника коммутации каналов. На основе каналов, образованных первичными сетями, работают наложенные компьютерные или телефонные сети. Каналы, предоставляемые первичными сетями своим пользователям, отличаются высокой пропускной способностью – обычно от 2 Мбит/с до 10 Гбит/с.

Сети SDH относятся ко второму поколению первичных сетей. Технология SDH пришла на смену устаревшей технологии плезиохронной цифровой иерархии (Plesiochronous Digital Hierarchy, PDH). В настоящее время SDH не является последним достижением технологии первичных сетей. Существуют также уплотненное волновое мультиплексирование (DenseWaveDivisionMultiplexing, DWDM) и технология, определяющая способы передачи данных по волновым каналам DWDM – оптическая транспортная сеть (OpticalTransportNetwork, OTN).


1 ХАРАКТЕРИСТИКИ ТЕХНОЛОГИИ SDH

1.1 История возникновения технологии SDH

Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием «синхронные оптические сети» (Synchronous Optical NETs, SONET) и, по сути, является развитием технологии PDH. Быстрое развитие телекоммуникационных технологий привело к необходимости расширения иерархии скоростей PDH и максимального использования всех возможностей, которые предоставляла новая среда - волоконно-оптические линии связи.

Одновременно с расширением линейки скоростей нужно было освободиться от выявленных за время эксплуатации этих сетей недостатков PDH, прежде всего, от принципиальной невозможности выделения отдельного низкоскоростного потока из высокоскоростного без полного демультиплексирования последнего. Сам термин «плезиохронный», т. е. «почти» синхронный, говорит о причине такого явления - отсутствии полной синхронности потоков данных при объединении низкоскоростных каналов в более скоростные. Кроме этого, в технологии PDH не были предусмотрены встроенные средства обеспечения отказоустойчивости и управления сетью.

Была создана технология, способная передавать трафик всех существующих цифровых каналов уровня PDH (как американских T1–T3, так и европейских E1–E4) по высокоскоростной магистральной сети на базе волоконно-оптических кабелей и обеспечить иерархию скоростей, продолжающую иерархию технологии PDH до скорости в несколько Гбит/с.

В результате длительной работы удалось создать стандарт на синхронную цифровую иерархию (Synchronous Digital Hierarchy, SDH) - спецификации ITU-T G.702, G.703, G.704, G.707, G.708, G.709, G.773, G.774, G.782, G.783, G.784, G.957, G.958, Q.811, Q.812 и ETSI - ETS 300 147.

1.2 Область применения технологии SDH

Мультиплексоры SDH с волоконно-оптическими линиями связи между ними образуют среду, в которой администратор сети SDH организует цифровые каналы между точками подключения абонентского оборудования или оборудования вторичных (наложенных) сетей самого оператора - телефонных сетей и сетей передачи данных.

На рисунке 1 представлен пример первичной сети, построенной по технологии SDH.

Каналы SDH относятся к классу полупостоянных (semipermanent) - формирование (provisioning) канала происходит по инициативе оператора сети SDH, пользователи же лишены такой возможности, поэтому такие каналы обычно применяются для передачи достаточно устойчивых во времени потоков. Из-за полупостоянного характера соединений в технологии SDH чаще используется термин «кросс-коннект» (cross-connect), а не коммутация.

Рисунок 1 – Пример первичной сети, построенной на технологии SDH

Сети SDH относятся к классу сетей с коммутацией каналов на базе синхронного мультиплексирования с разделением по времени (Time Division Multiplexing, TDM), при котором адресация информации от отдельных абонентов определяется ее относительным временным положением внутри составного кадра, а не явным адресом, как это происходит в сетях с коммутацией пакетов.

С помощью каналов SDH обычно объединяют большое количество периферийных (и менее скоростных) каналов плезиохронной цифровой иерархии (PDH).

1.3 Достоинства сетей SDH

Сети SDH обладают многими отличительными особенностями:

Гибкая иерархическая схема мультиплексирования цифровых потоков разных скоростей позволяет вводить в магистральный канал и выводить из него пользовательскую информацию любого поддерживаемого технологией уровня скорости без демультиплексирования потока в целом - а это означает не только гибкость, но и экономию оборудования. Схема мультиплексирования стандартизована на международном уровне, что обеспечивает совместимость оборудования разных производителей.

Отказоустойчивость сети. Сети SDH обладают высокой степенью «живучести» - технология предусматривает автоматическую реакцию оборудования на такие типичные отказы, как обрыв кабеля, выход из строя порта, мультиплексора или отдельной его карты, при этом трафик направляется по резервному пути или происходит быстрый переход на резервный модуль. Переключение на резервный путь осуществляется обычно в течение 50 мс.

Мониторинг и управление сетью на основе включаемой в заголовки кадров информации обеспечивают обязательный уровень управляемости сети вне зависимости от производителя оборудования и создает основу для наращивания административных функций в системах управления производителей оборудования SDH.

Высокое качество транспортного обслуживания для трафика любого типа - голосового, видео и компьютерного. Лежащее в основе SDH мультиплексирование TDM обеспечивает трафику каждого абонента гарантированную пропускную способность, а также низкий и фиксированный уровень задержек.


2 ИЕРАРХИЯ СКОРОСТЕЙ И МЕТОДЫ МУЛЬТИПЛЕКСИРОВАНИЯ

2.1 Иерархия скоростей

Поддерживаемая технологией SDH/SONET (соответствующий американский стандарт) иерархия скоростей представлена в таблице 1.

SDH SONET Скорость
STS–1, OC–1 51,840 Мбит/с
STM–1 STS–3, OC–3 155,520 Мбит/с
STM–3 STS–9, OC-9 466,560 Мбит/с
STM–4 STS–12, OC–12 622,080 Мбит/с
STM–6 STS–18, OC–18 933,120 Мбит/с
STM–8 STS–24, OC–24 1,244 Гбит/с
STM–12 STS–36, OC–36 1,866 Гбит/с
STM–16 STS–48, OC–48 2,448 Гбит/с

Таблица 1 – Поддерживаемые скорости SDH/ SONET

В стандарте SDH все уровни скоростей (и, соответственно, форматы кадров для этих уровней) имеют общее название: Synchronous Transport Module level N (STM-N). В технологии SONET существует два обозначения для уровней скоростей: Synchronous Transport Signal level N (STS-N) в случае передачи данных в виде электрического сигнала, и Optical Carrier level N (OC-N) в случае передачи данных по волоконно-оптическому кабелю. Далее для упрощения изложения будем ориентироваться на STM-N.

2.2 Элементы сети SDH

Oсновным элементом сети SDH является мультиплексор. Обычно он оснащен некоторым количеством портов PDH и SDH: например, портами PDH на 2 и 34/45 Мбит/с и портами SDH STM-1 на 155 Мбит/c и STM-4 на 622 Мбит/c. Порты мультиплексора SDH делятся на агрегатные и трибутарные. Трибутарные порты часто называют также портами ввода/вывода, а агрегатные - линейными. Эта терминология отражает типовые топологии сетей SDH, где имеется ярко выраженная магистраль в виде цепи или кольца, по которой передаются потоки данных, поступающие от пользователей сети через порты ввода/вывода (т. е. втекающие в агрегированный поток: tributary дословно означает «приток»).

Мультиплексоры SDH обычно делят на терминальные (Terminal Multiplexor, TM) и ввода/вывода (Add-Drop Multiplexor, ADM). Разница между ними состоит не в составе портов, а в положении мультиплексора в сети SDH, как показано на рисунке 2. Терминальное устройство завершает агрегатные каналы, мультиплексируя в них большое количество каналов ввода/вывода (трибутарных). Мультиплексор ввода/вывода транзитом передает агрегатные каналы, занимая промежуточное положение на магистрали (в кольце, цепи или смешанной топологии). При этом данные трибутарных каналов вводятся в агрегатный канал или выводятся из него. Агрегатные порты мультиплексора поддерживают максимальный для данной модели уровень скорости STM-N, значение которой служит для характеристики мультиплексора в целом, например мультиплексор STM-4 или STM-64.



Рисунок 2 – Положение мультиплексоров в сети SDH

синхронный цифровой сеть мультиплексирование

Иногда различают так называемые кросс-коннекторы (Digital Cross-Connect, DXC) - в отличие от мультиплексоров ввода/вывода, они выполняют коммутацию произвольных виртуальных контейнеров, а не только контейнера из агрегатного потока с соответствующим контейнером трибутарного потока. Чаще всего кросс-коннекторы реализуют соединения между трибутарными портами (точнее - виртуальными контейнерами, формируемыми из данных трибутарных портов), но могут применяться кросс-коннекторы и агрегатных портов, т. е. контейнеров VC-4 и их групп. Последний вид мультиплексоров пока встречается реже, чем остальные, так как его применение оправдано при большом количестве агрегатных портов и ячеистой топологии сети, а это существенно увеличивает стоимость, как мультиплексора, так и сети в целом.