Телекоммуникационные системы и сети. Основные сведения о телекоммуникационных системах. общие положения

  • 29.06.2020

Под телекоммуникационной системой понимается комплекс нескольких или множества подходящего аппаратно-программного обеспечения объектов и связи между ними по каналам, созданный для автоматизированного взаимодействия.

Телекоммуникация

Под термином телекоммуникация понимается огромное поколение разных технологий, которые представляют собой огромные массивы объектов, находящихся на определенном расстоянии между друг другом.

В общем случае для переноса команд управления, информации о состоянии объекта, различных видов данных, например – голос, мелодия, изображение, картинка, видео в том числе компьютерного трафика по различным линиям связи, используется радиосигнал (сигнал несущей частоты).

Давайте рассмотрим типовую телекоммуникационную систему в виде структурной схемы:

В данной схеме телекоммуникационной системы под словом сообщением подразумевается любые данные, которые мы собираемся передавать. Оборудование оконечного устройства сети обозначают понятием Data Terminal Equipment (DTE). Для описания сетевого интерфейса оборудования со стороны сети используется термин Data Circuit termination Equipment (DCE).

Сообщения по физической природе в телекоммуникационных системах могут быть тепловыми, механическими, электрическими и световыми. Если вы собираетесь передавать сообщения на дальние расстояния, то необходимо сформировать радиосигнал, отображающий сообщения. Для этого неэлектрические сообщения с помощью преобразователя преобразуются в электрические сигналы. При этом стремятся обеспечить линейность зависимости между физической величиной (сообщением) и ее электрическим аналогом (сигналом).

Оконечным устройством компьютерной телекоммуникационной сети является сетевая карта ПК пользователя, которая реализует обычные сетевые интерфейсы, а так же выполняет основные функции DCE, DTE. Созданное тут сообщение поступает на преобразователь в виде бинарного электрического сигнала. Каждое из возможных сообщений на входе преобразователя преобразуется в одно из возможных значений сигнала на его выходе (используется или кодирование или модуляция по определенному закону сигнала тональной частоты).

С выхода трансивера модулированный сигнал радиочастоты поступает на линию связи (радиоканал, по которому передается сигнал). К линии связи подключены с помощью аналогичной аппаратуры другие пользователи сети.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

Дальневосточный государственный технический университет

(ДВПИ им. В.В.Куйбышева)

Кафедра конструирования и производства радиоаппаратуры

Телекоммуникационные системы

Выполнила Ракипова Д.Р.

студент группы Пи(б)-21

Проверила Себто Т.А.

Основные вопросы

1. Что такое телекоммуникационные системы?

2. Что такое информационная система?

3. Какова её роль?

4. Какие характеристики информационных системы вы знаете?

5. Какие классификации информационных системы вы знаете?

6. Что такое канал связи?

7. Какие разновидности каналов связи существуют?

8. Что такое информационная сеть?

9. Каким образом можно организовать доступ к информационным сетям?

телекоммуникационный информационный сеть связь

Введение

Заключение

Основные понятия

Список литературы

Введение

XXI век без преувеличения можно назвать веком информационных технологий. Понятие информационные технологии включает в себя множество аспектов. Одной из важнейших частей данного направления является непосредственно передача информации посредством информационных сетей.

Технологии телекоммуникаций - это принципы организации современных аналоговых и цифровых систем и сетей связи, включая компьютерные и INTERNET-сети.

Средства телекоммуникаций - это совокупность технических устройств, алгоритмов и программного обеспечения, позволяющих передавать и принимать речь, информационные данные, мультимедийную информацию при помощи электрических и электромагнитных колебаний по кабельным, волоконно-оптическим и радиотехническим каналам в различных диапазонах волн. Это устройства преобразования информации, ее кодирования и декодирования, модуляции и демодуляции, это современные компьютерные технологии обработки.

1. Характеристики и классификация информационных сетей

Современные телекоммуникационные технологии основаны на использовании информационных сетей.

Отличительная особенность коммуникационной сети - большие расстояния между пунктами по сравнению с геометрическими размерами участков пространства, занимаемых пунктами.

Вычислительная сеть - информационная сеть, в состав которой входит вычислительное оборудование. Компонентами вычислительной сети могут быть ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети. Эти компоненты составляют оконечное оборудование данных (ООД или DTE - Data Terminal Equipment). В качестве ООД могут выступать ЭВМ, принтеры, плоттеры и другое вычислительное, измерительное и исполнительное оборудование автоматических и автоматизированных систем. Собственно пересылка данных происходит с помощью сред и средств, объединяемых под названием среда передачи данных.

Подготовка данных, передаваемых или получаемых ООД от среды передачи данных, осуществляется функциональным блоком, называемым аппаратурой окончания канала данных (АКД или DCE - Data Circuit-Terminating Equipment). АКД может быть конструктивно отдельным или встроенным в ООД блоком. ООД и АКД вместе представляют собой станцию данных, которую часто называют узлом сети. Примером АКД может служить модем.

Вычислительные сети классифицируются по ряду признаков.

В зависимости от расстояний между связываемыми узлами различают вычислительные сети:

Территориальные? охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные и глобальные, имеющие соответственно региональные или глобальные масштабы; региональные сети иногда называют сетями MAN (Metropolitan Area Network), а общее англоязычное название для территориальных сетей - WAN (Wide Area Network);

Локальные (ЛВС) ? охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1...2 км); локальные сети обозначают LAN (Local Area Network);

Корпоративные (масштаба предприятия) ? совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или нескольких близко расположенных зданиях. Локальные и корпоративные вычислительные сети - основной вид вычислительных сетей, используемых в системах автоматизированного проектирования (САПР).

Особо выделяют единственную в своем роде глобальную сеть Internet (реализованная в ней информационная служба World Wide Web (WWW) переводится на русский язык как всемирная паутина); это сеть сетей со своей технологией. В Internet существует понятие интрасетей (Intranet) - корпоративных сетей в рамках Internet.

Различают интегрированные сети, неинтегрированные сети и подсети. Интегрированная вычислительная сеть (интерсеть) представляет собой взаимосвязанную совокупность многих вычислительных сетей, которые в интерсети называются подсетями.

В автоматизированных системах крупных предприятий подсети включают вычислительные средства отдельных проектных подразделений. Интерсети нужны для объединения таких подсетей, а также для объединения технических средств автоматизированных систем проектирования и производства в единую систему комплексной автоматизации (CIM - Computer Integrated Manufacturing). Обычно интерсети приспособлены для различных видов связи: телефонии, электронной почты, передачи видеоинформации, цифровых данных и т.п., и в этом случае они называются сетями интегрального обслуживания. Развитие интерсетей заключается в разработке средств сопряжения разнородных подсетей и стандартов для построения подсетей, изначально приспособленных к сопряжению. Подсети в интерсетях объединяются в соответствии с выбранной топологией с помощью блоков взаимодействия.

2. Многоуровневая архитектура информационных сетей

В общем случае для функционирования сетей ЭВМ необходимо решить две проблемы:

Передать данные по назначению в правильном виде и своевременно;

Поступившие по назначению данные пользователю должны быть распознаваемы и иметь надлежащую форму для их правильного использования.

Первая проблема связана с задачами маршрутизации и обеспечивается сетевыми протоколами (протоколами низкого уровня).

Вторая проблема вызвана использованием в сетях разных типов ЭВМ, с разными кодами и синтаксисом языка. Эта часть проблемы решается путем введения протоколов высокого уровня.

Таким образом, полная архитектура, ориентированная на оконечного пользователя, включает в себя оба протокола.

Разработанная эталонная модель взаимодействия открытых систем (ВОС) поддерживает концепцию, при которой каждый уровень предоставляет услуги вышестоящему уровню и базируется на основе нижележащего уровня и использует его услуги. Каждый уровень выполняет определенную функцию по передачи данных. Хотя они должны работать в строгой очередности, но каждый из уровней допускает несколько вариантов. Рассмотрим эталонную модель. Она состоит из 7 уровней и представляет собой многоуровневую архитектуру, которая описывается стандартными протоколами и процедурами.

Три нижних уровня предоставляют сетевые услуги. Протоколы, реализующие эти уровни, должны быть предусмотрены в каждом узле сети.

Четыре верхних уровня предоставляют услуги самим оконечным пользователям и таким образом, связаны с ними, а не с сетью.

Физический уровень. В этой части модели определяются физические, механические и электрические характеристики линий связи, составляющих ЛВС (кабелей, разъемов, оптоволоконных линий и т.п.). Можно считать, что этот уровень отвечает за аппаратное обеспечение. Хотя функции других уровней могут быть реализованы в соответствующих микросхемах, но все же они относятся к ПО. Функции физического уровня заключаются в гарантии того, что символы, поступающие в физическую среду передачи на одном конце канала, достигнут другого конца. При использовании этой нижестоящей услуги по транспортировке символов задача протокола канала состоит в обеспечении надежной (безошибочной) передаче блоков данных по каналу. Такие блоки часто называют циклами, или кадрами. Процедура обычно требует: синхронизации по первому символу в кадре, распознавания конца кадра, обнаружения ошибочных символов, если таковые возникнут, и исправления таких символов каким-либо способом (обычно это делается путем запроса на повторную передачу кадра, в котором обнаружены один или несколько ошибочных символов).

Уровень канала. Уровень канала передачи данных и находящийся под ним физический уровень обеспечивают канал безошибочной передачи между двумя узлами в сети. На этом уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются (распознаются) и исправляются ошибки путем требований повторной передачи данных.

Сетевой уровень. Функция сетевого уровня состоит в том, чтобы установить маршрут для передачи данных по сети или при необходимости через несколько сетей от узла передачи до узла назначения. Этот уровень предусматривает также управление потоком или перегрузками с целью предотвращения переполнения сетевых ресурсов (накопителей в узлах и каналов передачи), которое может привести к прекращению работы. При выполнении этих функций на сетевом уровне используется услуга нижестоящего уровня - канала передачи данных, обеспечивающего безошибочное поступление по сетевому маршруту блока данных, введенного в канал на противоположном конце.

Основная задача нижних уровней передать по маршруту блоки данных от источника к получателю, доставив их своевременно в желаемый конец.

Тогда задача верхних уровней - фактическая доставка данных в правильном виде и распознаваемой форме. Эти верхние уровни не знают о существовании сети. Они обеспечивают только требующуюся от них услугу.

Транспортный уровень. Обеспечивает надежный, последовательный обмен данными между двумя оконечными пользователями. Для этой цели на транспортном уровне используется услуга сетевого уровня. Он управляет также потоком, чтобы гарантировать правильный прием блоков данных. Вследствие различия оконечных устройств, данные в системе, могут передаваться с разными скоростями, поэтому, если не действует управление потоками, более медленные системы могут быть переполнены быстродействующими. Когда в процессе обработки находится больше одного пакета, транспортный уровень контролирует очередность прохождения компонент сообщения. Если приходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

Уровень сеанса. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающих на разных рабочих станциях. Он также предоставляет услуги вышестоящему уровню представления. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений в течение сеанса и завершение сеанса. Этот уровень при необходимости также управляет переговорами, чтобы гарантировать правильный обмен данными. Диалог между пользователем сеансовой услуги (т.е. сторонами уровня представления и вышестоящим уровнем) может состоять из нормального или ускоренного обмена данными. Он может быть дуплексным, т.е. одновременной двусторонней передачей, когда каждая сторона имеет возможность независимо вести передачу, или полудуплексной, т.е. с одновременной передачей только в одну сторону. В последнем случае для передачи управления с одной стороны к другой применяются специальные метки. Уровень сеанса предоставляет услугу синхронизации для преодоления любых обнаруженных ошибок. При этой услуге метки синхронизации должны вставляться в поток данных пользователями услуги сеанса. Если будет обнаружена ошибка, то сеансовое соединение должно быть возвращено в определённое состояние, пользователи должны вернуться в установленную точку диалогового потока, сбросить часть переданных данных и затем восстановит передачу, начиная с этой точки.

Уровень представления. Управляет и преобразует синтаксис блоков данных, которыми обмениваются оконечные пользователи. Такая ситуация может возникать в неоднотипных ПК (IBM PC, Macintosh, DEC, Next, Burrogh), которым необходимо обмениваться данными. Назначение - преобразование синтаксических блоков данных.

Прикладной уровень. Протоколы прикладного уровня придают соответствующую семантику или смысл обмениваемой информации. Этот уровень является пограничным между ПП и процессами модели OSI. Сообщение, предназначенное для передачи через компьютерную сеть, попадает в модель OSI в данной точке, проходит через уровень 1 (физический), пересылается на другой PC, и проходит от уровня 1 в обратном порядке до достижения ПП на другом PC через ее прикладной уровень. Таким образом, прикладной уровень обеспечивает взаимопонимание двух прикладных программ на разных компьютерах.

3. Разновидности каналов связи

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.

Канал (канал связи) - средства односторонней передачи данных. Примером канала, может быть, полоса частот, выделенная одному передатчику при радиосвязи.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру окончания канала данных и линию передачи данных. По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные.

Каналы связи можно разделить на:

1. Проводные линии связи

В вычислительных сетях проводные линии связи представлены коаксиальными кабелями и витыми парами проводов. Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к земле), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

2. Оптические линии связи

Оптические линии связи реализуются в виде волоконно-оптических линий связи (ВОЛС). Конструкция ВОЛС - кварцевый сердечник диаметром 10 мкм, покрытый отражающей оболочкой. ВОЛС являются основой высокоскоростной передачи данных, особенно на большие расстояния.

3. Беспроводные каналы связи

В беспроводных каналах передача информации осуществляется на основе распространения радиоволн.

Чем выше несущая частота, тем больше емкость (число каналов) системы связи, но тем меньше предельные расстояния, на которых возможна прямая передача между двумя пунктами без ретрансляторов. Первая из причин и порождает тенденцию к освоению новых более высокочастотных диапазонов.

Радиоканалы входят необходимой составной частью в спутниковые и радиорелейные системы связи, применяемые в территориальных сетях, в сотовые системы мобильной связи, они используются в качестве альтернативы кабельным системам в локальных сетях и при объединении сетей отдельных офисов и предприятий в корпоративные сети.

4. Спутниковые каналы передачи данных

Спутники в системах связи могут находиться на геостационарных (высота 36 тысяч км) или низких орбитах. При геостационарных орбитах заметны задержки на прохождение сигналов (туда и обратно около 520 мс). Возможно покрытие поверхности всего земного шара с помощью четырех спутников. В низкоорбитальных системах обслуживание конкретного пользователя происходит попеременно разными спутниками. Чем ниже орбита, тем меньше площадь покрытия и, следовательно, нужно или больше наземных станций, или требуется межспутниковая связь, что естественно утяжеляет спутник. Число спутников также значительно больше (обычно несколько десятков).

Структура спутниковых каналов передачи данных может быть проиллюстрирована на примере широко известной системы VSAT (Very Small Aperture Terminal). Наземная часть системы представлена совокупностью комплексов, в состав каждого из них входят центральная станция (ЦС) и абонентские пункты (АП). Связь ЦС со спутником происходит по радиоканалу (пропускная способность 2 Мбит/с) через направленную антенну диаметром 1...3 м и приемопередающую аппаратуру. АП подключаются к ЦС по схеме "звезда" с помощью многоканальной аппаратуры или по радиоканалу через спутник. Те АП, которые соединяются по радиоканалу (это подвижные или труднодоступные объекты), имеют свои антенны, и для каждого АП выделяется своя частота. ЦС передает свои сообщения широковещательно на одной фиксированной частоте, а принимает на частотах АП.

4. Организация доступа к информационным сетям

Структура территориальных сетей

Глобальная сеть Internet - самая крупная и единственная в своем роде сеть в мире. Среди глобальных сетей она занимает уникальное положение. Правильнее ее рассматривать как объединение многих сетей, сохраняющих самостоятельное значение. Действительно, Internet не имеет ни четко выраженного владельца, ни национальной принадлежности. Любая сеть может иметь связь с Internet и, следовательно, рассматриваться как ее часть, если в ней используются принятые для Internet протоколы TCP/IP или имеются конверторы в протоколы TCP/IP. Практически все сети национального и регионального масштабов имеют выход в Internet.

Типичная территориальная (национальная) сеть имеет иерархическую структуру.

Верхний уровень - федеральные узлы, связанные между собой магистральными каналами связи. Магистральные каналы физически организуются на ВОЛС или на спутниковых каналах связи. Средний уровень - региональные узлы, образующие региональные сети. Они связаны с федеральными узлами и, возможно, между собой выделенными высоко- или среднескоростными каналами, такими, как каналы Т1, Е1, B-ISDN или радиорелейные линии. Нижний уровень - местные узлы (серверы доступа), связанные с региональными узлами, преимущественно коммутируемыми или выделенными телефонными каналами связи, хотя заметна тенденция к переходу к высоко- и среднескоростным каналам. Именно к местным узлам подключаются локальные сети малых и средних предприятий, а также компьютеры отдельных пользователей. Корпоративные сети крупных предприятий соединяются с региональными узлами выделенными высоко- или среднескоростными каналами.

Основные виды доступа

1. Сервис телекоммуникационных технологий. Основными услугами, предоставляемыми телекоммуникационными технологиями являются:

Электронная почта;

Передача файлов;

Телеконференции;

Справочные службы (доски объявлений);

Видеоконференции;

Доступ к информационным ресурсам (информационным базам) сетевых серверов;

Мобильная сотовая связь;

Компьютерная телефония;

Специфика телекоммуникаций проявляется, прежде всего, в прикладных протоколах. Среди них наиболее известны протоколы, связанные с Internet, и протоколы ISO-IP (ISO 8473), относящиеся к семиуровневой модели открытых систем. К прикладным протоколам Internet относятся следующие:

Telnet - протокол эмуляции терминала, или, другими словами, протокол реализации дистанционного управления используется для подключения клиента к серверу при их размещении на разных компьютерах, пользователь через свой терминал имеет доступ к компьютеру-серверу;

FTP - протокол файлового обмена (реализуется режим удаленного узла), клиент может запрашивать и получать файлы с сервера, адрес которого указан в запросе;

HTTP (Hypertext Transmission Protocol) - протокол для связи WWW-серверов и WWW-клиентов;

NFS - сетевая файловая система, обеспечивающая доступ к файлам всех UNIX-машин локальной сети, т.е. файловые системы узлов выглядят для пользователя как единая файловая система;

SMTP, IMAP, POP3 - протоколы электронной почты.

Указанные протоколы реализуются с помощью соответствующего программного обеспечения. Для Telnet, FTP, SMTP на серверной стороне выделены фиксированные номера протокольных портов.

2. Электронная почта.

Электронная почта (E-mail) - средство обмена сообщениями по электронным коммуникациям (в режиме off-line). Можно пересылать текстовые сообщения и архивированные файлы. В последних могут содержаться данные (например, тексты программ, графические данные) в различных форматах.

3. Файловый обмен.

Файловый обмен - доступ к файлам, распределенным по различным компьютерам. В сети Internet на прикладном уровне используется протокол FTP. Доступ возможен в режимах off-line и on-line. В режиме off-line посылается запрос к FTP-серверу, сервер формирует и посылает ответ на запрос. В режиме on-line осуществляется интерактивный просмотр каталогов FTP-сервера, выбор и передача нужных файлов. На ЭВМ пользователя нужен FTP-клиент.

4. Телеконференции и "доски объявлений".

Телеконференции - доступ к информации, выделенной для группового использования в отдельных конференциях (newsgroups). Возможны глобальные и локальные телеконференции. Включение материалов в newsgroups, рассылка извещений о новых поступивших материалах, выполнение заказов - основные функции программного обеспечения телеконференций. Возможны режимы E-mail и on-line.

Самая крупная система телеконференций - USENET. В USENET информация организована иерархически. Сообщения рассылаются или лавинообразно, или через списки рассылки. В режиме on-line можно прочитать список сообщений, а затем и выбранное сообщение. В режиме off-line из списка выбирается сообщение и на него посылается заказ.

Телеконференции могут быть с модератором или без него. Пример: работа коллектива авторов над книгой по спискам рассылки.

Существуют также средства аудиоконференций (голосовых телеконференций). Вызов, соединение, разговор происходят для пользователя как в обычном телефоне, но связь идет через Internet.

Электронная "доска объявлений" BBS (Bulletin Board System) - технология, близкая по функциональному назначению к телеконференции, позволяет централизованно и оперативно направлять сообщения для многих пользователей. Программное обеспечение BBS сочетает в себе средства электронной почты, телеконференций и обмена файлами. Примеры программ, в которых имеются средства BBS, - Lotus Notes, World-group.

5. Доступ к распределенным базам данных.

В системах "клиент/сервер" запрос должен формироваться в ЭВМ пользователя, а организация поиска данных, их обработка и формирование ответа на запрос относятся к ЭВМ-серверу. При этом нужная информация может быть распределена по различным серверам. В сети Internet имеются специальные серверы баз данных, называемые WAIS (Wide Area Information Server), в которых могут содержаться совокупности баз данных под управлением различных СУБД.

Типичный сценарий работы с WAIS-сервером:

Выбор нужной базы данных;

Формирование запроса, состоящего из ключевых слов;

Посылка запроса к WAIS-серверу;

Получение от сервера заголовков документов, соответствующих заданным ключевым словам;

Выбор нужного заголовка и его посылка к серверу;

Получение текста документа.

К сожалению, WAIS в настоящее время не развивается, поэтому используется мало, хотя индексирование и поиск по индексам в больших массивах неструктурированной информации, что было одной из основных функций WAIS, - задача актуальная.

6. Информационная система WWW.

WWW (World Wide Web - всемирная паутина) - гипертекстовая информационная система сети Internet. Другое ее краткое название - Web. Это более современная система предоставляет пользователям большие возможности.

Во-первых, это гипертекст - структурированный текст с введением в него перекрестных ссылок, отражающих смысловые связи частей текста. Слова-ссылки выделяются цветом и/или подчеркиванием. Выбор ссылки вызывает на экран связанный со словом-ссылкой текст или рисунок. Можно искать нужный материал по ключевым словам.

Во-вторых, облегчено представление и получение графических изображений. Информация, доступная по Web-технологии, хранится в Web-серверах. Сервер имеет программу, постоянно отслеживающую приход на определенный порт (обычно это порт 80) запросов от клиентов. Сервер удовлетворяет запросы, посылая клиенту содержимое запрошенных Web-страниц или результаты выполнения запрошенных процедур. Клиентские программы WWW называют браузерами.

Имеются текстовые и графические браузеры. В браузерах имеются команды листания, перехода к предыдущему или последующему документу, печати, перехода по гипертекстовой ссылке и т.п. Для подготовки материалов и их включения в базу WWW разработаны специальный язык HTML (Hypertext Markup Language) и реализующие его программные редакторы, например Internet Assistant в составе редактора Word или Site Edit, подготовка документов предусмотрена и в составе большинства браузеров.

Для связи Web-серверов и клиентов разработан протокол HTTP, работающий на базе TCP/IP. Web-сервер получает запрос от браузера, находит соответствующий запросу файл и передает его для просмотра в браузер.

Заключение

Технологии Интранет и Интернет продолжают развиваться. Разрабатываются новые протоколы; пересматриваются старые. NSF значительно усложнила систему, введя свою магистральную сеть, несколько региональных сетей и сотни университетских сетей.

Другие группы также продолжают присоединяться к Интернету. Самое значительное изменение произошло не из-за присоединения дополнительных сетей, а из-за дополнительного трафика. Физики, химики, и астрономы работают и обмениваются объемами данных большими, чем исследователи в компьютерных науках, составляющие большую часть пользователей трафика раннего Интернета. Эти новые ученые привели к значительному увеличению загрузки Интернета, когда они начали использовать его, и загрузка постоянно увеличивалась по мере того, как они все активнее использовали его.

Чтобы приспособиться к росту трафика, пропускная способность магистральной сети NSFNET была увеличена вдвое, приведя к тому, что текущая пропускная способность приблизительно в 28 раз больше, чем первоначальная; планируется еще одно увеличение, чтобы довести этот коэффициент до 30.

На настоящий момент трудно предсказать, когда исчезнет необходимость дополнительного повышения пропускной способности. Рост потребностей в сетевом обмене не был неожиданным. Компьютерная индустрия получила большое удовольствие от постоянных требований на увеличение вычислительной мощности и большего объема памяти для данных в течение долгих лет. Пользователи только начали понимать, как использовать сети. В будущем мы можем ожидать постоянное увеличение потребностей во взаимодействии. Поэтому потребуются технологии взаимодействия с большей пропускной способностью, чтобы приспособиться к этому росту.

Расширение Интернета заключается в сложности, возникшей из-за того, что несколько автономных групп являются частями объединенного Интернета. Исходные проекты для многих подсистем предполагали централизованное управление. Потребовалось много усилий, чтобы доработать эти проекты для работы при децентрализованном управлении.

Итак, для дальнейшего развития информационных сетей потребуются более высокоскоростные коммуникационные технологии.

Основные понятия

Коммуникационная сеть - система, состоящая из объектов, осуществляющих функции генерации, преобразования, хранения и потребления продукта, называемых пунктами (узлами) сети и линий передачи (связей, коммуникаций, соединений), осуществляющих передачу продукта между пунктами.

Информационная сеть - коммуникационная сеть, в которой продуктом генерирования, переработки, хранения и использования является информация.

Вычислительная сеть - информационная сеть, в состав которой входит вычислительное оборудование.

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных.

Линия передачи данных - средства, которые используются в информационных сетях для распространения сигналов в нужном направлении.

Канал (канал связи) - средства односторонней передачи данных.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру окончания канала и линию передачи данных.

Список литературы

1. Семенов Ю.А. Протоколы и ресурсы Internet. М.: Радио и связь,1996.

2. Лазарев В.Г. Интеллектуальные цифровые сети: Справочник. / Под ред. академика Н.А. Кузнецова. - М.: Финансы и статистика, 1996.

3. Финаев В.И. Информационные обмены в сложных системах: Учебное пособие. Таганрог: Изд-во ТРТУ, 2001.

4. А.В. Пушнин, В.В. Янушко. Информационные сети и телекоммуникации. Таганрог: Издательство ТРТУ, 2005. 128 с.

Размещено на Allbest.ru

...

Подобные документы

    Классификация телекоммуникационных сетей. Схемы каналов на основе телефонной сети. Разновидности некоммутируемых сетей. Появление глобальных сетей. Проблемы распределенного предприятия. Роль и типы глобальных сетей. Вариант объединения локальных сетей.

    презентация , добавлен 20.10.2014

    Принципы построения систем передачи информации. Характеристики сигналов и каналов связи. Методы и способы реализации амплитудной модуляции. Структура телефонных и телекоммуникационных сетей. Особенности телеграфных, мобильных и цифровых систем связи.

    курсовая работа , добавлен 29.06.2010

    Характеристика локальных компьютерных сетей и рассмотрение основных принципов работы глобальной сети Интернет. Понятие, функционирование и компоненты электронной почты, форматы ее адресов. Телекоммуникационные средства связи: радио, телефон и телевидение.

    курсовая работа , добавлен 25.06.2011

    Основные характеристики дискретных каналов. Проблема их оптимизации. Классификация каналов передачи дискретной информации по различным признакам. Нормирование характеристик непрерывных каналов связи. Разновидности систем передачи дискретных каналов.

    контрольная работа , добавлен 01.11.2011

    Предназначение коммутатора, его задачи, функции, технические характеристики. Достоинства и недостатки в сравнении с маршрутизатором. Основы технологии организации кабельных систем сети и архитектура локальных вычислительных сетей. Эталонная модель OSI.

    отчет по практике , добавлен 14.06.2010

    Принципы построения беспроводных телекоммуникационных систем связи. Схема построения системы сотовой связи. Преимущества кодового разделения. Исследование распространенных стандартов беспроводной связи. Корреляционные и спектральные свойства сигналов.

    курсовая работа , добавлен 22.05.2010

    Современные системы телекоммуникаций; основные стандарты подвижной связи GSM, CDMA 200, UMTS. Использование операторами сотовых сетей новых услуг и технологий 3-го поколения. Характеристики новейших стандартов беспроводного доступа: Wi-Fi, Bluetooth.

    учебное пособие , добавлен 08.11.2011

    Современные телекоммуникационные средства и история их развития. Системы сотовой радиотелефонной связи. Высокое качество речевых сообщений, надежность и конфиденциальность связи, защита от несанкционированного доступа в сеть, миниатюрность радиотелефонов.

    реферат , добавлен 01.11.2004

    Виды мобильной связи, их специфические особенности, индивидуальная ниша. Развитие систем радиодоступа к информационным системам: характеристика сетей, типы структур, частотно-территориальные кластеры. Показатели качества и жизненный цикл системы.

    презентация , добавлен 16.03.2014

    Диапазоны частот, передаваемых основными типами направляющих систем. Параметры каналов линий связи. Обозначения в линиях связи. Переключатель каналов с мультиплексированием по времени. Характеристики каналов на коаксиальном кабеле, оптических кабелей.

Часть 1

ТЕЛЕКОММУНИКАЦИОННЫЕ И ИНФОРМАЦИОННЫЕ СЕТИ

Глава 1 ______

ТЕЛЕКОММУНИКАЦИОННЫЕ СЕТИ И СИСТЕМЫ. ОБЩИЕ ПОЛОЖЕНИЯ

Список сокращений

ГИИ (GII) - глобальная информационная инфраструктура
ЗУ - запоминающее устройство
ЛС - линия связи
ПО - программное обеспечение
ТС - телекоммуникационная сеть
ТфОП (PSTN) - телефонная сеть общего пользования
ЧНН - час наибольшей нагрузки
АТМ - асинхронный метод доставки
В-ISDN - широкополосная цифровая сеть интегрального обслуживания
FR - технология ретрансляции кадров
IDN - интегральная цифровая сеть
IN - интеллектуальная сеть связи
IP - межсетевой протокол
N-ISDN - узкополосная цифровая сеть интегрального обслуживания
PLMN - сотовая сеть связи с мобильными объектами

ОСНОВНЫЕ ПОНЯТИЯ СЕТЕЙ И СИСТЕМ ТЕЛЕКОММУНИКАЦИЙ

Современному развитию техники связи присущи две особенности: цифровая форма представления всех сигналов - независимо от того, какой вид информации представляется этими сигналами - речь, текст, данные или изображение; интеграция обслуживания, что может быть полностью реализовано только переводом связи на цифровую технику. Происходит интеграция систем передачи информации и комму­тации, по-новому перераспределяются задачи оконечных устройств и сетей связи. Создаются многофунк­циональные оконечные устройства, отличающиеся от телефонного и телеграфного аппаратов, оконеч­ные устройства визуального отображения данных, пригодные более чем для одного вида информации. И, наконец, сеть связи позволяет передавать речевую, текстовую информацию, данные и изображения через одно и то же соединение: пользователь получит доступ к этой сети независимо от вида службы через «штепсельную розетку связи».

С помощью этих «революционных» средств были значительно увеличены производительность и эко­номическая эффективность труда как целых организаций, так и отдельных людей. Напрашивается вывод, что объединение усилий трех отраслей промышленности - компьютерной индустрии (информационных технологий), бытовой радиоэлектроники (индустрии развлечений) и электросвязи - приблизило дости­жение основной цели - создание глобальной информационной инфраструктуры (ГИИ, GII).



Конечной целью ГИИ является гарантия для каждого потребителя доступа к информационному сооб­ществу.

Известны некоторые фундаментальные характеристики, которые должна иметь ГИИ, чтобы соответство­вать требованиям потребителей информации. Эти характеристики называются атрибутами. Предлагаемый

Для каждого вида информационных сообщений традиционно используется конкретный способ переда­чи в сети, характеризующийся принципом преобразования сообщения в сигнал электросвязи и типом коммуникаций (формой связи). Так, для передачи аудиоинформации принятой формой связи служит телефонная, для передачи неподвижных изображений используется факсимиле, для подвижных изо­бражений - телевидение. Данные относятся к типу кодированных сообщений, способ передачи которых основан на представлении каждого информационного элемента (буквы, знака, цифры) в виде кодовой комбинации, передаваемой в форме сигнала по сети. Для кодированных сообщений применяется телеграф­ный способ передачи информации и передача данных. В последнее время используются и так называемые «многосредные» формы связи - мультимедиа (в переводе с англ. milty - много, media - среда) для одновременной передачи звука, изображения и данных.

В зависимости от формы связи телекоммуникационные системы можно разделить на системы теле­фонной связи, факсимильной связи, телевизионного вещания, телеграфной связи, передачи данных и т. п.; в зависимости от среды передачи сигнала (медь, эфир, оптическое волокно) - на системы электросвязи и оптической связи, а также проводной связи, использующей направляющие среды (медные и оптические кабели), и беспроводной связи, где для передачи сигналов используется эфир. Необходимо подчеркнуть то, что объединяет все эти системы в общее понятие системы телекоммуникаций:

1. Общее назначение всех систем связи - предоставление услуг пользователям.

2. Все системы связи относятся к типу распределенных систем, основным компонентом которых является телекоммуникационная сеть, позволяющая использовать общие принципы структурной оптими­зации таких систем.

3. Системы связи, как и любые сложные системы, не могут рассматриваться изолированно от внешней среды. Под внешней средой понимают множество элементов любой природы, существующих вне систе­мы и оказывающих на нее определенные воздействия. К числу таких элементов по отношению к любой системе связи можно отнести пользователей, определяющих требования по объему потребляемых услуг, их перечню, качеству и тем самым воздействующих на систему связи.

Следует отметить, что само понятие «система» абстрактно по отношению к реальному объекту, ко­торый ассоциируется с ней и может трактоваться как модель объекта. Модель позволяет отразить наи­более важные компоненты объекта и опустить несущественные, с точки зрения цели его рассмотрения, детали. В этом плане один и тот же объект может по-разному характеризоваться различными системами в зависимости от аспектов его рассмотрения.

При рассмотрении моделей большинства сетей и систем телекоммуникаций широко используются понятия протокол и интерфейс. Протокол - это свод правил и форматов, определяющих взаимодейст­вие объектов одноименных уровней сети, например, «человек - человек», «терминал - терминал», «компьютер - компьютер», «процесс - процесс», т. е. протоколы, описывающие порядок взаимодействия между пользователями, терминалами, узлами сети или отдельными сетями. При этом должны использо­ваться один и тот же язык, одни и те же синтаксические правила и информационные форматы. Уровневая структура модели позволяет обеспечить независимую разработку протоколов. Каждый уровень модели может иметь несколько протоколов. Взаимодействие смежных уровней обеспечивается интерфейсами. Интерфейс - это совокупность технических и программных средств, используемых для сопряжения устройств, систем или программ. Совокупность средств взаимодействия двух смежных уровней (меж- уровневый интерфейс) содержит правила логического и электрического согласования, а также детальное описание форматов сообщений.

Информационные сети предназначены для предоставления пользователям услуг, связанных с обме­ном информацией, ее потреблением, обработкой, хранением и накоплением. Потребитель информации, получивший доступ к информационной сети, становится пользователем. В качестве пользователей могут выступать как физические, так и юридические лица (фирмы, организации, предприятия). Пользование сетью обеспечивает возможность получать информацию тогда, когда в ней возникает необходимость. Под информационной сетью понимают совокупность территориально рассредоточенных оконечных систем, объединяющихся в телекоммуникационные сети и обеспечивающих доступ любой из этих систем ко всем ресурсам сети и их коллективное использование. Телекоммуникационные сети целесообразно разделять по типу коммуникаций (сети электросвязи, оптической связи, телефонной связи, передачи данных, железнодорожных либо воздушных сообщений и т. д.).

Оконечные системы информационной сети могут быть классифицированы как: - -терминальные (terminal system), обеспечивающие доступ к сети и ее ресурсам;

Рабочие (server, host system), представляющие информационные и вычислительные ресурсы;

Административные (management system), реализующие управление сетью и ее отдельными частями.

Ресурсы информационной сети подразделяются на информационные, обработки и хранения дан­ных, программные и коммуникационные.

Информационные ресурсы - это информация и знания, накапливаемые во всех областях науки, культуры и жизнедеятельности общества, а также продукция индустрии развлечений. Все это система­

тизируется в сетевых базах данных, с которыми взаимодействуют пользователи сети. Эти ресурсы опре­деляют потребительскую ценность информационной сети и должны не только постоянно создаваться и расширяться, но и вовремя обновлять устаревшие данные.

Ресурсы обработки и хранения данных определяются производительностью процессоров сетевых компьютеров и объемом их запоминающих устройств (ЗУ), а также временем, в течение которого они используются.

Программные ресурсы представляют собой программное обеспечение (ПО), участвующее в пре­доставлении услуг пользователям, а также программы сопутствующих функций. К последним относятся: выписка счетов, учет оплаты услуг, навигация (обеспечение поиска информации в сети), обслуживание сетевых электронных почтовых ящиков, организация моста для телеконференций, преобразование форма­тов передаваемых сообщений, криптозащита информации (кодирование и шифрование), аутентификация (электронная подпись документов, удостоверяющая их подлинность).

Коммуникационные ресурсы участвуют в транспортировке информации и перераспределении потоков в узле коммутации. К ним относятся емкости линий связи, коммутационные возможности узлов, а также время их занятия при взаимодействии пользователя с сетью. Коммуникационные ресурсы классифици­руются в соответствии с типом ТС: коммутируемая телефонная сеть общего пользования, сеть передачи данных с коммутацией пакетов, сеть мобильной связи, теле- и радиовещательные сети, цифровая сеть интегрального обслуживания и т. п.

Телекоммуникационные сети принято оценивать целым рядом показателей, отражающих возможность эффективность транспортировки информации. Возможность передачи информации в ТС связана со сте- -енью ее работоспособности, т. е. выполнением заданных функций в установленном объеме на требуемом уровне качества в течение определенного периода эксплуатации сети или в произвольный момент времени. ->аботоспособность сети связи определяется понятиями надежности и живучести. Различие этих понятий обусловлено причинами и факторами, нарушающими нормальную работу сети, и характером нарушений.

Надежность сети связи характеризует ее свойство обеспечивать связь, сохраняя во времени значения «становленных показателей качества в заданных условиях эксплуатации. Она отражает способность сохра­нять работоспособность сети связи при воздействии, главным образом, внутренних факторов - случайных отказов технических средств, вызываемых процессами старения, дефектами технологии изготовления или ошибками обслуживающего персонала.

Живучесть сети связи характеризует ее способность сохранять полную или частичную работоспо­собность при воздействии причин, находящихся за пределами сети и приводящих к разрушению или значительным повреждениям некоторой части ее элементов (пунктов и линий связи). Подобные причины можно разделить на два класса: стихийные и преднамеренные. К стихийным факторам относятся та-

как землетрясение, оползни, разливы рек и т. п., а к преднамеренным - ракетно-ядерные удары -оотивника, диверсионные действия и др.

При анализе пропускной способности ТС весьма важны понятия вызова и сообщения. Вызов - это -эебование на соединение между двумя пользователями сети для передачи сообщения. Сообщение - формация пользователя, преобразованная в сигналы электросвязи. Учитывая разницу между вызовом сообщением, можно сказать, что поток вызовов поступает в узел сети или в какую-то его часть, а поток сообщений циркулирует в сетях связи для передачи информации пользователю. Потребность в доставке сообщений из одного пункта сети в другой можно выразить тяготением между этими пунктами. Тяготение >арактеризует оценку потребности в различных видах связи между двумя пунктами сети и определяется эбъемом сообщений, которые необходимо доставить за некоторый отрезок времени из одного пункта 1 другой. От тяготения, выраженного объемом сообщений или объемом информации, можно перейти * тяготению, выраженному временем занятия линии связи (ЛС), а от него - к количеству необходимых 1С. Тяготение, определяемое объемом информации, удобно для сети передачи данных, а определяемое 1оеменем занятия каналов - для телефонной сети и разного вида сетей вещания. Время занятия канала сражается часозанятиями за год, сутки или час. Тяготение зависит от вида информации, территориаль­ного расположения пользователей, их особенностей, хозяйственных, культурных и других взаимосвязей. Однозначно определить тяготение невозможно, так как на него влияет очень много факторов, поэтому -очность оценок тяготения обычно невелика.

Объем информации , переданной между двумя пунктами за какой-то период времени, определяется суммой объемов всех сообщений (с учетом повторных) или произведением числа переданных сообщений -а средний объем одного сообщения. Время занятия линий или приборов, выраженное в часозанятиях, с "-оеделяет нагрузку на эти линии или приборы как произведение общего числа поступивших вызовов *г среднюю продолжительность занятий. Интенсивность нагрузки - это число часозанятий за опре­деленный промежуток времени, например, час наибольшей нагрузки (ЧНН) - это 60-минутный интервал аремени, в течение которого нагрузка в сети больше, чем в любом другом аналогичном периоде. Обычно «лользуют понятие интенсивности нагрузки, хотя для упрощения ее часто называют нагрузкой. Безраз­мерная единица интенсивности нагрузки названа эрлангом. Один эрланг - это интенсивность нагрузки сйного прибора, непрерывно занятого в течение часа.

В случае, когда сеть не может обслужить поступающую нагрузку, имеет смысл говорить об объеме реализованной нагрузки в сети. Величина реализованной нагрузки определяется пропускной способ­ностью сети связи. В ряде случаев пропускную способность оценивают количественно. Например, по величине максимального потока информации, который можно пропустить между некоторой парой пунктов. Таким образом определяют пропускную способность сечения сети, являющегося самым узким местом при разделении сети между источником и получателем на две части.

Поток сообщений между двумя пунктами - это последовательность сообщений, передаваемых из одного пункта в другой. Кроме полезной информации в сети передаются сообщения управления и сигнализации, не имеющие ценности для пользователя. Существенно загружают сети связи (не давая полезного эффекта) и повторные вызовы, возникающие в случае отказа при первичном вызове. Поток сообщений характеризуется последовательностью моментов времени поступления каждого следующего сообщения. Можно выразить поток и через интервалы времени между этими моментами. Вид потока сообщений также может быть описан распределением длительностей занятий приборов каждым поступаю­щим сообщением. Все потоки, циркулирующие в сетях связи, делятся на детерминированные, случайные и смешанные. Детерминированными называются потоки, моменты поступления и объемы сообщений которых известны заранее. К таким потокам относятся почти все потоки вещания (как звукового, так и телевизионного), регулярные передачи различных сводок и т. п. У случайных потоков моменты по­ступления, объемы отдельных сообщений и их адреса заранее не определены и являются случайными величинами, описываемыми с помощью вероятностных распределений. К таким потокам относятся потоки телефонных сообщений. В зависимости от конкретных условий случайные потоки могут быть самыми разнообразными, однако для большинства практических случаев возможна аппроксимация (описание) длительностей промежутков между поступлением двух соседних сообщений известными вероятностными законами распределения, позволяющими получить математическую модель потока. В смешанном потоке имеются как детерминированные, так и случайные составляющие.

1.2. РУБЕЖИ РАЗВИТИЯ ТЕЛЕКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ И УСЛУГ СВЯЗИ

Для того, чтобы выяснить перспективы развития Национальной информационной инфраструктуры Украины (НИИ) в рамках Глобальной информационной инфраструктуры, необходимо понимать, как будет протекать этот процесс в мире, в промышленно развитых странах и в Украине, какие новые инфокомму- никационные технологии и услуги будут предложены в ближайшие годы и десятилетия.

Информационная революция стала двигателем прогресса всего общества. Давно известно, что науч­но-технические революции (НТР) коренным образом меняли образ жизни человечества и облик мира в целом. Результатом НТР являлось резкое увеличение численности населения, что следует ожидать и в бли­жайшие два века. Многие ученые, работающие в области прогнозирования, считают, что в XXI-XXII ве­ках должно произойти три научно-технические революции: 1 - информационная, 2 - биотехническая, 3 - квантовая.

Каждая из названных революций приведет к резким изменениям в мире. Информационная революция создаст ОН, которая станет технической базой глобального информационного общества. Биотехническая революция снимет проблему продовольственного обеспечения населения в мире, а квантовая - создаст новые эффективные и безопасные источники энергии.

Информационная революция (конец XX - начало XXI века) существенно изменила облик инфо- коммуникаций. Основные факторы развития инфокоммуникаций XXI века - это экономика, технологии и услуги.

Производными от экономики являются инфокоммуникационные технологии и услуги. В свою очередь, уровень развития технологий и услуг зависит от уровня научно-технического прогресса, а их внедре­ние - от уровня экономики и, в первую очередь, от платежеспособного спроса населения на те или иные инфокоммуникационные услуги.

В историческом развитии сетей и услуг связи можно выделить пять основных рубежей (рис. 1.3). Каждый рубеж имеет свою логику развития, взаимосвязь с предшествующими и последующими этапами.

Кроме того, каждый рубеж зависит от уровня развития экономики и национальных особенностей отдель­ного государства.

Первый рубеж - построение телефонной сети общего пользования (ТфОП, PSTN – public Switched Telephone Network). На протяжении продолжительного времени каждое государство создавало свою национальную аналоговую телефонную сеть общего пользования. Телефонная связь рекомендовалась населению, учреждениям, предприятиям и сравнивалась с единой услугой - передачей языковых сооб­щений. В дальнейшем по телефонным сетям с помощью модемов стала осуществляться передача данных. Тем не менее, даже в настоящее время телефон остается основной услугой связи, которая приносит операторам связи более 80 % прибыли.

Второй рубеж - цифровизация телефонной сети. Для повышения качества услуг связи, увеличения их числа, повышения уровня автоматизации управления и технологического оборудования в промышленно развитых странах в 1970-е годы проводились работы по цифровизации первичных и вторичных сетей свя­зи. Были созданы интегральные цифровые сети IDN (Integral Digital Network), которые предоставляют в основном услуги телефонной связи на базе цифровых систем коммутации и передачи. К настоящему времени во многих странах цифровизация телефонных сетей практически завершилась.

Третий рубеж - интеграция услуг. Цифровизация сетей связи позволила не только повысить качество услуг, но и перейти к увеличению их числа на основе интеграции. Так появилась концепция узкополосной цифровой сети с интеграцией служб N-ISDN (Narrowband Integrated Srsice Digital Network). Пользовате­лю (абоненту) этой сети предоставляется базовый доступ (2В + D), по которому информация передается по трем цифровым каналам: два канала В со скоростью передачи 64 кбит/с и канал D со скоростью 16 кбит/с. Два канала В используются для передачи языковых сообщений и данных, канал й - для сигнализации и для передачи данных в режиме пакетной коммутации. Для пользователя с большими потребностями может быть предоставлен первичный доступ, который содержит (30 B + D) каналов. Кон­цепция N-ISDN существует около 20 лет, но широкого распространения в мире не получила по нескольким причинам. Во-первых, оборудование N-ISDN довольно дорого стоит, чтобы стать массовым; во-вторых, пользователь постоянно платит за три цифровых канала; в-третьих, перечень услуг /У-/50Л/ превышает потребности массового пользователя. Именно поэтому интеграция услуг начинает заменяться концепцией интеллектуальной сети.

В этот же период также получили развитие сети с подвижными системами PLMN (Public land Mobil Network ) и технологии услуг сети передачи данных на основе коммутации каналов и пакетов: Х.25, IP (Internet Protocol), ГР (Frame relay), 1Р -телефония, электронная почта и др.

Четвертый рубеж - интеллектуальная сеть /N (Intelligent Network). Историю этой сети принято исчислять с 1980 года, когда компания Bell System (США) проводила работы по усовершенствованию услуги, названной «услуга-800». Эта услуга в основном была предназначена для начисления оплаты за междугородные соединения вызывающему абоненту и нашла широкое применение в сфере обслужива­ния и торговле. С 1993 года IN развивается в рамках концепции TINA (Telecommunication Information Networking Architecture) для поддержания архитектуры «клиент - сервер». Эта сеть предназначена для быстрого, эффективного и экономичного предоставления информационных услуг массовому поль­зователю. Необходимая услуга предоставляется пользователю тогда и в тот момент времени, когда она ему нужна. Соответственно и оплачивать он обязан предоставленную услугу в течение этого времени. Таким образом, скорость и эффективность предоставления услуги обеспечивают ее экономичность, так как если пользователь будет использовать канал связи значительно меньший срок, это позволит ему уменьшить затраты. В этом состоит принципиальное отличие интеллектуальной сети от предшествующих сетей, а именно - в гибкости и экономичности предоставления услуг.

Пятый рубеж - широкополосная B-ISND (Droadband Integratyed Service Digital Network) по­ложила начало развитию после 1980 года мультимедийных услуг на базе технологии АТМ (- коммутации пакетов фиксированной длины (53 байта): диалоговый, информационный и распределительный поиск. Диалоговые службы предоставляют услуги для передачи информации (теле­фонная служба, служба речи, видеоконференции и др.). Службы информационного поиска (службы по запросам) предоставляют возможность пользователю получать информацию из разнообразных банков данных. Распределительные службы, при наличии или отсутствии управления предоставлением информации со стороны пользователя, могут направлять информацию от одного общего источника неограниченному числу абонентов, которые имеют право на доступ (данные, текст, подвижное и неподвижное изображение, звук, графика и др.). В практику делового общения начинает входить не только конференц-связь, но и видеоконференция, позволяющие обмениваться информацией, не тратя времени и денег на поездки.

В свою очередь, снижение затрат индивидуального пользователя на новые услуги должно увеличить спрос на них, то есть привести к увеличению прибыли поставщиков услуг. Соответствующий рост спроса на услуги приведет к увеличению поставок необходимого оборудования, что повлечет увеличение прибыли поставщиков оборудования. Таким образом, гибкость предоставления услуг с применением современных технологий приводит к объединению экономических интересов трех сторон: пользователей, поставщиков услуг и поставщиков оборудования.

Контрольные вопросы

1. Укажите особенности развития техники связи на современном этапе.

2. В чем заключается интеграция связи?

3. Охарактеризуйте многофункциональные оконечные устройства.

4. Дайте определение Глобальной информационной инфраструктуры.

5. Что необходимо для реализации концепции Глобальной информационной инфраструктуры?

6. Какие атрибуты (характеристики) необходимо учитывать при создании стандарта Глобальной информацион­ной инфраструктуры?

7. Поясните принципы и цель Глобальной информационной инфраструктуры.

8. Укажите основные характеристики Глобальной информационной инфраструктуры.

9. Перечислите особенности построения информационной сети.

10. Поясните структуру информационной сети.

11. Дайте характеристику ресурсов информационной сети.

12. Как подразделяются телекоммуникационные системы в зависимости от вида связи?

13. Какие показатели телекоммуникационной сети характеризуют ее эффективность при передаче информации?

14. Дайте определение понятий протокола и интерфейса в информационных сетях.

15. Что такое надежность сети связи?

16. Поясните понятие живучести связи; перечислите факторы, от которых она зависит.

17. Охарактеризуйте пропускную способность телекоммуникационной сети.

18. Что такое вызов?

19. Что подразумевается в телекоммуникационной сети под понятием сообщение?

20. Какими параметрами определяется объем информации?

21. Назовите единицы измерения телефонной нагрузки и ее интенсивности.

22. Что такое поток сообщений? Приведите пример.

23. Какая информация называется полезной? Назовите другие ее виды.

24. Чем характеризуется поток сообщений?

25. Назовите и дайте характеристику потокам, циркулирующим в сетях связи.

26. Как называются информационные потоки, если момент поступления и объем сообщений заранее известны? Приведите пример.

27. Что означает понятие «тяготение» в сети связи?

28. Дайте характеристику ЕНССУ, НИИ Украины, Глобальной информационной инфраструктуры.

29. Поясните основные рубежи развития сетей и услуг связи.

30. Каковы особенности широкополосной сети B-ISDN?

Телекоммуникация и сетевые технологии являются в настоящее время той движущей силой, которая обеспечивает развитие мировой цивилизации. Практически нет области производственных и общественных отношений, которая не использовала бы возможности современных информационных технологий на базе телекоммуникаций.

Телекоммуникация - передача данных на большие расстояния.

Средства телекоммуникации - совокупность технических, программных и организационных средств для передачи данных на большие расстояния.

Телекоммуникационными сетями являются:

1 Телефонные сети для передачи телефонных данных (голоса);

2 Радиосети для передачи аудиоданных;

3 Телевизионные сети для передачи видеоданных;

4 цифровые (компьютерные) сети или сети передачи данных (СПД) для передачи цифровых (компьютерных) данных.

Данные в цифровых телекоммуникационных сетях формируются в виде сообщений, имеющих определённую структуру и рассматриваемых как единое целое.

Данные (сообщения)могут быть:

1 непрерывными;

2 дискретными.

Непрерывные данные могут быть представлены в виде непрерывной функции времени, например, речь, звук, видео. Дискретные данные состоят из знаков (символов).

Передача данных в телекоммуникационной сети осуществляется с помощью их физического представления - сигналов.

В компьютерных сетях для передачи данных используются следующие типы сигналов:

1 электрический (электрический ток);

2 оптический (свет);

3 электромагнитный (электромагнитное поле излучения - радиоволны.

Для передачи электрических и оптических сигналов применяются кабельные линии связи:

1 электрические (ЭЛС)

2 волоконно-оптические (ВОЛС)

Передача электромагнитных сигналов осуществляется через радиолинии (РЛС) и спутниковые линии связи (СЛС).

Сигналы, как и данные, могут быть:

1 непрерывными;

2 дискретными.

При этом, непрерывные и дискретные данные могут передаваться в телекоммуникационной сети либо в виде непрерывных, либо в виде дискретных сигналов.

Процесс преобразования (способ представления) данных в вид, требуемый для передачи по линии связи и позволяющий, в некоторых случаях, обнаруживать и исправлять ошибки, возникающие из-за помех при их передаче, называется кодированием. Примером кодирования является представление данных в виде двоичных символов. В зависимости от параметров среды передачи и требований к качеству передачи данных могут использоваться различные методы кодирования.

Линия связи - физическая среда, по которой передаются информационные сигналы, формируемые специальными техническими средствами, относящимися к линейному оборудованию (передатчики, приёмники, усилители, и т.п.). Линию связи часто рассматривают как совокупность физических цепей и технических средств, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения. Сигнал, передаваемый в линии связи, называется линейным (от слова линия).

Линии связи можно разбить на 2 класса:

1. кабельные (электрические и волоконно-оптические линии связи):

2. беспроводные (радиолинии).

На основе линий связи строятся каналы связи.

Канал связи представляет собой совокупность одной или нескольких линий связи и каналообразующего оборудования, обеспечивающих передачу данных между взаимодействующими абонентами в виде физических сигналов, соответствующих типу линии связи.

Канал связи может состоять из нескольких последовательных линий связи, образуя составной канал. В то же время, в одной линии связи может быть сформировано несколько каналов связи, обеспечивающих одновременную передачу данных между несколькими парами абонентов.

Телекоммуникационная вычислительная сеть (ТВС) - это сеть обмена и распределенной обработки информации, образуемая множеством взаимосвязанных абонентских систем и средствами связи.

Средства передачи и обработки информации ориентированы в ней на коллективное использование общественных ресурсов аппаратных, информационных, программных.

Телекоммуникация - дистанционная передача данных на базе компьютерных сетей и современных технических средств связи.

Абонентская система (АС) - это совокупность ЭВМ, программного обеспечения, периферийного оборудования, средств связи с коммутационной подсетью вычислительной сети, выполняющих прикладные процессы.

Коммуникационная подсеть, или телекоммуникационная система (ТКС), представляет собой совокупность физической среды передачи информации, аппаратных и программных средств, обеспечивающих взаимодействие АС.

С появлением ТВС удалось решить две очень важные проблемы:

обеспечение в принципе неограниченного доступа к ЭВМ пользователей независимо от их территориального перемещения больших массивов информации на большие расстояния. В ТВС все находящиеся в составе разные абонентские системы ЭВМ связываются между собой автоматически.

Каждая ЭВМ сети приспособлена как для работы в автономном режиме под управлением своей операционной системы (ОС), так и в качестве составного звена сети.

ТВС позволяет решать такие качественно новые задачи, как, например:

* обеспечение распределенной обработки данных и параллельной обработки многими ЭВМ;

* возможность создания распределенной базы данных (РБД), размещаемой в памяти различных ЭВМ;

* возможность обмена большими массивами информации между ЭВМ, удаленными друг от друга на значительные расстояния;

* коллективное использование дорогостоящих ресурсов: прикладных программных продуктов (ППП), баз данных (БД),баз знаний (БЗ), запоминающих устройств (ЗУ), печатающих устройств (ПУ), сетевых операционных систем (ОС);

* предоставление большого перечня услуг, в том числе таких, как электронная почта (ЭП), телеконференции, электронные доски объявлений (ЭДО), дистанционное обучение, организация безбумажного документооборота, электронная подпись, принятие управленческих решений;

* повышение эффективности использования средств вычислительной техники и информатики (СВТИ) за счет более интенсивной и равномерной их загрузки, а также надежности обслуживания запросов пользователей;

* возможность оперативного перераспределения вычислительных мощностей между пользователями сети в зависимости от изменения их потребностей, а также резервирование этих мощностей и средств передачи данных на случай выхода из строя отдельных элементов сети;

* сокращение расходов на приобретение и эксплуатацию СВТИ (за счет коллективного их использования);

* обеспечение работ по совершенствованию технических, программных и информационных средств.

Телекоммуникационные вычислительные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерных сетей от многомашинного вычислительного комплекса следующие:

* размерность, то есть большое количество ЭВМ (от десятка до нескольких сотен), расположенных на расстоянии друг от друга от десятков метров до нескольких сотен и даже тысяч километров; разделение функции ЭВМ, то есть обработка данных и управление системой, анализ и хранение информации распределены между различными ЭВМ сети;

* необходимость решения в сети задачи маршрутизации сообщений, то есть сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от приоритета и состояния каналов связи, соединяющих ЭВМ друг с другом.

По функциональному признаку все множество систем компьютерной сети можно разделить на абонентские, коммутационные и главные (Host) системы.

Абонентская система представляет собой компьютер, ориентированный на работу в составе компьютерной сети и обеспечивающий пользователям доступ к ее вычислительным ресурсам.

Коммутационные системы являются узлами коммутации сети передачи данных и обеспечивают организацию составных каналов передачи данных между абонентами системы. В качестве управляющих элементов узлов коммутации используются процессоры телеобработки или специальные коммутационные (сетевые) процессоры.

Большим разнообразием отличаются главные (Host) системы или сетевые серверы.

Сервером принято называть специальный компьютер, выполняющий основные сервисные функции: управление сетью, сбор, обработку, хранение и предоставление информации абонентам компьютерной сети.

В зависимости от территориальной рассредоточенности абонентских систем компьютерные (вычислительные) сети разделяют на три основных класса:

* глобальные сети (WAN - Wide Area Network);

* региональные сети (MAN - Metropolitan Area Network);

* локальные сети (LAN - Local Area Network).

Основная функция телекоммуникационных систем (ТКС), или территориальных сетей связи (ТСС), в условиях функционирования телекоммуникационных вычислительных сетей (ТВС) заключается в организации оперативного и надежного обмена информацией между абонентами, а также в сокращении затрат на передачу данных.

Главный показатель эффективности функционирования ТКС - время доставки информации. Он зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов и др.

Наиболее распространенные телекоммуникационные системы, или территориальные сети связи это: Х.25, Frame Relay (FR), IP, ISDN, SDN, ATM. Особенно важным преимуществом той или иной сетевой технологии является ее возможность наиболее полно использовать имеющуюся в распоряжении пользователя полосу пропускания канала связи и адаптироваться к качеству канала.К технологиям глобальных сетей Интернета относятся сети Х.25,frame relay, SMDS, ATM. Все эти сети, кроме IP, используют маршрутизацию пакетов, основанную на виртуальных каналах между конечными узлами сети.

В современных телекоммуникационных системах информация передается с помощью электрических сигналов (тока или напряжения), радиосигналов или световых сигналов - все эти физические процессы представляют собой колебания электромагнитного поля различной частоты и природы

Введение. 2

Цифровая телекоммуникационная система. 5

Телекоммуникация. 5

1.2)Телекоммуникационная система. 9

1.3)Цифровая система передачи. 12

1.3.1) Вторичная цифровая система передачи ИКМ120. 21

1.3.2) Третичная цифровая система передачи ИКМ480. 25

1.3.4. STM-N.. 32

1.4) Виды ЦТС.. 43

1.5) Цифровые системы передачи ИКМ и STM.. 56

Основные преимущества технологии SDH: 57

Недостатки технологии SDH: 58

2.2. Определить шаг квантования по амплитуде. 66

2.3. Разработать схему временного спектра ЦТС. 71

2.4) Разработать укрупнённую структурную схему ЦТС, состоящую из оборудования временного группообразования, оборудования линейного тракта оконечной станции и промежуточных станций линейного тракта. 86

Заключение. 91

Список литературы. 92

Введение

Научно-технический прогресс конца XX века открыл пути создания глобального информационного общества, в котором информационные и телекоммуникационные технологии приобретают особое значение, складываясь в инфокоммуникационный сектор.

Человечество переходит на новый уровень общения и передачи информации. Теперь для того, что бы передать сообщение нет необходимости находиться на близком расстоянии. Есть возможность передавать информацию из разных точек планеты. Телекоммуникационные системы оказывают большое влияние на все сферы жизни человека. России необходимо финансировать развитее телекоммуникационных систем, т.к. государство стоит на ступень ниже, в сравнении с мировыми тенденциями.

Развитие связи в начале ХХI века характеризуется следующими понятиями: универсализация, интеграция, интеллектуализация - в части технических средств и в сетевом плане; глобализация, персонализация - в части услуг. Прогресс в области связи основан на разработке и освоении новых телекоммуникационных технологий, а также на дальнейшем развитии и совершенствовании еще не исчерпавших свой потенциал существующих.

Развитие инфокоммуникационного сектора в мире происходит одновременно по нескольким направлениям. При этом в области телекоммуникации и информации оно характеризуется созданием глобальных инфокоммуника-ционных систем, основу которых составляют цифровые системы передачи (ЦСП) различного назначения с широким использованием современных оптоволоконных технологий и цифровых систем коммутации различного вида и уровня.

Во всем мире сейчас активно развивается цифровая связь – это основная тенденция развития телекоммуникаций. Качество цифровой связи имеет ряд преимуществ перед обычной связью. На основе цифровых систем передачи строят протяженные транспортные сети почти любого назначения. Благодаря научному прогрессу современные цифровые системы передачи данных позволяют одновременно передавать аудио, видео и цифровой сигнал.

Последние годы в России с точки зрения развития телекоммуникаций не были стабильными. Им предшествовал мировой кризис в области телекоммуникаций, который привел к снижению темпов роста. Тем не менее даже в этот период развивались и внедрялись новые телекоммуникационные технологии. В течение этого периода в рамках ОАО "Связьинвест" была проведена структуризация бывших сетей электросвязи в сторону их укрупнения, созданы сильные, высоко капитализированные, прибыльные и конкурентно-способные компании. В результате в России существует семь межрегиональных компаний (МРК), а на телекоммуникационном рынке действует около 6500 зарегистрированных новых операторов. В июне 2003 года Государственной думой РФ был принят новый федеральный закон "О связи", введенный в действие с 1 января 2004 года. С этим связано по существу завершение одного этапа развития связи в России и начало нового этапа.

Модернизация сетей наземного эфирного вещания путем перехода на цифровые технологии является мировой тенденцией, которой следует и Российская Федерация. Переход на цифровое вещание в России не только позволит обеспечить население многопрограммным вещанием заданного качества, но и окажет стимулирующее воздействие на развитие рынков СМИ, связи и производства отечественного теле - и радиооборудования, создание инфраструктуры производственно-внедренческих, сбытовых и сервисных организаций, дальнейшее развитие малого и среднего предпринимательства и развитие конкуренции в данной сфере. Основной целью, согласно Концепции развития телерадиовещания в Российской Федерации на 2008 - 2015 годы, является обеспечение населения многопрограммным вещанием с гарантированным предоставлением общедоступных телевизионных каналов и радиоканалов заданного качества, что позволит государству полнее реализовать конституционное право граждан на получение информации.

В соответствии с этой целью поставлены следующие задачи:

Исследовать основные принципы цифровой системы передачи данных;

Рассмотреть какие цифровые системы передачи существуют;

Изучить особенности построения цифровых систем передачи.

Цифровая телекоммуникационная система

Телекоммуникация

Телекоммуникация (греч. tele - вдаль, далеко и лат. communicatio -общение) - передача данных на большие расстояния.

Средства телекоммуникации - совокупность технических, программных и организационных средств для передачи данных на большие расстояния.

Телекоммуникационная сеть - множество средств телекоммуникации, связанных между собой и образующих сеть определённой топологии (конфигурации). Телекоммуникационными сетями являются:

Телефонные сети для передачи телефонных данных (голоса);

Радиосети для передачи аудиоданных;

Телевизионные сети для передачи видеоданных;

Цифровые (компьютерные) сети или сети передачи данных (СПД) для передачи цифровых (компьютерных) данных.

Данные в цифровых телекоммуникационных сетях формируются в виде сообщений, имеющих определенную структуру и рассматриваемых как единое целое.

Данные (сообщения) могут быть:

Непрерывными;

Дискретными.

Непрерывные данные могут быть представлены в виде непрерывной функции времени, например, речь, звук, видео. Дискретные данные состоят из знаков (символов).

Передача данных в телекоммуникационной сети осуществляется с помощью их физического представления - сигналов.

В компьютерных сетях для передачи данных используются следующие типы сигналов:

Электрический (электрический ток);

Оптический (свет);

Электромагнитный (электромагнитное поле излучения - радиоволны).

Для передачи электрических и оптических сигналов применяются кабельные линии связи соответственно:

Электрические (ЭЛС);

Волоконно-оптические (ВОЛС).

Передача электромагнитных сигналов осуществляется через радиолинии (РЛС) и спутниковые линии связи (СЛС).

Сигналы, как и данные, могут быть:

Непрерывными;

Дискретными.

При этом непрерывные и дискретные данные могут передаваться в телекоммуникационной сети либо в виде непрерывных, либо в виде дискретных сигналов.

Процесс преобразования (способ представления) данных в вид, требуемый для передачи по линии связи и позволяющий, в некоторых случаях, обнаруживать и исправлять ошибки, возникающие из-за помех при их передаче, называется кодированием. Примером кодирования является представление данных в виде двоичных символов. В зависимости от параметров среды передачи и требований к качеству передачи данных могут использоваться различные методы кодирования.

Линия связи - физическая среда, по которой передаются информационные сигналы, формируемые специальными техническими средствами, относящимися к линейному оборудованию (передатчики, приемники, усилители и т.п.). Линию связи часто рассматривают как совокупность физических цепей и технических средств, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения. Сигнал, передаваемый в линии связи, называется линей-ным (от слова линия).

Линии связи можно разбить на 2 класса:

Кабельные (электрические и волоконно-оптические линии связи);

Беспроводные (радиолинии).

На основе линий связи строятся каналы связи.

Канал связи представляет собой совокупность одной или нескольких линий связи и каналообразующего оборудования, обеспечивающих передачу данных между взаимодействующими абонентами в виде физических сигналов, соответствующих типу линии связи.

Канал связи может состоять из нескольких последовательных линий связи, образуя составной канал, например: между абонентами А1 и А2 сформирован канал связи, включающий телефонные (ТфЛС) и волоконно-оптическую (ВОЛС) линии связи. В то же время, в одной линии связи, как будет показано ниже, может быть сформировано несколько каналов связи, обеспечивающих одновременную передачу данных между несколькими парами абонентов.

Телекоммуникационная система

Под телекоммуникационными системами (ТС) принято понимать структуры и средства, предназначенные для передачи больших объёмов информации (как правило, в цифровой форме) посредством специально проложенных линий связи или радиоэфира. При этом предполагается обслу-живание значительного количества пользователей систем (от нескольких тысяч). Телекоммуникационные системы включают такие структуры переда-чи информации, как телевещание (коллективное, кабельное, спутниковое, сотовое), телефонные сети общего пользования (ТфОП), сотовые системы связи (в том числе макро- и микро- сотовые), системы персонального вызова, спутниковые системы связи и навигационное оборудование, волоконные сети передачи информации.

Следует отметить, что основным требованием к системам связи является отсутствие факта прерывания связи, но допускается некоторое ухудшение качества передаваемого сообщения и ожидание установления связи.

По назначению телекоммуникационные системы группируются следующим образом:

· системы телевещания;

· системы связи (в т.ч. персонального вызова);

· компьютерные сети.

По типу используемой среды передачи информации:

· кабельные (традиционные медные);

· оптоволоконные;

· эфирные;

· спутниковые.

По способу передачи информации:

· аналоговые;

· цифровые.

Мы рассмотрим способы передачи: аналоговые и цифровые.

Выделяют два класса в телекоммуникационных системах связи (коммутации). Это аналоговые и цифровые системы.

Аналоговые системы передачи и связи (коммутации).
В аналоговых системах все процессы (прием, передача, связь) основана на аналоговых сигналах. Примеров таких систем множество: телевизионное вещание, радио, телефонная коммутация (связь).
Цифровые системы передачи и связи (коммутации).
В цифровых системах все процессы происходят от цифровых (дискретных) сигналов. Примерами являются - современные объекты связи, цифровая телефония, цифровое телевидение. Эволюционный процесс перехода от аналоговых систем к цифровым связан:

1. век новых технологий, соответственно в технике все большее распространяются микропроцессорные технологии обработки сигналов;

2. создается высокоскоростная паутина цифровых телекоммуникационных сетей;
Соединительными нитками паутины являются магистрали, которые представляют собой набор цифровых каналов коммутации (связи) глобального и локального масштаба. Обращение к этим каналам разрешено различным государственным структурам, предприятиям бизнеса, частным пользователям. Качество передачи и связи соответственно очень высокое.
Давайте приведем преимущества цифровых систем передачи и обработки данных над аналоговыми системами:
1. Надежность передачи данных, а так же высокая помехоустойчивость;
2. Хранение данных на высочайшем уровне;
3. Завязана на вычислительной технике;
4. Минимизация возникновения ошибок при обработке, передачи, коммутации (связи) данных;

Цифровая система передачи

Управления, автоматическая система управления, в которой осущест-вляется квантование сигналов по уровню и по времени. Непрерывные сигна-лы (воздействия), возникающие в аналоговой части системы (в которую входят обычно объект управления, исполнительные механизмы иизмери-тельные преобразователи), подвергаются преобразованию в аналого цифро-вых преобразователях, откуда в цифровой форме поступают для обработки в ЦВМ. Результаты обработки данных подвергаются обратному преобразова-нию в виде непрерывных сигналов (воздействий) подаются на исполнитель-ные механизмы объекта управления. Использование ЦВМ позволяет значи-тельно улучшить качество управления, оптимизировать управление сложны-ми промышленными объектами. Примером может служить автоматизированная система управления технологическими процессами (АСУТП).

Понятие “цифровая передача” является довольно широким и включает множество вопросов, таких как выбор параметров импульсов в конкретной среде передачи, преобразование цифровой последовательности к коду передачи и т.п.
Синхронизация В цифровых системах передачи необходимо обеспечить выполнение всех операций по обработке цифровых сигналов синхронно и последовательно. Если бы эти операции происходили локально и синхронизировались от одного источника, то проблем не было. В этом случае к стабильности задающего генератора не предъявлялись бы жесткие требования, так как на всех участках происходили бы одинаковые изменения тактовой частоты. Но поскольку любую систему цифровой передачи можно рассматривать как состоящую из двух и более полукомплектов приема и передачи, разнесенных на значительные расстояния, то требования к синхронизации становятся основополагающими. Высокостабильные и следовательно дорогие, тактовые генераторы могут оказаться бесполезными из-за линейных помех, вызывающих фазовые дрожания тактовых сигналов. По сути дела фазовые дрожания вызывают изменение числа битов, переданных по линии. Для борьбы с этим явлением используются устройства эластичной памяти, в которых запись осуществляется по тактовой частоте принимаемого сигнала, а считывание по тактовой частоте местного генератора. Такая память позволяет компенсировать пусть даже большие, но кратковременные отклонения тактовой частоты. Однако эластичная память не справляется при продолжительных, пусть даже небольших отклонения. Она может переполняться или опустошаться в зависимости от соотношения тактовых частот. При этом возникает так называемое проскальзывание. Рекомендацией ITU-T G.822 нормируется частота проскальзований в зависимости от качества обслуживания и устанавливается распределение продолжительности работы с пониженным и неудовлетворительным качеством. Таким образом рекомендацией ITU-T допускаются на синхронных цифровых сетях некоторые нарушения синхронизации. Рекомендация ITU-T G.803 описывает следующие режимы цифровых сетей по синхронизации: · синхронный режим, при котором проскальзования практически отсутствуют, имея случайный характер. Этот режим работы сетей с принудительной синхронизацией, когда все элементы сети получают тактовую частоту от одного эталонного генератора. · псевдосинхронный режим возникает, когда имеется несколько высокостабильных генератора (их нестабильность не более 10-11 согласно G.811). Допускается одно проскальзование за 70 суток. Этот режим имеет место на стыках сетей с синхронными режимами разных операторов. · плезиохронный режим появляется на цифровой сети при потери элементом сети внешней принудительной синхронизации. На сети с синхронным режимом такое может произойти при отказе основных и резервных путей прохождения синхросигнала или при выходе из строя эталонного генератора. Для обеспечения в этом случае приемлемого уровня проскальзования, 1 проскальзование за 17 часов, генераторы элементов сети должны обладать нестабильностью не более 10-9. · асинхронный режим характеризуется одним проскальзованием за 7 секунд позволяет иметь генераторы с нестабильностью не хуже 10-5. Подобный режим практически не применяется на цифровых сетях. В настоящее время все системы цифровой передачи, применяемые на цифровых сетях, принято разделять на системы PDH (Plesiochronous Digital Hierarchy - плезиохронная цифровая иерархия) и SDH (Synchronous Digital Hierarchy - синхронная цифровая иерархия). Своими названиями они обязаны соответствующим режимам работы по синхронизации. В данной статье подробно рассмотрим PDH, принципам SDH посвящена отдельная статья. Плезиохронная цифровая иерархия Первыми возникли системы PDH, их основой стали системы с временным разделением каналов (ВРК) и ИКМ-кодированием. В силу исторических причин появилось два типа плезиохронной иерархии - североамериканская, используемая в основном в США, Канаде и Японии, и европейская, применяемая в большинстве стран. Базовой скоростью или нулевым уровнем в обоих типах иерархии (PDH и SDH) является скорость 64 кбит/с, под которой понимается один стандартный телефонных канал. Следующей ступенькой в плезиохронных иерархиях являются первичные цифровые системы передачи. Рекомендация ITU-T G.732 описывает европейскую системы (ИКМ30), а G.733 – североамериканскую (ИКМ24). Кадр или цикл системы ИКМ30 имеет продолжительность 125 мкс и состоит из 32 байт, каждый из которых относится к определенному каналу системы. Рис 1.1) Структура цикла. На рисунке приводится структура цикла. Нулевой канал предназначен для передачи служебных сигналов и сигналов синхронизации. Каналы с 1 по 15 и с 17 по 31 является информационными или телефонными. В каждом цикле передается 32 * 8 = 256 бит, что в итоге дает скорость 2048 кбит/с. Канал под номером 16 называется каналом сигнализации и может использоваться в двух вариантах: · для передачи сигнальной информации для телефонных каналов. В этом случае в каждом цикле байт канала сигнализации разбивается на две половины. В первой половине последовательно на протяжении 15 циклов передается сигнальная информация с 1 по 15 телефонного канала, во второй - с 16 по 31 канала. В нулевом цикле в канале сигнализации передается сигнал сверхцикловой синхронизации. Таким образом, через канал сигнализации обеспечивается передача сигнальной информации для каждого телефонного канала со скоростью 2 кбит/с. · канал сигнализации системы ИКМ30 может быть использован для обеспечения передачи сигнализации по общему каналу, например, ОКС №7, или для передачи данных. Поясним некоторые обозначения на рисунке. Во всех служебных байтах бит, обозначенный символом “Х” зарезервирован для международного использования. Биты “Y” зарезервированы для национального применения. Бит “Z” служит для сигнализации о сбоях в сверхцикловой синхронизации. Бит “А” используется для сигнализации о наличии важных сообщениях. Этот сигнал возникает (бит принимает значение “1”) в следующих случаях: · сбой по электропитанию; · сбой цикловой синхронизации; · сбой аппаратуры линейного кодирования; · наличие ошибок во входящем сигнале 2,048 Мбит/с; · частота появления серийных ошибок цикловой синхронизации превышает величину 10-3. Цикл ИКМ24 так же имеет продолжительность 125 мкс, но состоит из 24 байт и одного дополнительного бита. Каждый байт относится к определенному каналу системы. Рис. 1.2. Структура цикла. На рисунке приводится структура цикла. За один цикл передается 24 * 8 + 1 = 193 бита, что дает скорость 1544 кбит/с. Цикловая и сверхцикловая синхронизация обеспечивается определенной комбинацией добавочного бита, при подсчете за 12 циклов. Сигнальная информация телефонных каналов передается по двум подканалам А и В, образуемых младшими битами всех каналов соответственно в 6 и 12 циклах. Эти каналы обеспечивают передачу сигнализации каждого телефонного канала со скоростью 1,333 кбит/с. Отсутствие отдельного сигнального канала, по сравнению с европейской иерархией, позволяет более эффективно использовать пропускную способность. Однако происходит небольшое уменьшение канальной скорости. В силу кратности цикла формирования сигнальных каналов, равной 6, уменьшение скорости “плавает” между каналами, что практически не влияет на качестве речи, но не позволяет осуществлять одновременно передачу данных по отдельным каналам ИКМ24. Благодаря цикловой и сверхцикловой синхронизации поддерживаются требования плезиохронного режима работы в первичных цифровых системах. Для синхронизации ведомых генераторов в европейской иерархии используется тактовая частота 2048 кгц, выделяемая из цифрового потока со скоростью 2048 кбит/с. Последующие ступеньки североамериканской и европейской плезиохрон-ных цифровых иерархий базируются на своих первичных цифровых системах. В таблицах представлено соотношение числа каналов и скоростей. Таб. 1.1. Европейская плезиохронная цифровая иерархия

Таб 1.2. Североамериканская плезиохронная цифровая иерархия

В отличие от европейской, североамериканская плезиохронная цифровая иерархия имеет ряд вариаций, которые не были стандартизованы ITU-T. Используется еще один сигнал DS1C со скоростью 3 152 кбит/с (Т1С), обеспечивающий 48 телефонных каналов. В Японии вместо скорости 44 736 кбит/с используется 32 064 кбит/с (480 каналов), а вместо 274 176 кбит/с - 97 728 кбит/с (1 440 каналов). Как видно из таблиц в североамериканской иерархии сигналам присвоены названия DS, которое расшифровывается очень просто - цифровой сигнал (Digital Signal). Очень часто для обозначения скорости цифровых сигналов используются цифро-буквенные комбинации, которые приведены в таблицах. Первичный цифровой поток формируется за счет по-байтного объединения каналов. На следующих уровнях объединение происходит на основе по-битного мультиплексирования первичных потоков. В силу плезиохронного характера первичных потоков при их объединении неизбежны проскальзования. Для снижения вероятности их появления используют процедуру согласования или выравнивания скоростей (стаффинг). Суть ее заключается в добавлении на передающем конце “пустых” битов и исключения их на приемном. Это процедура положительного стаффинга. Возможность вставки дополнительных битов предоставляется использованием несколько большей скорости объединенного потока, чем у суммы исходных. Разумеется кроме дополнительных битов еще передаются служебные сигналы и сигналы цикловой синхронизации.

Главными недостатками плезиохронной цифровой иерархии (PDH) являются невозможность прямого доступа к каналам, без процедур демультиплексирования/мультиплексирования всего линейного сигнала, и практическое отсутствие средств сетевого мониторинга и управления. Потребность в более высоких скоростях работы цифровых систем передачи, повышение требований к качеству привели к созданию систем синхронной цифровой иерархии (SDH).

1.3.1) Вторичная цифровая система передачи ИКМ120

Вторичной ЦСП с ИКМ, отвечающей рекомендациям МККТТ по европейской иерархии, является серийная система ИКМ-120. Она предназначена для организации каналов на местных и зоновых участках первичной сети по кабелям типов ЗКНАП и МКС. Основным узлом системы ИКМ-120 является устройство образования типового вторичного цифрового потока со скоростью передачи 8448 кбит/с из четырех первичных со скоростями передачи 2048 кбит/с (рис 1.3) При использовании четырех комплектов АЦО-30 первичной ЦСП можно получить 120 каналов ТЧ, при этом, как и в первичных ЦСП, сохраняются все варианты организации вместо каналов ТЧ каналов ПДИ, ЗВ и т. д.

1.3. Структура ЦСП ИКМ-120

Рис. 1.4. Временной спектр ЦСП ИКМ-120

Таблица 1.3. Временной спектр ЦСП ИКМ-120.

Линейный тракт организуется по двухкабельной схеме, но на местных участках сети допускается и однокабельная. Номинальная схема кабельного участка l уч =5 км, максимальная длина секции дистанционного питания l дптах = 200 км. Максимальная длина переприемного участка ТЧ L max = 600км, что соответствует и максимальной протяженности зонового участка первичной сети.

Цифровой поток в точке сетевого стыка СС 2 между ВВГ и ОЛТ системы ИКМ-120 имеет параметры, соответствующие рекомендациям МККТТ, и потому может использоваться для организации связи посредством типовой аппаратуры по РРЛ и ВОЛС.

Вторичный цифровой поток разделяется на циклы длительностью Т ц = 125мкс, состоящие из 1056 разрядных интервалов. Цикл подразделяется на четыре одинаковых по длительности субцикла (рис. 1.4.). Первые восемь позиций I субцикла заняты синхросигналом объединенного потока (111001100), а остальные 256 позиций (с 9-й по 264-ю включительно) - информацией посимвольно объединенных исходных (четырех) потоков. На рисунке на соответствующих позициях отмечены номера символов исходных потоков. Первые четыре позиции II cубцикла заняты первыми символами команд согласования скоростей (КСС), а следующие четыре позиции - сигналами СС. Вторые и третьи символы КСС (команда положительного согласования имеет вид 111,а отрицательного - 000) занимают первые четыре позиции III и IV субциклов.

Распределение символов КСС позволяет защитить команды от воздействия пакетов импульсных помех. Позиции 5,...,8 субцикла III используются для передачи сигналов ДИ (две позиции), аварийных сигналов (одна позиция) и вызова служебной связи (одна позиция). В IV субцикле на позициях 5,..., 8 передаётся информация объединяемых потоков при отрицательном согласовании скоростей. При положительном согласовании скоростей исключается передача информации на позициях 9,..., 12 IV субцикла. Таким образом, общее число информационных символов в цикле 1024+4. Поскольку операция согласования скоростей производится не чаще чем через 78 циклов, позиции 5,...,8 субцикла IV занимаются очень редко, и поэтому их используют для передачи информации о промежуточных значениях и характере изменения скоростей объединяемых потоков.