Фотодиод схема включения. Фотодиод

  • 31.08.2019

При воспроизведении фотографической фонограммы ис­точником сигнала является фотодиод. Он может работать в фотогальваническом или в фотодиодном режиме. Схема включения фотодиода, работающего в фотогальва­ническом режиме, на вход транзисторного усилителя пока­зана на рис. 45, а. В этом режиме фотодиод работает без источника питания. Под действием света в области n-типа разрушаются ковалентные связи, и освободившиеся элект­роны накапливаются в этой области, заряжая ее отрица­тельно, а дырки втягиваются в область р-типа, заряжая ее положительно. Таким образом, между анодом и катодом соз­дается разность потенциалов - фото-ЭДС Е ф. При постоян­ном световом потоке в режиме покоя под действием этой ЭДС в цепи фотодиода протекает постоянный ток от области р к области п через резистор нагрузки R нф. При воспроизве­дении фонограммы световой поток пульсирует, поэтому пуль­сируют фото-ЭДС и ток в цепи фотодиода. Переменная сос­тавляющая напряжения на нагрузке R нф является напря­жением входного сигнала, которое через конденсатор С с передается на базу транзистора. Переменная составляющая тока фотодиода разветвляется: часть проходит через резис­тор R нф а другая часть - через конденсатор С с и эмиттер­ный переход транзистора.

Работа фотодиода в фотогальваническом режиме исполь­зуется в передвижной звуковоспроизводящей аппаратуре типа К3ВП-I0 и К3ВП-14.

При работе фотодиода в фотодиодном режиме (рис. 45, б) на него от источника питания подается постоянное напряже­ние, которое является обратным напряжением электронно-дырочного перехода. При отсутствии светового потока через фотодиод протекает очень малый ток – это темновой ток. Под действием света резко уменьшается обратное сопротивление р - n - переходаи возрастает ток через фото­диод.

При отсутствии сигнала световой поток остается посто­янным и через фотодиод протекает постоянный ток. Он идет от плюса источника питания через сопротивление нагрузки, фотодиода R нф и фотодиод к минусу источника питания. В режиме воспроизведения записанного на фонограмме сигнала световой поток и ток фотодиода, как и в первом ре­жиме, пульсируют, и переменная составляющая тока создает на нагрузке и на входе усилителя входной сигнал.

Рис. 45 Схемы включения фотодиода: а - в фотогальваническом режиме;

б – в фотодиодном режиме

В фотодиодном режиме чувствительность фотодиода повы­шается по сравнению с фотогальваническим режимом, и вход­ ной сигнал увеличивается; внутреннее сопротивление фото­диода для переменного тока также увеличивается.

Работа фотодиода в фотодиодном режиме используется в стационарной транзисторной аппаратуре типа «Звук Т».

Фотодиоды, установленные в фотоячейках на кинопроек­торах разных постов, могут иметь разброс параметров, и частности неодинаковую чувствительность, что приводит к неодинаковой отдаче постов. Чтобы при демонстрации кинофильма не изменялась громкость звука при переходе с поста на пост, в фото­-ячейке предусматрива­ется регулирование от­дачи фотодиода. Схема регулирования (рис. 46) позволяет переменным ре­зистором R уменьшить сигнал, поступающий отданного фотодиода на вход усилителя. В верх­нем положении движка резистора R3 сопротивле­ние цепочки R1, R3, С1, включенной параллельно фотодиоду, максималь­ное, поэтому входной сиг­нал наибольший. По мере перемещения движка вниз сопротивление R3 все больше закорачивается, общее сопротивление цепочки R1, R3, Сl уменьшается, возрастает ее шунтирующее действие, и сиг­нал на входеусилителя уменьшается. Такая схема включения фотодиода типа ФДК155 применена в звуковоспроизводя­щей аппаратуре типа «Звук T2-25,50».

Линия включения фотодиода на вход усилителя должна быть экранирована, как и для других источников сигнала.

Фотодиоды, используемые в аппаратуре киноустановок, имеют чувствительность порядка 4-6 мА/лм и дают ток входного сигнала 1-2 мкА.

Рис.46 Схема регулирования от­дачи фотодиода

Вопросы для самопроверки:

1. Что называется входной цепью, и какие бывают виды схем входа?

2. Нарисовать и объяснить схемы включения звукоснимателя.

3. Нарисовать и объяснить схемы включения микрофона.

4.Почему надо экранировать входные цепи и применять симметричную схему трансформатора входа? ­

5.Почему звукосниматель включают на вход усилителя чаще всего через делитель напряжения, а для включения микрофона и магнитной головки в высококачественной аппаратуре применяют входной трансформатор?

6. Нарисовать и объяснить схемы включение фотодиода.

Лабораторная работа № 16

Изучение фотодиода

Цель: Ознакомиться с принципом действия, устройством, характеристиками и применением полупроводниковых фотодиодов.

Приборы и принадлежности: германиевый фотодиод ФД-7Г, стенд для измерения вольт-амперных характеристик диодов, оптическая скамья с осветителем, блок питания, осциллограф.

Теоретическое введение

Фотодиодом называется полупроводниковый диод, чувствительный к свету и предназначенный для преобразования светового потока (оптического излучения) в электрический сигнал.

Не отличаясь по принципу действия от фотопреобразователя солнечной энергии, фотодиоды имеют свои конструктивные особенности и характеристики, которые определяются их назначением.

Фотодиоды предназначены для применения в качестве приёмников и датчиков оптического излучения (обычно видимого и инфракрасного) в составе аппаратуры и различных приборов, использующих видимое и инфракрасное излучение.

В основе работы фотодиодов лежит явление внутреннего фотоэффекта, при котором под действием света в полупроводнике появляются дополнительные (неравновесные) электроны и дырки, создающие фототок или фотоэдс.

1. Принцип работы фотодиодов с p-n-переходом. В фотодиодах светочувствительным элементом является переходная область - p-n-переход, расположенная между областями с электронной и дырочной проводимостью (рис.1).



Образование p-n-перехода. Полупроводник n-типа содержит некоторое количество примесных атомов донорного типа, которые при комнатной температуре практически все ионизованы. Таким образом, в таком полупроводнике имеется n о свободных электронов и такое же количество неподвижных положительно заряженных ионов донорной примеси.

В дырочном полупроводнике (полупроводнике p-типа) реализуется подобная ситуация. В нем имеется p о свободных дырок и столько же отрицательно заряженных ионов акцепторных атомов. Принцип образования p-n-перехода показан на рис. 1.

При контакте p- и n- областей в них, вследствие наличия градиента концентраций электронов и дырок, возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- полупроводника в n-полупроводник. Электроны, перешедшие из n-области в р-область, рекомбинируют с дырками вблизи границы раздела. Аналогично рекомбинируют дырки, перейдя из р-области в n- область. В результате вблизи p-n-перехода практически не остается свободных носителей заряда (электронов и дырок).

Тем самым по обе стороны от p-n-перехода образуется сформированный неподвижными примесными ионами двойной заряженный слой (другие названия – слой обеднения или область пространственного заряда (ОПЗ), запирающий слой), создающий сильное электрическое поле. Электрическое поле запирающего слоя направлено от n –области к p-области и противодействует процессу диффузии основных носителей заряда из областей удаленных от p-n-перехода в обедненную область. Такое состояние является равновесным и при отсутствии внешних возмущений может существовать сколь угодно долго.

Рис. 1 – Образование p-n- перехода Рис. 2

Принцип работы фотодиода. Оптическое излучение (свет), поглощаемое в полупроводниковой структуре с p-n-переходом, создает свободные пары “электрон-дырка” при условии, что энергия фотона hν превышает ширину запрещенной зоны полупроводника Eg.

Свободные электроны и дырки возникают как в p- и n- областях перехода, так и в непосредственной близости к запирающему слою. Существующее в запирающем слое электрическое поле (поле p-n-перехода) разделяет созданные светом свободные носители заряда в зависимости от их знака в разные части фотодиода: свободные электроны перемещаются в n-область перехода, а дырки перемещаются в p- область, что приводит к заряжению этих областей (рис.2).

При освещениидырки накапливаются в р-области, заряжая её положительно. Электроны накапливаются в n-области, заряжая её отрицательно. Поэтому между ними возникает разность потенциалов.

При это возможны два режима работы прибора: в схемах с внешним источником питания и без него. Режим работы фотодиода с внешним источником питания называется фотодиодным, а без внешнего источника питания - режимом генерации фотоэдс (другое название - фотовольтаический режим).

Режим генерации. В этом случае на переход не подано внешнее напряжение и цепь разомкнута. Освещение приводит к накоплению фотоэлектронов в n-области и дырок в р-области. В результате образуется разность потенциалов U ф (часто называют «напряжение

Рис. 3 Рис.4 – Вольт-амперные характеристики фотодиода

при различных световых потоках (Ф 1 < Ф 2 < Ф 3).

холостого хода U хх »), то есть появляется фотоэдс. Накопление избыточных электронов и дырок происходит не беспредельно. Одновременно с возрастанием концентрации дырок в дырочной области и электронов в электронной области происходит понижение потенциального барьера перехода на величину фотоэдс и возникает диффузия основных носителей заряда через р-n-переход. Наступает динамическое равновесие.

При подключении к внешним выводам фотодиода нагрузки R н в её цепи появится ток (рис.3). Во внешней цепи фототок направлен от р-области к n-области. В таких условиях фотодиод работает как преобразователь энергии излучения в электрическую энергию.

Вольт-амперная характеристика освещённого р-n-перехода. Вольт-амперную характеристику р-n-перехода при освещении можно записать в следующем виде:

, (1)

где I н - ток насыщения в темноте; I ф - фототок, то есть ток, созданный возбуждёнными светом носителями заряда и проходящий через р-n-переход; U – внешнее напряжение на переходе.

На рис. 4 показаны графики вольт-амперных зависимостей при различных световых потоках Ф. При отсутствии освещения (I ф = 0) вольт-амперная (темновая) характеристика проходит через начало координат. Остальные кривые, соответствующие определённым световым потокам, смещаются по оси ординат (оси токов) на отрезки, равные силе фототока - I ф. Из выражения (1) видно, что при обратном включении (U < 0) и при

(qU >> kT) сила тока через переход I = - (I н + I ф).

Части кривых, расположенные в третьем квадранте, соответствуют фотодиодному режиму работы): части кривых, расположенные в четвёртом квадранте, - режиму генерации фотоэдс.

Если во внешней цепи сила тока I = 0 (цепь разомкнута), то из выражения (1) можно найти напряжение холостого хода U ф.

Если фотодиод в режиме генерации включен во внешнюю цепь с малым сопротивлением, то фотоэлектроны в n – области не накапливаются и U ф = 0. А поскольку внешнее напряжение отсутствует, то в цепи течёт ток I = - I ф, часто называемый током короткого замыкания и прямо пропорциональный световому потоку I ф ~ Ф.

Рис. 5 – Структурная схема фотодиода и схема

его включения при работе в фотодиодном режиме: Рис.6

1 - кристалл полупроводника; 2 - контакты;

3 - выводы; Ф - поток электромагнитного

излучения; n и р - области полупроводника;

Е - источник постоянного тока; R н - нагрузка.

Фотодиодный режим. В этом режиме на р-n-переход подано обратное напряжение

(р-область подключена к минусу источника напряжения, а n-область к плюсу источника; рис. 5). Схема включает также нагрузочное сопротивление (резистор) R н. В этом случае переход обладает огромным сопротивлением и через него течёт слабый обратный ток (ток насыщения в темноте I н). При освещении фотодиода ток через него резко возрастает за счёт возникновения фототока и может значительно превысить темновой ток I н (рис. 4). Соответственно изменяется и падение напряжения на нагрузочном сопротивлении R н. При правильном выборе иcточника напряжения и внешнего сопротивления R н величина электрического сигнала (напряжения на резисторе) может быть большой и поэтому фотодиоды широко применяются для регистрации и измерения световых сигналов.

Ток через фотодиод в основном определяется потоками неосновных неравновесных носителей заряда (электронов в р-области и дырок в n-области), возникающих при освещении, и не зависит от напряжения, то есть носит характер тока насыщения. Поэтому в фотодиодном режиме наблюдается строгая линейная зависимость фототока от освещённости вплоть до весьма больших значений освещённости. Это является важным достоинством фотодиодов.

Для регистрации переменных оптических сигналов (световых потоков) применяется схема, показанная на рис. 6. Изменяющийся световой поток, падающий на фотодиод, вызывает в цепи переменную составляющую тока, которая повторяет изменения интенсивности света. А на резисторе R н происходят такие же изменения напряжения, которое и поступает на вход регистрирующей системы. Чтобы отделить (не пропустить) постоянную составляющую напряжения на резисторе, в сигнальной цепи находится разделительный конденсатор С.

2. Технология изготовления и конструкция. Для изготовления р-n-переходов при производстве фотодиодов используют метод вплавления примесей и диффузию. Основное внимание при этом уделяется глубине расположения р-n-перехода относительно

Рис.7 – Конструкция гераниевого Рис.8 – Спектральные характеристики

фотодиода ФД-1. германиевых (1) и кремниевых фотодиодов (2).

освещаемой поверхности кристалла, поскольку она определяет инерционность (быстродействие) фотодиода. На рис.7 показана конструкция германиевого фотодиода ФД-1 в металлическом корпусе. Круглая пластинка 1, вырезанная из монокристалла германия с электропроводностью n-типа, закреплена с помощью кристаллодержателя 2 в коваровом корпусе 3. Вывод 4 от индиевого электрода, вплавленного в германий, пропущен через коваровую трубку 5, закреплённую стеклянным изолятором 6 в ножке корпуса 7. Другим электродом является сам корпус фотодиода, так как кристалл германия припаян к кристаллодержателю оловянным кольцом 8. В корпусе фотодиода имеется круглое отверстие, закрытое стеклянной линзой 9, которая собирает световой поток на ограниченную поверхность германиевой пластинки. Для защиты р-n-перехода от воздействия окружающей среды корпус фотодиода герметизирован.

Некоторые виды фотодиодов имеют пластмассовый корпус. Материал такого корпуса и окна в металлическом корпусе выбирают такими, чтобы они были прозрачными для той части спектра (излучения), к которой должен быть чувствителен данный фотодиод. Так, для германиевых приборов – это видимый свет и коротковолновое инфракрасное излучение.

Материалами , из которых изготавливают фотодиоды, служат Ge, Si, GaAs, HgCdTe и другие полупроводниковые соединения.

Основные характеристики и параметры фотодиодов

- Чувствительность S - параметр, который отражает изменение электрического сигнала (сила тока или напряжение) на выходе фотодиода при его освещении.

Количественно измеряется отношением изменения электрической характеристики (силы тока I ф или напряжения U ф), снимаемой на выходе фотодиода, к потоку излучения Ф, падающему на прибор.

S I = I ф / Ф - токовая чувствительность, S v = U ф / Ф - вольтовая чувствительность.

- Порог чувствительности Ф п – величина минимального светового потока, регистрируемого фотодиодом, отнесённая к единице полосы рабочих частот.

- Постоянная времени τ, которая характеризует инерционность прибора, то есть его быстродействие.

Это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз по отношению к установившемуся значению.

Для фотодиодов с р-n-переходом она составляет 10 -6 – 10 -8 с.

- Темновое сопротивление R Т – сопротивление фотодиода в отсутствие освещения.

- Спектральная характеристика – зависимость фототока от длины волны λ падающего на фотодиод света. Для германиевых и кремниевых фотодиодов спектральные характеристики показаны на рис.8. Длина волны, на которую приходится максимальная чувствительность, у кремниевых фотодиодов примерно равна λ макс = 800 – 900 нм, у германиевых фотодиодов находится при λ макс = 1500 – 1600 нм.

- Вольт-амперная характеристика - зависимость светового тока от напряжения при постоянном световом потоке.

- Световая характеристика - зависимость фототока от освещённости.

Некоторые другие параметры приведены в таблице.

Условное графическое обозначение фотодиодов показано на рис.9, фотографии некоторых фотодиодов – на рис.10.

Рис. 9 Рис.10

4. Применение фотодиодов. Современные фотодиоды обладают наилучшим сочетанием основных параметров:

1. Высокая чувствительность к оптическим сигналам;

2. Высокое быстродействие;

3. Малое рабочее напряжение;

4. Линейная зависимость фототока от освещённости в широком диапазоне освещённостей.

5. Низкий уровень шумов;

6. Простота устройства.

Поэтому они широко применяются в устройствах автоматики, вычислительной и лазерной техники, волоконно-оптических линиях связи.

В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, современные фотокамеры, различные сенсорные устройства.

Например, инфракрасные фотодиоды применяются в пультах дистанционного управления, системах охраны, безопасности и автоматики.

Существуют рентгеновские фотодиоды, применяемые для регистрации ионизирующего излучения и частиц с высокой энергией. Одно из важных применений - в медицинских приборах, например в установках для проведения компьютерной томографии.

Выполнение работы

Задание 1. Измерение вольт-амперной характеристики фотодиода при отсутствии освещения (в темноте).

ХАРАКТЕРИСТИКИ ФОТОДИОДА

Основными характеристиками фотодиода являются: ВАХ, световая и спектральная.

Вольт-амперная характеристика . В общем случае (при любой полярности U) ток фотодиода описывается выражением (1). Это выражение представляет собой зависимость тока фотодиода I ф от напряжения на фотодиоде U при разных значениях потока излучения Ф, т.е. является уравнением семейства вольт-амперных характеристик фотодиода. Графики вольт-амперных характеристик приведены на рис. 1.7.

Рис. 1.7 ВАХ фотодиода.

Семейство вольт-амперных характеристик фотодиода расположено в квадрантах I, III и IV. Квадрант I – это нерабочая область для фотодиода: в этом квадранте к p-n переходу прикладывается прямое напряжение и диффузионная составляющая тока полностью подавляет фототок (I p - n >> I ф). Фотоуправление через диод становится невозможным.

Квадрант III – это фотодиодная область работы фотодиода. К p-n переходу прикладывается обратное напряжение. Следует подчеркнуть, что в рабочем диапазоне обратных напряжений фототок практически не зависит от обратного напряжения и сопротивления нагрузки. Вольт-амперная характеристика нагрузочного резистора R представляет собой прямую линию, уравнение которой имеет вид:

E обр - I ф · R = U,

где U обр – напряжение источника обратного напряжения; U – обратное напряжение на фотодиоде; I ф – фототок (ток нагрузки).

Фотодиод и нагрузочный фоторезистор соединены последовательно, т.е. через них протекает один и тот же ток I ф. Этот ток I ф можно определить по точке пересечения вольт-амперных характеристик фотодиода и нагрузочного резистора (рис 1.7 квадрант III) Таким образом, в фотодиодном режиме при заданном потоке излучения фотодиод является источником тока I ф по отношению к внешней цепи. Значение тока I ф от параметров внешней цепи (U обр, R) практически не зависит (Рис 1.7.).

Квадрант IV семейства вольт-амперных характеристик фотодиода соответствует фотогальваническому режиму работы фотодиода. Точки пересечения вольт-амперных характеристик с осью напряжения соответствуют значениям фото-ЭДС E ф или напряжениям холостого хода U хх (R н = ∞) при разных потоках Ф. У кремниевых фотодиодов фото-ЭДС 0,5-0,55 В. Точки пересечения вольт-амперных характеристик с осью токов соответствуют значениям токов короткого замыкания I кз (R н = 0). Промежуточные значения сопротивления нагрузки определяются линиями нагрузки, которые для разных значений R н выходят из начала координат под разным углом. При заданном значении тока по вольт-амперным характеристикам фотодиода можно выбрать оптимальный режим работы фотодиода в фотогальваническом режиме (Рис. 1.8). Под оптимальным режимом в данном случае понимают выбор такого сопротивления нагрузки, при котором в R н будет передаваться наибольшая электрическая мощность.

Рис.1.8. ВАХ фотодиода в фотогальваническом режиме.

Отимальному режиму соответствует для потока Ф1 линия нагрузки R 1 (площадь заштрихованногопрямоугольника с вершиной в точке А, где пересекаются линии Ф 1 и R 1 , будет наибольшей – рис.1.8). Для кремниевых фотодиодов при оптимальной нагрузке напряжение на фотодиоде U=0,35-0,4 В.

Световые (энергетические) характеристики фотодиода – это зависимость тока от светового потока I = f(Ф):

Рис. 1.9. Световая характеристика ФД.

В фотодиодном режиме энергетическая характеристика в рабочем диапазоне потоков излучений линейна.

Это говорит о том, что практически все фотоносители доходят до p-n перехода и принимают участие в образовании фототока, потери неосновных носителей на рекомбинацию не зависят от потока излучения.

В фотогальваническом режиме энергетические характеристики представляются зависимостями либо тока короткого замыкания I кз, либо фото-ЭДС E ф от потока излучения Ф. При больших потоках Ф закон изменения этих зависимостей существенно отклоняется от линейного (рис. 1.10).

Фотодиодный режим

Рис.1.10.Световые характеристики ФД

Для функции I кз = f(Ф) появление нелинейности связанно с ростом падения напряжения на объемном сопротивлении базы полупроводника. Снижение фото-ЭДС объясняется уменьшением высоты потенциального барьера при накоплении избыточного заряда электронов в n-области и дырок p-области.

Диодный режим имеет по сравнению с генераторным следующие преимущества:

· выходной ток в фотодиодном режиме не зависит от сопротивления нагрузки, в генераторном режиме максимальный входной ток может быть получен только при коротком замыкании в нагрузке.

· фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p-n перехода уменьшается).

Недостатком фотодиодного режима работы является зависимость темнового тока (обратного тока p-n перехода) от температуры.

Основными параметрами являются:

· темновой ток I т.

· рабочее напряжение U раб – напряжение, прикладываемое к диоду в фотопреобразовательном режиме.

· Интегральная чувствительность K ф.

Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями .

При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком .

Фотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.

КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а - схема включения, б - ВАХ фотодиода

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 - 30 мкА, у кремниевых 1 - 3 мкА.

Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора

Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры , в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.

Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.

Потапов Л. А.