DIY: Универсальный Ambilight для домашней мультимедиа системы — Атмосвет

  • 11.05.2019

Телевизоры с динамической подсветкой вокруг рамки дисплея - одна из фирменных фишек компании Philips. И в отличие от многих других она работает. Однако за всё приходится платить, и телевизоры с Ambilight и повышенным эффектом присутствия стоят дороже многих других моделей.

Российские разработчики предложили способ, который позволит оснастить динамической подсветкой и мониторы любого производителя. Для этого даже не придётся везти устройство в сервисный центр: потребуется только немного времени и усидчивости.

Вообще, подобную подсветку можно приобрести в виде радиодеталей и сконфигурировать самостоятельно. Но, как показывает практика, это практически сравнимо с готовыми вариантами от PaintPack.

Предлагается две основные модели: версия для монитора (30 светодиодов) и версия для телевизора (60 светодиодов). Есть и совсем простая - на 10 светодиодов, но она подходит только для самых маленьких мониторов.

Версия для телевизоров оборудована внешним блоком питания. Также в её пользу говорит большее количество светодиодов, что даёт большую площадь подсветки (будет светиться шире и выше, другими словами). Если подобные варианты не подходят по каким-либо соображениям, можно связаться с разработчиками: за небольшую доплату они предложат модифицированный вариант.

mindrunway.ru

PaintPack, по сути, представляет собой небольшой корпус, к которому с двух сторон подключаются съёмные светодиодные ленты. Коробочка с начинкой несёт на себе индикаторы и разъём питания, а также microUSB для соединения с ПК. Есть ещё мастер-разъём (проприетарный) для последовательного подключения двух устройств.

Корпус устройства размещается на задней панели телевизора или монитора. Затем прокладываются LED-ленты в соответствии с инструкцией, подключается питание и начинается колдовство. При соединении PaintPack с компьютером через USB-разъём необходимо установить драйверы и произвести настройку устройства в комплектной программе.


mysku.ru

Настройка производится при помощи пакета AmbiBox . Необходимо перейти в меню «Интеллектуальная подсветка», выбрать способ захвата экрана и один из предложенных в программе режимов работы:

  1. Статический фон - устанавливается любой цвет, регулируется свечение светодиодов.
  2. Цветомузыка - подсветка будет мигать в такт звучанию музыки. Цвет подсветки устанавливается на зелёно-жёлтый.
  3. Динамический фон - плавное перетекание одного цвета в другой.
  4. Захват экрана - основной режим работы.

В этом режиме возможен захват цвета из просматриваемых фильмов и игр. Цвет подсветки будет меняться в соответствии с изображением на экране, разделяясь на верхнюю, нижнюю и боковые зоны (каждая в отдельности).

Работает PaintPack немного медленнее, чем официальный аналог от Philips. Но с учётом разницы в стоимости и возможности модернизации любого устройства выбор очевиден.

В этом уроке мы научимся создавать свою собственную подсветку ambilight для телевизора своими руками с помощью Arduino Nano.

Имейте в виду, что Эмбилайт Ардуино будет работать только на ПК с программным обеспечением Bambilight (скачать библиотеку на GitHub).

Вам понадобятся следующие компоненты:

  • Индивидуально адресуемая светодиодная лента RGB
  • Макетная плата небольшого размера
  • Несколько кабелей
  • 12V DC адаптер питания
  • Двусторонний скотч
  • 4-5 Скрепки
  • Затяжки (стяжки) пластиковые для проводов

Шаг 2. Тестирование светодиодной ленты

Будет неприятно, если вы сначала установите ленту на ваш телевизор, но потом поймете, что один светодиод не работает и вам придется удалять ленту и начинать всё сначала.

Поэтому неплохо припаять временные провода к вашей светодиодной ленте и протестировать ее с помощью Arduino, адаптера питания и файла.ino (можно загрузить на следующих шагах). Загрузите.ino в свой Arduino. Здесь вам пока еще ничего не нужно настраивать. Вы должны увидеть несколько меняющихся цветов светодиодной ленты.

Шаг 3. Схема подключения

Вы можете подключить светодиодную ленту, используя изображение выше, представленное на этом шаге.

Наша светодиодная лента использует IC WS2811 для управления 3 светодиодами в отдельности.

Шаг 4. Установка ambilight на монитор/телевизор

Перед тем, как приклеить светодиодную ленту эмбилайт ардуино к задней панели монитора или телевизора, обязательно очистите поверхность как можно лучше. Чтобы избавиться от пыли лучше использовать волокнистую ткань.

Как только вы убедитесь, что поверхность чистая, вы можете измерить длину светодиодной ленты, удерживая ее рядом с вашим монитором и отрезая ее до нужного размера. Убедитесь, что полоса на противоположной стороне имеет одинаковую длину.

После того, как вы отрезали все отрезки в нужном размере, вы можете прикрепить их к задней панели монитора. Поскольку клей обычно не является лучшим вариантом, предлагаем использовать некоторые кусочки двустороннего скотча.

Важно!

Убедитесь, что стрелки на светодиодных полосах направлены вокруг вашего монитора! Если нет вам придется начать все заново!

Как только ленты на месте, вы сможете установить на тыльную сторону монитора. Не забудьте установить её в удобное место, потому что вам нужно будет подключить USB-кабель к компьютеру позже.

Шаг 5. Пайка всей электроники

Чтобы припаять светодиодную ленту мы использовали несколько скрепок, которые согнули и отрезали до соответствующего размера. После этого припаяли их к светодиодным полоскам, чтобы соединить их вместе. Для предотвращения коротких замыканий вы можете использовать некоторые изоляторы, но в нашем случае нам это не было нужно. Чтобы всё выглядело немного лучше, мы использовали маркер, чтобы придать скрепкам черный цвет.

Теперь подключите светодиодную ленту к Arduino, используя ту же схему, что и на шаге выше. Подключите USB-кабель, установите библиотеку FastLED (скачать на GitHub) и загрузите код, указанный на следующем шаге, в ваш Arduino. А далее вам останется только подключить адаптер питания, так как мы сделали всю проводку.

Шаг 6. Скетч Arduino Ambilight

Ниже вы можете скачать или скопировать код для нашей подсветки Ардуино Эмбилайт.

#include "FastLED.h" #define NUM_LEDS 38 #define LED_DATA_PIN 3 #define NUM_BYTES (NUM_LEDS*3) // 3 colors #define BRIGHTNESS 100 #define UPDATES_PER_SECOND 100 #define TIMEOUT 3000 #define MODE_ANIMATION 0 #define MODE_AMBILIGHT 1 uint8_t mode = MODE_ANIMATION; byte MESSAGE_PREAMBLE = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09 }; uint8_t PREAMBLE_LENGTH = 10; uint8_t current_preamble_position = 0; unsigned long last_serial_available = -1L; uint8_t led_counter = 0; uint8_t byte_counter = 0; CRGB leds; byte buffer; // Filler animation attributes CRGBPalette16 currentPalette = RainbowColors_p; TBlendType currentBlending = LINEARBLEND; uint8_t startIndex = 0; void setup() { Serial.begin(115200); FastLED.clear(true); FastLED.addLeds(leds, NUM_LEDS); FastLED.setBrightness(BRIGHTNESS); } void loop() { switch (mode) { case MODE_ANIMATION: fillLEDsFromPaletteColors(); break; case MODE_AMBILIGHT: processIncomingData(); break; } } void processIncomingData() { if (waitForPreamble(TIMEOUT)) { Serial.readBytes(buffer, NUM_BYTES); /* DEBUG for (int i = 0; i < NUM_BYTES; i++) { Serial.write((char)buffer[i]); } */ while (byte_counter < NUM_BYTES) { byte green = buffer; byte blue = buffer; byte red = buffer; leds = CRGB(red, green, blue); } FastLED.show(); byte_counter = 0; led_counter = 0; } else { mode = MODE_ANIMATION; } } bool waitForPreamble(int timeout) { last_serial_available = millis(); while (current_preamble_position < PREAMBLE_LENGTH) { if (Serial.available() > 0) { last_serial_available = millis(); if (Serial.read() == MESSAGE_PREAMBLE) { current_preamble_position++; } else { current_preamble_position = 0; } } if (millis() - last_serial_available > timeout) { return false; } } current_preamble_position = 0; return true; } void fillLEDsFromPaletteColors() { startIndex++; // speed uint8_t colorIndex = startIndex; for(int i = 0; i < NUM_LEDS; i++) { leds[i] = ColorFromPalette(currentPalette, colorIndex, BRIGHTNESS, currentBlending); colorIndex += 3; } FastLED.delay(1000 / UPDATES_PER_SECOND); if (Serial.available() > 0) { mode = MODE_AMBILIGHT; } }

Шаг 7. Настройка программного обеспечения

Откройте файл.ino и отредактируйте следующие строки, чтобы они соответствовали вашей ситуации:

#define NUM_LEDS 38 // количество светодиодов #define BRIGHTNESS 100 // яркость

Теперь загрузите скетч в Arduino. Ранее вы должны были скачать библиотеку Bambilight, но если вы этого не сделали вы можете скачать библиотеку на GitHub сейчас.

Откройте Bambilight.exe, расположенную в:

[Местоположение, где вы сохранили папку Bambilight] \ Bambilight-master \ Bambilight-master \ Binary

Теперь настройте всё по своему усмотрению и протестируйте, используя тестовое видео, например, такое:

Как только вы будете удовлетворены результатом, вы можете минимизировать программу Bambilight.

В целом у вас должен быть такой результат работы подсветки ambilight для телевизора, которую вы сделали своими руками с помощью Arduino. Возьмите попкорн, пепси и наслаждайтесь результатом.

Добрый день.

Для своей первой статьи я выбрал одну из самых успешных своих поделок: HDMI-passthrough аналог Ambilight от Philips, далее я будут называть эту композицию «Атмосвет».

Введение
В интернетах не очень сложно найти готовые/открытые решения и статьи как сделать Амбилайт для монитора/телевизора, если ты выводишь картинку с ПК. Но в моей мультимедиа системе вывод картинки на телевизор c ПК занимает только 5% времени использования, большее кол-во времени я играю с игровых консолей, а значит нужно было придумать что-то свое.
Исходные данные:
  • 60" Плазменный телевизор
  • HTPC на базе Asrock Vision 3D 137B
  • Xbox 360
Большинство устройств используют HDCP для воспроизведения контента даже во время игры.
Требование:
Необходимо обеспечить централизованную поддержку Атмосвета для всех устройств подключенных к телевизору.
Реализация
Я не буду рассказывать, как я прикреплял 4.5м светодиодную ленту к телевизору и что нужно сделать с Arduino, в качестве базы можно использовать .

Единственный нюанс:
Я заметил, что внизу экрана идут странные мерцания, сначала погрешил на сигнал, перековырял дефликер, изменил ресазинг картинки и еще кучу всего перекопал, стало лучше, но от мерцания не помогло. Стал наблюдать. Оказалось, что мерцание было только в конце ленты и то при ярких сценах. Взяв мультиметр, я замерил напряжение на начале, середине и конце ленты и угадал с причиной мерцаний: в начале ленты было 4.9В(да китайский БП дает напряжение с отклонением, это не существенно), в середине 4.5 в конце 4.22 - Падение напряжение слишком существенно, пришлось решить проблему просто - к середине ленты я подвел питание от бп, провод пустил за телевизором. Помогло мгновенно, какие либо мерцания прекратились вообще.

Захватываем картинку вебкамерой
Первая тестовая версия для обкатки идеи и её визуализации была выбрана через захват картинки через вебкамеру) выглядело это как-то так:

Низкая цветопередача и высокий latency показал, что эта реализация не может быть никак использована.

Захват картинки через HDMI

В процессе исследования возможных вариантов была выбрана следующая схема, как сама надежная и бюджетная:

  • Сигнал со всех устройств подается на 5in-1out HDMI свитч , который поддерживает HDCP
  • Выходной сигнал подается на 1in-2out HDMI splitter , который мало того, что поддерживает HDCP, так еще отключайте его на выходе(слава китайцам).
  • Один из выходных сигналов идет на телевизор
  • Другой выходной сигнал идет на HDMI to AV конвертер
  • S-Video сигнал идет на коробочку захвата от ICONBIT
  • Коробочка захвата подключается к вечно работающему HTCP по USB, который подключен к Arduino контроллеру ленте на телевизоре.

Изначально выглядит дико и как костыли, но:

  • Это работает.
  • Сумарно все это дело, заказывая из китая, мне обошлось тысяч в 3-4 тыс. рублей.

Почему я не использовал плату для HDMI захвата? Все просто: самый дешевый вариант и доступный - это Blackmagic Intensity Shuttle, но она не может работать с сигналом 1080p/60fps, только с 1080p/30fps - что не приемлемо, т.к. я не хотел понижать фреймрейт, чтобы можно было захватывать картинку. + это дело стоило в районе 10 тыc. рублей. - что не дешево при неизвестном результате.

Потери на конвертации HDMI to S-video несущественны для захвата цвета в разрешении 46х26 светодиодной подсветки.

Изначально для захвата S-video я пробовал использовать EasyCap (у него много китайских вариаций), но суть в том, что используемый там чип крайне убог, и с ним нельзя работать при помощи openCV.

Единственный минус - выходной сигнал S-Video содержал черные полосы по краям срезающий реальный контент(около 2-5%), выходную картинку с платы захвата я обрезал, чтобы удалить эти полосы, сама потеря изображения в тех областях на практике не сказалась на результате.

Софт
Для меня это была самая интересная часть, т.к. с железками я не очень люблю ковыряться.

Для захвата картинки я использовал openCV и в частности его.NET враппер emgu CV .

Я решил также применить несколько разных техник постобработки изображения и его подготовки, прежде чем отдавать список цветов на контроллер.

Процесс обработки фрейма
1. Получение захваченного фрейма
2. Кроп фрейма, для исключения черных полос
Тут все просто:
frame.ROI = new Rectangle(8, 8, frame.Width - 8, frame.Height - 18 - 8);
Обрезаем 8 пикселей сверху, 8 справа и 18 снизу.(слева полосы нет)
3. Ресайзим фрейм в разрешение подсветки, незачем нам таскать с собой здоровую картинку
Тоже ничего сложного, делаем это средствами openCV:
frame.Resize(LedWidth - 2*LedSideOverEdge,
LedHeight - LedBottomOverEdge - LedTopOverEdge,
INTER.CV_INTER_LINEAR);
Внимательный читатель заметит, обилие переменных. Дело в том, что у меня рамка телевизора достаточно большая, занимая 1 светодиод по бокам, 1 сверху и 3 снизу, поэтому ресайз делается на светодиоды, которые находятся непосредственно напротив дисплея, а углы мы уже дополняем потом. При ресайзинге мы как раз получаем усредненные цвета, которые должны будут иметь пиксели светодиодов.
4. Выполняем мапинг светодиодов с отреcайзенного фрейма
Ну тут тоже все просто, тупо проходим по каждой стороне и последовательно заполняем массив из 136 значений цветом светодиодов. Так вышло, что на текущий момент все остальные операции проще выполнять с массивом светодиодов, чем с фреймом, который тяжелее в обработке. Также на будущее я добавил параметр «глубины» захвата(кол-во пикселей от границы экрана, для усреднения цвета светодиода), но в конечном сетапе, оказалось лучше без неё.
5. Выполняем коррекцию цвета (баланс белого/цветовой баланс)
Стены за телевизором у меня из бруса, брус желтый, поэтому нужно компенсировать желтизну.
var blue = 255.0f/(255.0f + blueLevelFloat)*pixelBuffer[k];
var green = 255.0f/(255.0f + greenLevelFloat)*pixelBuffer;
var red = 255.0f/(255.0f + redLevelFloat)*pixelBuffer;
Вообще я изначально из исходников какого-то опенсорс редактора взял цветовой баланс, но он не менял белый(белый оставался белым), я поменял формулы немного, опечатался, и получил прям то, что нужно: если level компонента цвета отрицательный(я поинмаю как - этого цвета не хватает), то мы добавляем его интенсивность и наоборот. Для моих стен это получилось: RGB(-30,5,85).

В кореркции цвета я также выполняю выравнивание уровня черного(черный приходит где-то на уровне 13,13,13 по RGB), просто вычитая 13 из каждой компоненты.

6. Выполняем десатурацию (уменьшение насыщенности изображения)
В конечном сетапе, я не использую десатурацию, но может в определенный момент понадобится, фактически это делает цвета более «пастельными», как у Филипсовского амбилайта. Код приводить не буду, мы просто конвертим из RGB -> HSL, уменьшаем компоненту Saturation(насыщенность) и возвращаемся обратно уже в RGB.
7. Дефликер
Так уж выходит, что входное изображение «дрожит» - это следствие конвертации в аналоговый сигнал, как я полагаю. Я сначала пытался решить по своему, потом подсмотрел в исходники Defliker фильтра, используемом в VirtualDub, переписал его на C#(он был на С++), понял, что он не работает, ибо он такое впечталение, что борется с мерцаниями между кадрами, в итоге я совместил свое решение и этот дефликер получив что-то странное, но работающее лучше чем ожидалось. Изначальный дефликер работал только с интенсивностью всего фрейма, мне нужно по каждому светодиоду отдельно. Изначальный дефликер сравнивал изменение интенсивности как суммы, мне больше нравится сравнение длинны вектора цвета, Изначальный дефликер сравнивал дельту изменения интенсивности по сравнению с предыдущим кадром, это не подходит, и я переделал на среднюю величину интенсивности в пределах окна предыдущих кадров. И еще много других мелочей, в результате чего от начального дефликера мало что осталось.
Основная идея: исходя из средней интенсивности предыдущих кадров, выполнять модификацию текущего кадра, если его интенсивность не выше определенного порога (у меня этот порог в конечном сетапе 25), если порог преодолевается, то производится сброс окна, без модификации.
Немного модифицированный (для читаемости вне контекста) код моего дефликера:
Array.Copy(_leds, _ledsOld, _leds.Length); for (var i = 0; i < _leds.Length; i++) { double lumSum = 0; // Calculate the luminance of the current led. lumSum += _leds[i].R*_leds[i].R; lumSum += _leds[i].G*_leds[i].G; lumSum += _leds[i].B*_leds[i].B; lumSum = Math.Sqrt(lumSum); // Do led processing var avgLum = 0.0; for (var j = 0; j < LedLumWindow; j++) { avgLum += _lumData; } var avg = avgLum/LedLumWindow; var ledChange = false; if (_strengthcutoff < 256 && _lumData != 256 && Math.Abs((int) lumSum - avg) >= _strengthcutoff) { _lumData = 256; ledChange = true; } // Calculate the adjustment factor for the current led. var scale = 1.0; int r, g, b; if (ledChange) { for (var j = 0; j < LedLumWindow; j++) { _lumData = (int) lumSum; } } else { for (var j = 0; j < LedLumWindow - 1; j++) { _lumData = _lumData; } _lumData = (int) lumSum; if (lumSum > 0) { scale = 1.0f/((avg+lumSum)/2); var filt = 0.0f; for (var j = 0; j < LedLumWindow; j++) { filt += (float) _lumData/LedLumWindow; } scale *= filt; } // Adjust the current Led. r = _leds[i].R; g = _leds[i].G; b = _leds[i].B; // save source values var sr = r; var sg = g; var sb = b; var max = r; if (g > max) max = g; if (b > max) max = b; double s; if (scale*max > 255) s = 255.0/max; else s = scale; r = (int) (s*r); g = (int) (s*g); b = (int) (s*b); // keep highlight double k; if (sr > _lv) { k = (sr - _lv)/(double) (255 - _lv); r = (int) ((k*sr) + ((1.0 - k)*r)); } if (sg > _lv) { k = (sg - _lv)/(double) (255 - _lv); g = (int) ((k*sg) + ((1.0 - k)*g)); } if (sb > _lv) { k = (sb - _lv)/(double) (255 - _lv); b = (int) ((k*sb) + ((1.0 - k)*b)); } _leds[i] = Color.FromArgb(r, g, b); } /* Temporal softening phase. */ if (ledChange || _softening == 0) continue; var diffR = Math.Abs(_leds[i].R - _ledsOld[i].R); var diffG = Math.Abs(_leds[i].G - _ledsOld[i].G); var diffB = Math.Abs(_leds[i].B - _ledsOld[i].B); r = _leds[i].R; g = _leds[i].G; b = _leds[i].B; int sum; if (diffR < _softening) { if (diffR > (_softening >> 1)) { sum = _leds[i].R + _leds[i].R + _ledsOld[i].R; r = sum/3; } } if (diffG < _softening) { if (diffG > (_softening >> 1)) { sum = _leds[i].G + _leds[i].G + _ledsOld[i].G; g = sum/3; } } if (diffB < _softening) { if (diffB > (_softening >> 1)) { sum = _leds[i].B + _leds[i].B + _ledsOld[i].B; b = sum/3; } } _leds[i] = Color.FromArgb(r, g, b); }
Пусть _leds - массив светодиодов класса Color, _ledsOld - значения кадра до конвертации, LedLumWindow - ширина окна предыдущих кадров, для оценки среднего изменения интенсивности, в конечном сетапе окно у меня было 100, что примерно при 30кад/с равняется 3-секундам. _lumData - массив значения интенсивности предыдущих кадров.

В конечном итоге данный механизм дал еще приятные неожиданные последствия на картинку, сложно описать как это воспринимается визуально, но он делает темнее где надо и ярче где надо, словно динамический контраст. Цель дефликера в итоге получилась широкая, не только устранение мерцаний, но и общее уравновешивание выводимого цвета, как и по компонентам, так и по времени в пределах окна.

8. Сглаживание светодиодов по соседям.
Вообще в конечном сетапе, сглаживание мне не очень понравилось, и я его отключил, но в некоторых случаях может пригодиться. Тут мы просто усредняем цвет каждого светодиода по его соседним.
var smothDiameter = 2*_smoothRadius + 1; Array.Copy(_leds, _ledsOld, _leds.Length); for (var i = 0; i < _ledsOld.Length; i++) { var r = 0; var g = 0; var b = 0; for (var rad = -_smoothRadius; rad <= _smoothRadius; rad++) { var pos = i + rad; if (pos < 0) { pos = _ledsOld.Length + pos; } else if (pos > _ledsOld.Length - 1) { pos = pos - _ledsOld.Length; } r += _ledsOld.R; g += _ledsOld.G; b += _ledsOld.B; } _leds[i] = Color.FromArgb(r/smothDiameter, g/smothDiameter, b/smothDiameter); }
9. Сохраняем текущий стейт, чтобы тред отправки пакетов схватил и отправил его на контроллер подсветки.
Я умышленно разделил процесс обработки кадров и отправки пакетов на контроллер: пакеты отправляются раз в определенный интервал(у меня это 40мс), чтобы ардуино спела обработать предыдущий, ибо чаще чем 30мс она захлебывается, таким образом выходит, что мы не зависим напрямую от частоты кадров захвата и не мешаем тому процессу(а ведь отправка пакета тоже тратит время).
Немного про ардуино
Нельзя просто так взять и отправить по сериалу здоровенный пакет на ардуино, ибо онв ыйдет за пределы дефолтного буфера HardwareSerial и ты потеряешь его конец.
Решается это довольно просто: выставляем значение размера буфера HardwareSerial достаточного размера, чтобы влезал весь отправляемый пакет с массивом цветов, для меня это 410.
UI
Сам софт был реализован в виде win службы, чтобы настраивать все параметры + включать/отключать я сделал Web UI, который связывался с службой через WebService на службе. Итоговый интерфейс на экране мобильника выглядит так:
Результат
В итоге результат оправдал все ожидания, и теперь играя в игры на консолях я получаю еще больше погружения в атмосферу игры.

Как общий результат работы я записал видео с работой атмосвета по моей схеме:

Испытуемый образец 1: Pacific Rim, сцена битвы в Шанхае, этот фильм хорошо подходит для тестирования и демонстрации, много ярких сцен и вспышек, ударов молнии и т.д.:

Испытуемый образец 2: Какой-то ролик из MLP, слитый с ютуба, очень хорошо подходит для теста сцен с яркими цветами(мне понравились полосы), а также быстро сменяющихся сцен(под конец виде можно разглядеть последствия задержки, видных только на видео, при реальном просмотре этого не заметно, пробовал измерить задержку по видео - получилось 10-20мс):

И на последок стоит заметить про потребление ресурсов от HTPC:
HTPC у меня ASRock Vision 3D на i3, служба атмосвета отжирает 5-10% CPU и 32MB RAM.

Спасибо за внимание, очень надеюсь, что кому-нибудь моя статья поможет.

  • Tutorial

Ролики с демонстрацией пиксельной подсветки выглядят довольно эффектно - куча разноцветных всплохов, динамичные отблески смотрятся просто замечательно и выглядят более подвижными по сравнению с другими типами подобной подсветки.
Желание поработать с управляемыми огоньками с помощью arduino побудили меня соорудить такую систему. Как оказалось, это довольно простое мероприятие, на которое в сумме было потрачено всего несколько часов (собственно, само сооружение - 10 минут, остальное - софт). Детали процесса сборки и программирования я и изложу в этой статье. Софт, выводы и демо прилагаются.

Аппаратная часть

Для такой подсветки нам понадобятся следующие предметы и устройства:

Схема (если это гордое слово подходит для соединения двух изделий четырьмя проводами) приведена на рисунке:

Процесс сборки прост до безобразия. Детально описывать его нет смысла (по этой же причине нет фотографий готового «изделия» - ардуин с четырьмя проводами в интернете полно).

  1. Припаять всё, как показано на схеме.
  2. Присоединить провода к arduino, саму ардуинку соединить с PC, подключить блок питания.
  3. Залить в ардуино скетч (см. ниже), запустить исполняемый файл на компьютере (ссылки на софт также см. ниже), установить в программе нужный порт COM.
    Если вы пользуетесь Windows Vista/7 - нужно обязательно отключить Aero. Иначе скорость работы просто плачевная, какого-то решения проблемы низкой скорости захвата экрана при включенном Aero, как я понял, не существует.
  4. Убедиться, что всё работает, выключить.
    Следует упомянуть, что работает софт в 32-битном цвете only . Это можно легко поправить, но большого смысла, на мой взгляд, в такой правке нет.
  5. Прикрепить ленту на монитор. Пустить ленту нужно от левого нижнего угла по периметру по часовой стрелке (ЛН->ЛВ->ПВ->ПН->ЛН). Разрезать ничего не нужно, лента хорошо гнется практически в любом месте, так что проблем быть не должно. Для закрепления я использовал двухсторонний скотч - лента очень легкая и этого более чем достаточно.
На этом сборка закончена. Остаётся посчитать и задать количество пикселей по вертикали и горизонтали, и можно смотреть ролики, играть, etc. и радоваться.

Программная часть

Программная часть состоит из двух компонентов:
  • Скетч для Arduino;
  • Программа управления для PC.
Скетч для Arduino
В ардуино нужно залить код, приведенный ниже. Используется библиотека SmallUART (которая, впрочем, ничего особенно выдающегося не делает, при желании можно обойтись стандартными средствами).
/*** ARDUINO CODE FOR PIXEL LIGHT ***/ #include #include unsigned long lastTime; // Time strip was updated last time const unsigned long fadeTimeout = 3000; //////////////////////////////////////////////////////////// // void setup() { UART_Init(115200); SPI.begin(); SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); SPI.setClockDivider(SPI_CLOCK_DIV8); blackoutAll(); delay(1); lastTime = millis(); } //////////////////////////////////////////////////////////// // void loop() { uint8_t data; UART_SendByte("R"); // Byte "We"re ready" bool valid = false; data = uartRead(valid); if (valid) { uint16_t pix_num = data * 3; // Total following bytes for(uint16_t i=0; i < pix_num; i++) { data = uartRead(valid); if (!valid) break; SPI.transfer(data); // Transfer byte to SPI } lastTime = millis(); } if (millis() - lastTime > fadeTimeout) blackoutAll(); } //////////////////////////////////////////////////////////// // Turn off all possible 256 leds void blackoutAll() { for (int16_t i = 0; i < 768; i++) SPI.transfer(0); //погасить все пикселы ленты } //////////////////////////////////////////////////////////// // Read byte with timeout unsigned char uartRead(bool& valid) { uint8_t res = 0; valid = false; for (uint8_t i = 0; i < 255; ++i) { // Max timeout 256*10 if(UART_ReadByte(res)) { valid = true; break; } delayMicroseconds(10); } return res; }

Тут всё предельно просто:

  1. Посылаем сигнал, что мы готовы принять данные о подсветке;
  2. В течение небольшого промежутка времени ожидаем данные;
  3. Если данные пришли, то первый байт из этих данных - число диодов, которые обслуживаются. Умножаем на 3 (RGB) для того, чтобы узнать количество последующих байт;
  4. Переправляем принимаемые данные в ленту;
  5. Обновляем метку времени о последнем обновлении ленты (это нужно для тайм-аута и гашения всех пикселей ленты).
Программа для PC
Вроде бы есть готовые решения для этого, но то, что я видел, мне не понравилось категорически, и вообще это неспортивно, зря что ли ардуино используется. Поэтому, пожевывая бутерброд, левой ногой была написана программа для захвата областей экрана, обработки их и передачи нужных данных в ленту. Вся программа с потрохами доступна на гитхабе по адресу github.com/sergrt/pixie (за код не пинайте).
Используется Qt 5.0.1 - интереса ради, никаких особенных вещей, присущих именно этой версии, не задействовано, так что вполне хорошо заработает и на 4 последние правки сделаны с использованием новых классов, так что теперь с версией 4 исходный код несовместим. Поскольку большую часть своих развлечений я проделываю под Windows, проект сделан под неё - Visual Studio 2012, захват GDI или DirectX. Я честно пытался генерировать.pro файлы для Qt Creator, но этот процесс страшно глючит с новым VS Qt Add-in, в итоге сходу эти файлы не заработали, разбираться не стал. Но всё можно без проблем скомпилировать под linux, см. UPD #3.
Настройки программы
Основная настройка - это указание количества светодиодов по вертикали и горизонтали, а также задание размеров захвативаемых областей. В мои 22" поместилось 10 шт по вертикали и 17 по горизонтали:


Ограничение частоты кадров разумно установить около 30. Значение «0» используется для работы с максимально возможной скоростью.

Также нужно правильно указать порт для обмена с Arduino и скорость обмена. Скорость в скетче по умолчанию 115200:

Для настройки яркости, порога срабатывания и ограничителя сделана отдельная вкладка «Обработка». Параметры, там представленные, регулируются в реальном времени:

Для удобства работы с программой можно настроить на автозапуск захвата при старте, а также запускать свернутой в область уведомлений.

Немного про внутренности софта для интересующихся
Основная идея состоит в запуске потока, хватающего области по заданному механизму, с подстраиваемым fps, и передающий эти области на обработку и последующую передачу ленте. Области захватываются в соответствии с настройками (кто бы мог подумать), цвет пикселя определяется простым средним по трем каналам RGB соответствующей области экрана. Опционально можно включить (директивами препроцессора) преобразование в Lab и усреднение его силами, но этот кусок кода не оптимизирован никак (взят как есть с просторов интернета), тормозит, поэтому по умолчанию выключен. Более того, каких-то особенных преимуществ Lab не заметно в контексте данной задачи, так что это не повод печалиться.
Обработка областей осуществляется по вертикалям и горизонталям, а на ленту отсылается последовательность цветов, начиная с левого нижнего угла и далее по периметру по часовой стрелке (так, как мы наматывали ленту на монитор при сборке).
Захват DirectX по скорости примерно равен захвату с GDI, при том, что в первом случае захватывается экран целиком, а во втором - только нужные куски. Вероятно, тут есть запас по оптимизации.
Обильное использование memcpy связано в первую очередь со скоростью работы - все остальные методы показали себя медленнее в той или иной степени.

Выводы и впечатления

Запас яркости у ленты просто огромный, что хорошо - можно пользоваться даже при наличии других источников света. В полной темноте лучше подвигать бегунками и сделать помягче. Сама лента вполне может служить самостоятельным источником освещения, нужно лишь переделать скетч.
Полагаю, немалое значение имеет диагональ монитора/телевизора. Чем больше - тем лучше.
Также следует устанавливать экран так, чтобы поблизости не было поверхностей, от которых отражаются светодиоды (в моём случае это боковые поверхности колонок) - это не особо критично, но лучше, чтобы резко выделяющихся пикселей не было видно совсем - так как между ними изрядное расстояние, это не лучшим образом влияет на картинку.

Что понравилось:
Просмотр видео и игры с такой подсветкой субъективно разгружают глаза - пропадает жесткий фокус на картинке монитора. Ощущение усталости глаз наступает позже, если не переусердствовать с яркостью. Смотреть видео как минимум необычно, для полноты эффекта лучше делать это с некоторого расстояния.

Что не понравилось:
К самой системе подсветки как таковой особенных претензий нет, но, как уже говорилось, для полноты удовольствия нужно правильное окружение - отстутсвие бликующих поверхностей, равномерный цветовой фон за экраном, etc. В процессе эксплуатации выяснилось, что дизайнерские изыски моего монитора несколько мешают нормальной работе ленты - передняя панель выполнена из прозрачного пластика и выступает над задней крышкой по всему периметру на несколько миллиметров, особенно выдаваясь в нижней части. Поэтому несмотря на то, что лента закреплена относительно далеко, на гранях этой панели видны отдельные светодиоды. Полагаю, мало кто с таким столкнется, но всё же пусть информация будет доступна заранее.

Ниже - ролик, как это выглядит в динамике. Оператор приносит свои извинения за заваленный горизонт.

Дабы немного разбавить обзоры купальников- расскажу о своем опыте постройки динамической подсветки для телевизора. хватит делать из муськи хабр
Основной частью подсветки является все же светодиодная лента- так что именно её решил вынести в заголовок. хотя в постройке участвовало чуть более компонентов.

Если вы давно хотели прикрутить подсветку к своему неPhilips телевизору, но боялись попробовать- пробуйте. это проще чем кажется.

Для затравки небольшое видео результата.


В данный момент - подсветка работает еще прикльнее- в настройках выставил большую яркость и выше скорость обновления, теперь в боевиках или сценах в клубе (когда в кадре вспышки стробоскопа) - вся стена просто взрывается светом

Как делалось- достаточно просто:
+
+
+
Немного отваги=
Ambilight

Более подробно по пунктам:
1 Малинка у меня на тот момент уже была. Покупал там же на амазоне, но думаю тут происхождение роли не играет- плата унифицирована и покупать можно совершенно в любом месте- главное не советую брать БУ. у меня после некоторого количества времени работы на максимальной частоте без дополнительных радиаторов начала подглючивать. списываю на перегрев, но может быть и тупо брак производства. Малина крайне чувствительна к источнику питания- так что сразу запасайтесь нормальным БП с невысоким уровнем пульсаций… (и чтоб не просаживался под нагрузкой)
2 Собственно лента. Как работает думаю достаточно неплохо видно на видео. в самой ленте ничего особенного нет- отрезал куски чтоб хватило ровно на 3 грани телевизора. подпаял кусочками провода места сгиба (изначально делал соединение коннекторами, но быстро взбесило что торчат куски провода длиннющие- все порезал и спаял маленькими отрезками)
3 Гениальная программа гиперион. Устанавливается на малину (у меня в качестве ОС стоит мультимедийный OpenElec) по инструкции для идиотов. получилось даже у меня с первого раза. В процессе работы - тупо захватывает цветовые данные краев экрана, усредняет и шлет управляющие сигналы на светодиодную ленту. Лента перемигивается всеми цветами радуги, зрители в восторге. В процессе работы при проигрывании fullHD весом гигов в 30 дополнительная нагрузка на проц составляет 5-10 %. НА скорость не влияет никак.

Результат- превосходит самые смелые ожидания:
при плотности светодиодов 30т на метр- все стенка за телевиззором (удаление около 10-15 сантиметров) расцвечена в цвета экрана. визуально сцена раздвигается… ну на столько сколько есть этой самой стены. задержки в передаче -нет. по крайней мере невозможно отследить глазом. все плавно и четко. Для смартфона есть прикольная программа с помощью которой можно перевести подсветку в лаундж режим- выставить желаемый цвет\яркость, либо запустить один из предлагаемых паттернов (типа бегающего красного огонька, или просто радуги, или например цветовые переходы).
При отключении подсветки во время просмотра мультиков доча возмущается и требует вернуть все взад.)))

Ну и дабы соответствовать политике MySKU -отзыв собственно о детальках:
светодиодная лента - обозревалась много раз. мне досталась точно такая же. Очень хорошая. качество отличное. отображает если не изменяет память - 16 миллионов оттенков. точно не подсчитывал. требует дополнительного питания - повесил плюс минус на блок 5в 2А -на 2 метра хватает лихвой. думаю хватит и на 3 но гарантировать не буду. Управляющие контакты завел на GPIO малинки.

Малинка- одноплатный компьютер. Не обозревался только ленивым. Великолепная вещь как для освоения азов линукса, так и для постройки минималистичного и гибкого медиацентра. Для меня оказался идеальным вариантом: прокручивает любой доступный мне контент, работает в качестве приемника- показываетеля интернет ТВ, прикидывается получателем AirPlay сигнала когда хочется запустить что-то с телефона или ноутбука. Отличная вещь- 3 ватта и море удовольствия + поддержка HDMI CEC из коробки- управляется все с родного пульта телевизора.

Ну и напоследок еще видос вдогонку:

Пару дней назад решил поделать еще демовидосов- уже в новой квартире.

цвет стены- фисташковый, настройки не менял и не буду. так что цвета немного отдают в зеленый. мне нравится а на ваше мнение мне плевать)

Планирую купить +69 Добавить в избранное Обзор понравился +16 +48