Программирование arm stm32. Что нам понадобится для разработки помимо платы Discovery

  • 30.04.2019

Приветствую всех любителей программирования, микроконтроллеров, да и электроники в целом на нашем сайте! В этой статье немного расскажу о том, чем мы будем заниматься тут, а именно об учебном курсе по микроконтроллерам ARM.

Итак, для начала разберемся, что же нужно знать и уметь, чтобы начать изучать ARM’ы. А, в принципе, ничего супер сложного и фееричного 😉 Конечно, на контроллеры ARM люди обычно переходят, уже наигравшись с PIC’ами и AVR’ками, то есть в большинстве своем опытные разработчики. Но я постараюсь максимально подробно и понятно описывать все то, что мы будем разбирать, чтобы те, кто впервые решил попробовать себя в программировании микроконтроллеров, могли легко разобраться в материале. Кстати, если будут возникать какие-нибудь вопросы, или просто что-то будет работать не так, как задумывалось, пишите в комментарии, постараюсь разобраться и помочь.

Теперь перейдем к техническим вопросам) Несколько раз я уже упомянул название «Учебный курс ARM», но, по большому счету, это не совсем верно. Микроконтроллера ARM как такового не существует. Есть контроллер с ядром(!) ARM, а это, согласитесь, все-таки не одно и то же. Так вот, такие девайсы выпускает ряд фирм, среди которых особо выделяются, STMicroelectronics и NXP Semiconductors. Соответственно выпускают они контроллеры STM и LPC. Я остановил свой выбор на STM32, они мне просто больше понравились =) У STM очень подкупает, что разобравшись с любым МК из линейки STM32F10x, не возникнет никаких проблем и с любым другим. Одна линейка – один даташит. Кстати есть огромное количество как дорогих, так и не очень, отладочных плат с контроллерами STM32, что очень радует, хотя первое время будем отлаживать наши программы в симуляторе, чтобы оценить возможности контроллера, прежде чем покупать железо. Вот, на всякий случай, официальный сайт STMicroelectronics – .

Как то плавно выехали на тему компилятора, так что скажу пару слов об этом. Я, недолго думая, выбрал Keil, не в последнюю очередь из-за мощного встроенного симулятора. Можно и на UART там посмотреть, и на любой регистр, и даже логический анализатор имеется в наличии. Словом, у меня Keil оставил в основном только приятные впечатления, хотя есть и минусы, конечно, но не катастрофические. Так что можете смело качать Keil uvision4 с офф. сайта (). Правда есть одно НО – IDE платная, но доступен демо-режим с ограничением кода в 32кБ, которых нам пока с лихвой хватит. Кому этого мало есть огромное количество кряков для Keil’а 😉 Устанавливается все без проблем – пару раз тыкаем далее и все отлично ставится и работает без дополнительных танцев с бубном.

Собственно, вот и все, что я хотел тут рассказать, пора переходить от слов к делу, но это уже в следующей статье. Будем изучать программирование микроконтроллеров STM32 с нуля!

Данная статья, которая является еще одним "быстрым стартом" в освоении ARM-контроллеров, возможно поможет сделать первые шаги в освоении 32-битных контроллеров ARM на базе ядра Cortex-M3 - STM32F1xxx серии. Возможно данная статья (которых на эту тему появляется как грибов после дождя) станет для кого-то полезной.

Введение

Почему ARM?
1. Есть из чего выбрать (разными производителями сегодня выпускается более 240 ARM-контроллеров)
2. Низкая цена (например за 1$ можно получить 37хI / O, 16K Flash, 4K RAM, 2xUART, 10x12bitADC, 6x16bitPWM).

А начнем нашу работу с контроллеров фирмы ST Microelectronics. Контроллеры на основе ядра ARM Cortex-M3 характеризуются широким набором периферии, высоким уровнем рабочих характеристик, низкой цене
P.S. В самом начале создается впечатление, что ARM"ы это какие-то страшные (в пайке, разводке, программировании) существа. Но это только на первый взгляд:) и вы в этом сами убедитесь.

Итак, изучать ARMы будем на примере контроллеров STM32F1. Одновременно эта серия имеет несколько линеек:

  • Value line STM32F100 - 24 МГц CPU, motor control, CEC.
  • Access line STM32F101 - 36 МГц CPU, до 1 Mб Flash
  • USB access line STM32F102 - 48 МГц CPU with USB FS
  • Performance line STM32F103 - 72 МГц, до 1 Mб Flash, motor control, USB, CAN
  • Connectivity line STM32F105/107 - 72 МГц CPU, Ethernet MAC, CAN, USB 2.0 OTG

Также существует следующая классификация:

Контроллеры STM32 можно заставить загружаться с 3-х областей памяти (в зависимости от состояния ножек BOOT0 и BOOT1 при старте контроллера или после его сброса). Записать программу в память контроллера можно следующими способами:

1 способ:
Используя загрузчик (он уже записан в системную память) и USART1 (USART2 remaped): использует внутренний тактовый сигнал 8 МГц. Чтобы запустить встроенный загрузчик, зашитый в контроллер производителем, достаточно просто бросить на лапки контроллера TX1, RX1 сигнал с преобразователя RS232-3.3В (например на базе FT232RL) и выставить перед этим BOOT0 = 1 и BOOT1 = 0 жмем RESET и можем шить программу в контроллер. А зашивается она в программе Flash Loader Demonstartor от STM (для Windows).

PS. Если вы сидите под LINUX и не имеете отладочной платы типа дискавери, можно заливать прошивку в контроллер через всеми любимый rs-232 (собственно - через преобразователь rs-232-3,3В). Для этого нужно использовать python-скрипт (Ivan A-R) (для LINUX или MACOSX).
Для начала у вас должен быть установлен Python 2.6 версии и библиотека для работы с последовательным портом - PySerial library.
Теперь, чтобы запустить скрипт stmloader.py (из терминала, разумеется) нужно его немного подправить под свой компьютер: откроем его в текстовом редакторе.
Набираем в командной строке
~$ dmesg | grep tty
чтобы увидеть все последовательные порты ПК.
и после набора...
~$ setserial -g /dev/ttyS
мы узнаем путь к нашему 232-му порту. Если система ругается на setserial, установим его
~$ sudo apt-get install setserial
мы узнаем путь к нашему физическому порту (например, у меня - /dev/ttyS0). Теперь нужно записать этот путь в файл скрипта stm32loader.py вместо дефолтного «/dev/tty.usbserial-...». Набираем в терминале
~$ python stm32loader.py -h
...для вызова справки и заливаем прошивку в наш контроллер.

2 способ:
Через USB OTG, используя DFU-режим, требует внешнего кварца на 8 МГц, 14.7456 МГц или 25 МГц (этот загрузчик есть не у всех контроллерах с USB OTG надо внимательно смотреть на маркировку вашего контроллера)

3 способ:
JTAG/SWD. Ну и для тех, кто имеет демоплату типа Discovery или самопальный JTAG/SWD программатор, можно заливать код и уже отлаживать свой микроконтроллер этим способом. Для JTAG в микроконтроллере отведено 6 лапок (TRST, TDI, TMS, TCK, TDO, RST) + 2 на питание. SWD использует 4 сигнала (SWDIO, SWCLK SWO, RESET) и 2 на питание.

PS. В среде EAGLE я набросал несколько схем-заготовок для 48-ми, 64-х и 100-ногих контроллеров (папка eagle), а stm32loader содержит скрипт stm32loader.py

Недавно коллега меня подсадил на идею создания умного дома, я даже успел заказать себе десятки разных датчиков. Встал вопрос о выборе Микроконтроллера (далее МК) или платы. После некоторых поисков нашёл несколько вариантов. Среди них были и Arduino (включая его клоны, один из которых себе заказал ради того, чтобы просто побаловаться) и Launchpad , но всё это избыточно и громоздко (хотя в плане программирования гораздо проще, но тему холиваров поднимать не буду, у каждого свои вкусы). В итоге решил определяться не с готовой платой, а взять только МК и делать всё с нуля. В итоге выбирал между Atmel ATtiny (2313), Atmel ATmega (решил отказаться т.к. не смог найти за адекватные деньги), STM32 (Cortex на ядре ARM ). С тинькой я уже успел побаловаться, так что взял себе STM32VL-Discovery . Это можно назвать вступлением к циклу статей по STM32 . Оговорюсь сразу, автором большинства этих статей буду являться не я, т.к. сам только познаю, здесь я публикую их в первую очередь для себя, чтоб удобнее было искать если что-то забуду. И так поехали!

Общие сведения

Микроконтроллеры семейства STM32 содержат в своём составе до семи 16-разрядных портов ввода-вывода c именами от PORTA до PORTG. В конкретной модели микроконтроллера без исключений доступны все выводы портов, общее количество которых зависит от типа корпуса и оговорено в DataSheet на соответствующее подсемейство.

Для включения в работу порта x необходимо предварительно подключить его к шине APB2 установкой соответствующего бита IOPxEN в регистре разрешения тактирования периферийных блоков RCC_APB2ENR :

RCC->APB2ENR |= RCC_APB2ENR_IOPxEN; // Разрешить тактирование PORTx.

Управление портами STM32 осуществляется при помощи наборов из семи 32-разрядных регистров:

  • GPIOx_CRL, GPIOx_CRH – задают режимы работы каждого из битов порта в качестве входа или выхода, определяют конфигурацию входных и выходных каскадов.
  • GPIOx_IDR – входной регистр данных для чтения физического состояния выводов порта x.
  • GPIOx_ODR – выходной регистр осуществляет запись данных непосредственно в порт.
  • GPIOx_BSRR – регистр атомарного сброса и установки битов порта.
  • GPIOx_BSR – регистр сброса битов порта.
  • GPIOx_LCKR – регистр блокировки конфигурации выводов.

Режимы работы выводов GPIO

Режимы работы отдельных выводов определяются комбинацией битов MODEy и CNFy регистров GPIOx_CRL и GPIOx_CRH (здесь и далее: x-имя порта, y- номер бита порта).

GPIOx_CRL - регистр конфигурации выводов 0...7 порта x :

Структура регистра GPIOx_CRH аналогична структуре GPIOx_CRL и предназначена для управления режимами работы старших выводов порта (биты 8...15).

Биты MODEy указанных регистров определяют направление вывода и ограничение скорости переключения в режиме выхода:

  • MODEy = 00: Режим входа (состояние после сброса);
  • MODEy = 01: Режим выхода, максимальная скорость – 10МГц;
  • MODEy = 10: Режим выхода, максимальная скорость – 2МГц;
  • MODEy = 11: Режим выхода, максимальная скорость – 50МГц.

Биты CNF задают конфигурацию выходных каскадов соответствующих выводов:

в режиме входа:

  • CNFy = 00: Аналоговый вход;
  • CNFy = 01: Вход в третьем состоянии (состояние после сброса);
  • CNFy = 10: Вход с притягивающим резистором pull-up (если PxODR=1) или pull-down (если PxODR=0);
  • CNFy = 11: Зарезервировано.

в режиме выхода:

  • CNFy = 00: Двухтактный выход общего назначения;
  • CNFy = 01: Выход с открытым стоком общего назначения;
  • CNFy = 10: Двухтактный выход с альтернативной функцией;
  • CNFy = 11: Выход с открытым стоком с альтернативной функцией.

С целью повышения помехоустойчивости все входные буферы содержат в своём составе триггеры Шмидта. Часть выводов STM32 , снабженных защитными диодами, соединёнными с общей шиной и шиной питания, помечены в datasheet как FT (5V tolerant) - совместимые с напряжением 5 вольт.

Защита битов конфигурации GPIO

Для защиты битов в регистрах конфигурации от несанкционированной записи в STM32 предусмотрен регистр блокировки настроек GPIOx_LCKR
GPIOx_LCKR - регистр блокировки настроек вывода порта:

Для защиты настроек отдельного вывода порта необходимо установить соответствующий бит LCKy. После чего осуществить последовательную запись в разряд LCKK значений "1” - "0” - "1” и две операции чтения регистра LCKR , которые в случае успешной блокировки дадут для бита LCKK значения "0” и "1” . Защита настроечных битов сохранит своё действие до очередной перезагрузки микроконтроллера.

Файл определений для периферии микроконтроллеров STM32 stm32f10x.h определяет отдельные группы регистров, объединённые общим функциональным назначением (в том числе и GPIO ), как структуры языка Си, а сами регистры как элементы данной структуры. Например:

GPIOC->BSRR – регистр BSRR установки/сброса порта GPIOC.
Воспользуемся определениями из файла stm32f10x.h для иллюстрации работы с регистрами ввода-вывода микроконтроллера STM32F100RB установленного в стартовом наборе STM32VLDISCOVERY :

#include "stm32F10x.h" u32 tmp; int main (void) { RCC->APB2ENR |= RCC_APB2ENR_IOPCEN; // Разрешить тактирование PORTC. GPIOC->CRH |= GPIO_CRH_MODE8; // Вывод светодиода LED4 PC8 на выход. GPIOC->CRH &=~GPIO_CRH_CNF8; // Двухтактный выход на PC8. GPIOC->CRH |= GPIO_CRH_MODE9; // Вывод светодиода LED3 PC9 на выход. GPIOC->CRH &=~GPIO_CRH_CNF9; // Двухтактный выход на PC9. GPIOA->CRL&=~GPIO_CRL_MODE0; // Кнопка "USER" PA0 - на вход. // Заблокировать настройки выводов PC8, PC9. GPIOC->LCKR = GPIO_LCKR_LCK8|GPIO_LCKR_LCK9| GPIO_LCKR_LCKK; GPIOC->LCKR = GPIO_LCKR_LCK8|GPIO_LCKR_LCK9; GPIOC->LCKR = GPIO_LCKR_LCK8|GPIO_LCKR_LCK9| GPIO_LCKR_LCKK; tmp=GPIOC->LCKR; tmp=GPIOC->LCKR; }

Запись и чтение GPIO

Для записи и чтения портов предназначены входной GPIOx_IDR и выходной GPIOx_ODR регистры данных.

Запись в выходной регистр ODR порта настроенного на вывод осуществляет установку выходных уровней всех разрядов порта в соответствии с записываемым значением. Если вывод настроен как вход с подтягивающими резисторами, состояние соответствующего бита регистра ODR активирует подтяжку вывода к шине питания (pull-up, ODR=1) или общей шине микроконтроллера (pull-down, ODR=0).

Чтение регистра IDR возвращает значение состояния выводов микроконтроллера настроенных как входы:

// Если кнопка нажата (PA0=1), установить биты порта C, иначе сбросить. if (GPIOA->IDR & GPIO_IDR_IDR0) GPIOC->ODR=0xFFFF; else GPIOC->ODR=0x0000;

Сброс и установка битов порта

Для атомарного сброса и установки битов GPIO в микроконтроллерах STM32 предназначен регистр GPIOx_BSRR . Традиционный для архитектуры ARM способ управления битами регистров не требующий применения операции типа "чтение-модификация-запись” позволяет устанавливать и сбрасывать биты порта простой записью единицы в биты установки BS (BitSet) и сброса BR (BitReset) регистра BSRR . При этом запись в регистр нулевых битов не оказывает влияния на состояние соответствующих выводов.

GPIOx_BSRR – регистр сброса и установки битов порта:

GPIOC->BSRR=GPIO_BSRR_BS8|GPIO_BSRR_BR9; // Зажечь LED4 (PC8), погасить LED3. GPIOC->BSRR=GPIO_BSRR_BS9|GPIO_BSRR_BR8; // Зажечь LED3 (PC9), погасить LED4.

Альтернативные функции GPIO и их переназначение (remapping)
Практически все внешние цепи специального назначения STM32 (включая выводы для подключения кварцевых резонаторов, JTAG/SWD и так далее) могут быть разрешены на соответствующих выводах микроконтроллера, либо отключены от них для возможности их использования в качестве выводов общего назначения. Выбор альтернативной функции вывода осуществляется при помощи регистров с префиксом "AFIO ”_.
Помимо этого регистры AFIO _ позволяют выбирать несколько вариантов расположения специальных функций на выводах микроконтроллера. Это в частности относится к выводам коммуникационных интерфейсов, таймеров (регистры AFIO_MAPR ), выводам внешних прерываний (регистры AFIO_EXTICR ) и т. д.

Микроконтроллеры для котят

Всем Мяу, котаны:)

Как-то раз от меня ушла кошка:(Ну и чем валерьянку лопать, я решил заняться делом, так сказать «на благо Родине». Давно уж хотел цифровыми устройствами заняться, да времени не было (сами понимаете, то спать, то с кошкой по крышам гулять), а тут как раз время-то и появилось. Ну-с начнём..)

Всё как обычно начинается с выбора. Ну вроде выбор-то небольшой PIC, да AVR. Последние мне как-то больше приглянулись. Нужен был ещё и USB программатор за неимением других портов на компьютере, от цены которого у меня чуть хвост не отвалился. Ещё Arduino есть - зверёк такой. Его и программировать по USB можно. Ну, думаю, "то что доктор прописал". В селе нашем его только через интернет-магазин достать можно. Нашёл, где по-выгодней, чуть не купил и... ОПА! Смотрю - STM32VL-Discovery. Что за зверь такой? Хм, STM32.. Что-то слышал краем уха.. А от характеристик усы дыбом, честно!

А лап-то у неё сколько!

Итак, попорядку:

  • У Arduino 14 цифровых портов ввода/вывода и 6 аналоговых входов. У STM32VL-Discovery 45 цифровых входа/выхода 10 из которых по желанию превращаются в аналоговые входы.
  • У Arduino 32 Кб для хранения программы и 2 Кб ОЗУ. У STM32VL-Discovery 64 Кб для хранения программ и 8 Кб ОЗУ.
  • У Arduino тактовая частота 16 МГц у STM32VL-Discovery же 24 МГц.
  • Любой микроконтроллер STM32 можно заменить другим STM32, но с лучшими характеристиками, без изменения схемы
  • STM32 можно программировать без программатора по COM порту (об этом чуть позже)
  • Цена Arduino на момент написания статьи ~1300 рублей, STM32VL-Discovery ~600 рублей. Это ж дешевле более чем в 2 раза!

А что дальше? В STM32VL-Discovery есть встроенный программатор/отладчик, который лёгким движением лапы (снятием перемычек) может программировать и отлаживать (отладка очень уж вещь полезная, но об этом чуть позже) микроконтроллеры STM32 за пределами платы. С Arduino такое не прокатит. То есть используя STM32VL-Discovery мы и деньги экономим и получаем большую производительность и свободу творчества:)

Да и сами микроконтроллеры STM32 выглядят привлекательней остальных:

STM32F100C4T6B ATtiny24A-SSU PIC16F688-I/SL STM32F103RET6 ATmega1284P-PU PIC18F4550-I/PT
Средняя цена, руб 60 65 60 240 330 220
Тактовая частота, МГц 24 20 20 72 20 48
Flash память, Кбайт 16 2 4 512 128 16
RAM, Байт 4096 128 256 65536 16384 2048
USART, шт 2 0 0 5 2 0
SPI, шт 1 1 0 3 1 1
АЦП, шт 16x12Bit 8x10Bit 8x10Bit 16х12Bit 8x10Bit 13x10Bit
ЦАП, шт 1x12Bit 0 0 2х12Bit 0 0
Количество линий ввода/вывода, шт 37 12 12 51 32 35

А ещё STM32 32-х разрядные, а это означает возможность работы с 32-х битными данными за один такт. AVR и PIC этим не похвастаются.

Ну что, котаны, убедил? Тогда начнём курс молодого бойца цифровика!)

Как оно работает? Из чего состоит? Что умеет?

Как известно, все коты очень любознательные, а радиокоты особенно!

Микроконтроллер - это микросхема сочетающая в себе функции процессора, периферии, имеющая ОЗУ, flash память. Как компьютер, только меньше!

Проведём аналогию: компьютером управляет операционная система, а микроконтроллером «прошивка», которую пишете Вы; операционная система компьютера хранится на жёстком диске, «прошивка» микроконтроллера в его flash памяти; функции ОЗУ схожи - хранение изменяющихся данных во время выполнения программы. А ещё у МК есть различные периферийные устройства, такие как АЦП и ЦАП например.

МК общается с внешним миром при помощи лап на его корпусе (не таких как у котов, конечно, а металлических). Но не все из них управляются программой, есть выводы питания, вывод сброса, выводы питания периферии, вывод резервного питания. А те, которые управляются программой делятся на группы называемые «порты». Все эти управляемые выводы называются 2-мя буквами и цифрой. Например PA1: P - порт, А - порт «А», 1 - номер вывода этого порта.

В программе порты конфигурируются либо на вход, либо на выход, по вашему желанию.

Выводы порта настроенного на вход могут быть в разных режимах, для каждого вывода он может быть своим:

  • Цифровой вход - вход, значение которого (логическая 1 или 0) можно считывать программой. Если напяжение на входе 0, то значение равно 0, если на входе напяжение равное напрядению питания, то значение входа 1. Третьего не дано. Можно сделать с подтягивающим резистором либо к питанию, либо к массе
  • Аналоговый вход - вход значение которого можно считывать программой, но значений может быть много - целых 4096. А точнее от 0 если на входе напяжение 0 относительно минуса питания микроконтроллера до 4095, если на входе напряжение равное напряжению питания. Все эти преобразования делает АЦП - аналогово-цифровой преобразователь, при помощи его можно например измерять напряжение на терморезисторе и узнавать температуру или измерять напяжение на фоторезисторе и узнавать яркость попадающего на него света... Ну много чего можно придумать, если фантазия есть:) Если питать микроконтроллер от 3В, то 0В = 0, а 3В = 4096, значит 3/4096=0.000732421, т.е. при изменении напяжения на входе на 0.000732421В значение входа в программе меняется на 1. Не так-то всё и сложно, да? Идём дальше
  • Цифровой вход в режиме альтернативной функции - вход для работы с периферией. Например вход для таймера или вход для какого-нибудь интерфейса. Из программы значение этого входа считать нельзя. В программе можно например считать данные полученные по этому выводу каким-нибудь интерфейсом.

А у порта настроенного на выход выводы могут быть в таких режимах:

  • Выход. Просто выход. Обычный цифровой выход. На выводе либо напрядение питания (логическая 1) либо на выводе нет напряжения (логическая 0). Всё просто.
  • Выход в режиме альтернативной функции - выход управляемый периферией. Этим выходом нельзя управлять из программы, но программой можно заставить управлять этим выводом например интерфейс.

Но не все выводы можно назначать «как захочется». Для того, что бы узнать, что можно, а что нельзя нужно посмотреть документацию (таблица 4) или воспользоваться программой MicroXplorer.

Перед использованием порта его нужно сначала тактировать - подавать на него тактовые импульсы, т.к. изначально они не подаются для экономии энергии. Можно выбрать разную частоту тактирования - больше частота - быстрее работают входы или выходы этого порта, но и больше потребление энергии.

Ещё есть выводы BOOT 0 и BOOT 1 . Эти выводы не относятся к портам, они служат для управления загрузкой микроконтроллера. Если во время подачи питания на выводе BOOT 0 логический ноль (вывод соединен с общей точкой), то микроконтроллер выполняет программу загруженную во flash память, т.е. Вашу прошивку. Если во время подачи питания на выводе BOOT 0 логическая еденица (вывод соединен с питанием микроконтроллера), а на выводе BOOT 1 логический ноль, то микроконтроллер выполняет не Вашу прошивку, а записанный на заводе загрузчик. Запомните это! Вы будете часто пользоваться этим в процессе работы с микроконтроллерами STM32! Иногда загрузка записанного с завода загрузчика - единственный способ записать/изменить прошивку микроконтроллера. Это бывает например при конфигурировании в прошивке выводов, к которым подключается программатор или при прошивке микроконтроллера без использования программатора. Так что настоятельно рекомендую при проектировании печатной платы эти выводы (или хотя бы BOOT 0) распологать в удобном месте.

Вот разобрались:) Теперь знаем что такое микроконтроллер, из чего он состоит. Сейчас узнаем ещё о некоторых премудростях и перейдём к самому интересному - практике!

Программа в микроконтроллере выполняется пошагово. Один такт процессора - один шаг программы.

Например пусть перемигивается красная и зелёная лампочки, пока НЕ нажата кнопка. Длительность каждой лампы - 5 секунд. Вот алгоритм:

  1. Проверяем, на входе с кнопкой есть напряжение? (кнопка замыкает вывод микроконтроллера на + питания)
  2. Если нет напряжения, то загорается красная лампочка на 5 секунд, зелёная тухнет, если есть напряжение, то начинаем всё сначала
  3. Снова проверяем
  4. Если нет напряжение, то загорается зелёная лампочка на 5 секунд, красная тухнет, если есть напряжение, то начинаем всё сначала
  5. Начинаем сначала

СТОП! А если я нажму кнопку, пока горит лампочка? То ничего не произойдёт! Потому что программа выполняется пошагово, а шаг с проверкой нажатия кнопки находится в момент переключения лампочек.
Вот именно для таких случаев есть такая вещь, как прерывания

Прерывания дают возможность прервать выполнение основной программы. Сделать это можно или внешним событием (нажатие кнопки, отпускание кнопки приём данных и пр.) или внутренним (по таймеру или пришло время кормить кота например). Когда происходит это самое прерывание, то начинает выполняться подпрограмма. Подпрограммы могут быть разные для разных видов прерываний, эти подпрограммы называются обработчики прерывния.

Когда этот самый обработчик прерывания закончит свою работу, основная программа начинает выполняться с того места, где была прервана.

Встаём на лапы!

Ну, котята, пора вставать на лапы! Надеюсь у Вас уже есть отладочная плата? Или хотя бы микроконтроллер? Надеюсь есть:) А если нет, то бежим в магазин! (и желательно не за колбасой. хотя...) Какое же это учение без практики?

Отлично на первых порах иметь отладочную плату, например STM32VL-Discovery, но если жаба душит или всё-таки нехватает на колбасу, то можно обойтись и одним микроконтроллером и преобразователем интерфейсов RS-232 ->UART (напр. MAX3232) или USB ->UART (напр. FT232RL). В этом случае в 100 рублей можно вполне уложиться, но придётся делать печатную плату и паять минимум 48 выводов шириной 0,3 мм с зазором 0,2 мм. Я предупреждал.

Сначала нужно естественно прикошачить отладочную плату или контроллер к компьютеру.

Если у Вас отладочная плата:

С отладочной платой, конечно проще. Берём шнурок Mini-USB и соединяем плату с компьютером, все драйверы должны поставиться автоматически. Увидеть STMicroelectronics STLink dongle в диспетчере устройств - хороший знак! Ну а если что-то пошло не так и ничего не вышло - не надо царапать диван, нужно просто зайти сюда и установить STM32 ST-LINK utility .

Ну а если Вы счастливый обладатель компьютера под управлением Windows 8, то перед проведением вышеописанных действий нужно сделать так: Параметры -> Изменение параметров компьютера -> Общие -> Особые варианты загрузки и выбрать параметр Отключение проверки подписи драйверов .

Если у Вас микроконтроллер:

Если у Вас один микроконтроллер, то у Вас должны быть прямые лапы. Но я в Вас не сомневаюсь!

Перед подключением микроконтроллера к компьютеру его нужно припаять к печатной плате. Для этого кроме микроконтроллера и прямых лап нужна как минимум печатная плата. А тут уж Ваше творчество.

Рабочий минимум на схеме ниже:

Но это неинтересный минимум.

Добавьте светодиодов и кнопок (не забудьте про выводы BOOT), например так

А вот с пайкой этой блохи могут возникнуть проблемы. Но я надеюсь, не возникнут. Я накошачился паять её своим любимым советским 25 Вт паяльником с шириной жала в 3/4 ширины контроллера. У меня больше проблем с изготовлением печатной платы... ну тут уж у каждого своя технология.

И переходник нужно сделать на UART по документации к той микросхеме, которую купили.

Соединяем выводы TxD и RxD на печатной плате с выводами RxD и TxD соответственно переходника. Не забываем про общую точку и питание всего этого.

Выбор и установка ПО

Пользоваться мы будем средой разработки CooCox IDE , но это не просто так, а по нескольким причинам:

  • Во-первых это свободно распространяемое ПО. А это значит, что Ваша карма будет чиста
  • На мой взгляд (да и не только на мой) эта среда разработки удобнее остаальных
  • Позволяет использовать отладку
  • Много примеров, которые можно загружать в среду разработки (полезно для котят и не только)

Среда разработки - это программа для написания кода, компилятор, отладчик в одном. Удобненько:) Но если какому-то суровому Челябинскому коту удобнее писать код (в блокноте например), компилировать и прошивать разными программами - я не против, тогда Вам пригодится STM32 ST-LINK utilit для загрузки прошивки в микроконтроллер. Хозяин барин, как говорится.

Эта среда разработки основана на многим известном Eclipse.

  1. Идём сюда
  2. Тыкаем Download through CoCenter (Recommend)
  3. Вводим адрес эл.почты (можно от балды, он там «для галочки»)
  4. После загрузки устанавливаем этот самый CoCenter
  5. В первой строчке, где написано CooCox CoIDE тыкаем Download
  6. После того, как загрузка закончится, то вместо Download будет Install . Сюда и жмём
  7. Идём сюда
  8. Справа в колонке Download скачиваем файл который .exe. Устанавливаем его.
  9. Открываем сам CooCox CoIDE , вкладка Project , Select Toolchain Path .
  10. Указываем путь к файлу arm-none-eabi-gcc.exe (это мы установили в п.8, путь приблизительно такой: D:Program Files (x86)GNU Tools ARM Embedded4.7 2013q1bin)
  11. Снова открываем CoIDE , нажимаем View -> Configuration , открываем вкладку Debugger и делаем так [фото]
  12. Радуемся, потому что теперь мы можем написать программу и прошить её в микроконтроллер! Чем мы и займёмся.

Если у Вас вариант без отладочной платы/программатора, то для загрузки программы в МК понадобится программка Flash Loader Demonstrator которая находится

Находим общий язык

Перед тем, как писать свою первую программу нужно найти с МК общий язык. Вряд ли он будет учить наш язык, по этому придется выучить (а может просто вспомнить) язык на котором мы будем общаться с МК, это Си. Понадобятся нам только основы (состав программы, функции, операторы). Если язык этот знаете, то можете сразу перейти к пункту «Первая программа», ну а незнающих я введу в курс дела.

Проект состоит из файлов с расширениями .c и .h . В первых находятся функции во вторых названия используемых функций и константы например. Так уж заведено. Самый главный файл, в котором находится код программы main.c . Для использования различных функций нужно подключать библиотеки с этими функциями. Подключаются они записью #include "название_библиотеки" ну библиотеки естественно должны быть в проекте. Подключают их в самом начале файла.

Функции - это своеобразная часть программы. Вообще программа состоит из одной или нескольких функций. Функция имеет вид:

тип_возвращаемой_переменной имя_функции (тип_переменной)
{
Тело функции
}

В функцию можно отправить какую-нибудь переменную, фунция её обработает и вернёт какое-нибудь значение. Очень удобно использовать функцию для повторяющихся действий, чем писать постоянно один и тот же кусок кода, можно просто отправлять переменную в функцию и получать обратно обработанное значение.

Перед тем, как использовать функцию, её нужно объявить в самом начале файла. Делают это в таком виде:

тип_возвращаемой_переменной имя_функции (тип_переменной);

Ах, да, забыл самое главное! В конце каждой строки должна быть точка с запятой!

Если функция ничего не возвращает (например временная задержка, она просто тянет кота за хвост время), то тип указывают void .

При запуске, первой всегда выполняется функция main() .

Ну с функциями вроде разобрались, понимание придёт только с практикой.

Выше я упоминал тип переменной . Все переменные могут быть разных типов, вот основные:

  • INT - переменная этого типа может быть только целым числом от -2147483648 до 2147483647
  • FLOAT - переменная этого типа число с точностью до 7 разрядов от ±1,5*10-45 до ±3,4*1033
  • DOUBLE - число с точностью до 16 разрядов от ±5*10-324 до ±1,7*10306
  • ULONG - тоже целое число, но от 0 до 18446744073709551615
  • LONG - целое от -9223372036854775808 до 9223372036854775807
  • CHAR - один символ
  • BOOL - логическая переменная. Она может иметь только 2 значения: истина (true) или ложь (false)

Строку (слово, предложение) можно представить как массив из символов типа char. Например:

char stroka = "Слово";

Здесь квадратных скобках - количество символов в строке, «stroka» - название массива.

Перед использованием переменной её нужно обязательно объявить. (просто указать тип переменной и имя)

  • + - сложение.
  • - - вычитание.
  • * - умножение.
  • / - деление.
  • = - присвоение переменной значения.

Например выражение a=b+c значит присвоить переменной a значение суммы значений переменных b и c .

  • ++ - инкремент. Увеличение значения переменной на 1
  • -- - декремент. Уменьшение значения переменной на 1

Например выражение a++ значит увеличить значение переменной a на 1 (то же самое, что и a=a+1 )

  • == - сравнение, знак «равно». (НЕ ПУТАТЬ С ПРИСВОЕНИЕМ)
  • != - сравнение, знак «не равно».
  • < - сравнение, знак «меньше».
  • <= - сравнение, знак «меньше или равно».
  • > - сравнение, знак «больше».
  • >= - сравнение, знак «больше или равно».

Например выражение a становится истинным, если значение переменной a меньше значения переменной b и ложным, если значения равны или a больше b . Выражение a==b истинно если a равно b и ложно, если a не равно b , НО выражение a=b истинно всегда , потому что это не сравнение, это присвоение переменной a значения переменной b .

  • % - остаток от деления

Например если a=5 , b=3 , то значение выражения a%b будет равно 2 (т.к. 5/3=1 (ост.2))

  • << - побитовый сдвиг влево. Не вдаваясь в подробности значение выражения a< на языке Си будет равно выражению a*2 b
  • >> - побитовый сдвиг вправо. Выражение a>>b в программе равносильно выражению a/2 b
  • & - логическое И .
  • | - логическое ИЛИ .
  • ~ - инвертирование.

Чуть не забыл рассказать про циклы. Основные:

while(условие) {

тело цикла

Тело цикла (всё что в фигурных скобках) выполняется, когда условие истинно (пока условие не станет ложным).

for (начальное_значение; цикл_выполняется_до, шаг) {

тело цикла

Начальное_значение - начальное значение счётчика

Цикл_выполняется_до - до достижения какого значения выполняется цикл

Шаг - с каким шагом счетчик считает

Например

for (i=0; i<10, i++) {

тело цикла

Здесь начальное значение переменной i равно 0, цикл выполняется, пока значение переменной i меньше 10, при каждом выполнении цикла к переменной i прибавляется 1. Так же можно изменять значение переменной прямо в цикле.

if (условие){

тело 1

} else {

тело 2

В усовном переходе «тело 1» выполняется, если условие истинно и выполняется «тело 2», если условие ложно. Ещё есть такой вариант:

if (условие 1){

} else if (условие 2) {

В этом случае «тело 1» выполняется, если истинно «условие 1», «тело 2» выполняется, если истинно «условие 2». Таких условий может быть сколько угодно, так же может быть одно else.

Условия могут быть простыми и составными: простые - одно логическое выражение, а составное - несколько логических выражений соединённых знаком & (условия истинно, когда все условия соединённые этим знаком истинны) или | (условие истинно, если хотябы одно условие соединённое этим знаком истинно).

Ещё полезная вещь - комментарии. Помогут разобраться в забытом проекте:) или просто что бы что-то не забыть. Комментировать можно или после знаков // и до конца строки или начинаются знаками /* и заканчиваются */ , в таком случае комментарий может быть любое количество строк. На размер программы комментарии не влияют.

Ну вот, из основного вроде всё. На первое время хватит (до написания следующей части статьи)

Первая программа

Не будем отступать от традиций (а то мало ли) и начнём с Hello World. А по пути будем продолжать знакомиться с микроконтроллером и так сказать получать опыт.

Открываем среду разработки:

Нажимаем Browse in Repository

Выбираем ST

Потом мы увидим список подключаемых библиотек.

Для нашей простенькой программы нам понадобится: CMSIS core , CMSIS Boot , RCC , GPIO .

Библиотеки CMSIS core и CMSIS Boot - системные, их нужно подключать обязательно

Библиотека RCC для работы с системой тактирования

Библиотека GPIO для работы с портами ввода-вывода

Теперь слева в окне Project открываем файл main.c .

Сначала нужно подключить наши библиотеки (CMSIS подключать не нужно).

Идём в самое начало программы и добавляем строчки:

#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"

void Delay(int i) {
for (; i != 0; i--);
}

Так. Тут по порядку, функция ничего не возвращает, по этому void , название функции Delay , сразу объявляем переменную i типа int . В фигурных скобках тело функции - цикл for . Это его строчная запись. Начальное значение i мы не изменяем, цикл выполняется, пока i не равна нулю (как i становится равна нулю, цикл прекращается, функция «выключаеся»). С каждым выполнением тела цикла (тактом) переменная i уменьшается на 1. Т.е. суть цикла - просто повториться количество раз равное i . Пока выполняется цикл время идёт, происходит задержка.

Какой порт ответственный за какой вывод можно посмотреть в документации к МК:

Для тактирования порта С добавляем строчку:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC , ENABLE);

Добавляем в прогармму строчку:

GPIO_InitTypeDef GPIO_Init1;

Этой строчкой мы объявили структуру GPIO_InitTypeDef - дали ей название GPIO_Init для использования в нашей программе далее.

Какие в этой структуре можно настроить параметры и какой вид они имеют, смотрим всё в том же stm32f10x_gpio.h :

Теперь чтобы настроить параметры выводов при помощи структуры нужно написать её название, поставить точку и появится окошечко в котором эти параметры указаны

Дважды щёлкаем по одному из них, и он появляется в строке, далее ставим = (присвоить) и прописываем значение из stm32f10x_gpio.h

Так же поступаем со всеми параметрами. Не забываем точку с запятой в конце каждой строки!

GPIO_Init(GPIOC , &GPIO_Init);

Теперь будем мигать! Мигать мы будем циклично, сделаем зацикливание в цикле while. Условие цикла будет 1. Еденица - всегда истина, нуль - всегда ложь.. такова се ля ви..

Чтобы подать ток на вывод нужно установить бит, чтобы выключить вывод нужно сбросить бит. Как это делать - всё в том же stm32f10x_gpio.h :

Делаем так:

while (1){

GPIO_SetBits(GPIOC, GPIO_Pin_9);

Delay (200000);

GPIO_ResetBits(GPIOC, GPIO_Pin_9);

Delay (200000);

1 всегда истина, значит цикл будет зацикливание.

GPIO_SetBits - функция установки бита

GPIO_ResetBits - функция сброса бита

Delay (200000) - на этой строчке выполнение программы переходит в функцию Delay , в ту самую, в которой цикл for . Число 200000 в скобках - передаётся в эту функцию, как переменная i . (помним строчку void Delay(int i) ?) и выполняется тот самый цикл в этой функции, все 200000 раз. Это быстро:) после окончания работы цикла for функция D elay заканчивает свою работу, т.к. она void , то она ничего не возвращает и программа продолжает выполняется дальше.

Т.к. while зациклен, то включение светодиода, задержка, выключение светодиода, задержка будут выполняться бесконечно циклично. Пока не выключится питание или не произойдёт прерывание (об этом в следующей статье).

Ну вот, первая программа готова. Теперь нажимаем F7, программа компилируется.

Теперь если у Вас отладочная плата, то подключаем её при помощи USB шнурка и нажимаем Download Code To Flash . Радуемся выполненной работе и полученным знаниям:)

А если у Вас не отладочная плата, то подключите к своей плате переходник сделаный ранее, а переходник к COM-порту компьютера. Далее соедините вывод BOOT 0 c плюсом питания микроконтроллера и включите питание микроконтроллера. Тем самым микроконтроллер войдет в режим прошивки. Вообще процедура прошивки не сложная. Нужно просто следовать указаниям приложения Flash Loader Demonstrator . Сначала указываем номер COM-порта, через который у Вас подключен микроконтроллер и скорость. Для воизбежании сбоев, скорость лучше выбрать поменьше

Если программа увидела Ваш микроконтроллер, то появится окно, в котором будет написано, сколько у него памяти

После нажатия «Next», Вы увидите страницу с адресацией памяти. Она нам не понадобится.

Следующий шаг самый ответственный. Можно выбрать очистку памяти или прошивку

Для прошивки выбираем Download to device и в поле Download from file выбираем компилированный.hex файл, который находится в папке CooCox -> CooIDE -> workspace -> имя_проекта -> имя_проекта -> Debug -> Bin . После снова нажимаем «Next».

После того, как увидим такое окно:

Отключаем питание микроконтроллера, закрываем Flash Loader Demonstrator , отключаем переходник, и включаем микроконтроллер в обычном режиме (когда при включении вывод BOOT 0 соединен с минусом питания микроконтроллера). Радуемся!

Итак, теперь мы знаем, чем микроконтроллеры STM лучше других, знаем как работает микроконтроллер, умеем прошивать микроконтроллер в отладочной плате и в своей плате, знаем основы языка Си, которые нужны для программирования STM32, получили опыт работы с микроконтроллером (надеюсь положительный) и самое главное, теперь Вы можете воплотить свои идеи цифровых устройств в жизнь (и поведать о них, на нашем любимом РадиоКоте)! Пусть пока ещё простенькие, но всё навёрстывается с опытом. А я постараюсь в следующих статьях рассказать об АЦП, ЦАП, прерываниях, использовании отладки и других полезностях.

Как вам эта статья?

Те кто знаком с восьмибитными контроллерами типа AVR и PIC, наверняка хорошо знают о такой нужной вещи как встроенная EEPROM память. Она позволяет сохранять в нее некоторые данные и потом считывать их после выключения/включения контроллера. Энергонезависимая память одним словом. Перейдя на контроллеры STM32 я с удивлением обнаружил, что такой памяти у них просто нет! Но как потом оказалось, существует аж целых две альтернативы такой памяти. Первая - использовать backup домен. Это не совсем энергонезависимая память, чтоб информация не разрушалась после выключения основного питания, к определенному выводу контроллера должна быть подключена батарейка (вроде тех, которые стоят в материнских платах). Об этом я подробнее расскажу в следующей статье. А сейчас мы рассмотрим второй способ энергонезависимого хранения пользовательских данных - flash память контроллера.

ЦАП в STM32

ЦАП (или DAC по-буржуйски) это АЦП с точностью до наоборот - он преобразовывает некоторые цифровые данные в их аналоговое представление (читай напряжение). Говоря еще проще - ЦАП позволит нам относительно плавно изменять напряжение на ноге контроллера. Области практического применения: генерация звука, и сигналов произвольной формы. Можно прикрутить к контроллеру SD карточку и сделать wav плеер. Производительности контроллера точно хватит, ибо я делал такое даже на AVR, а у них кстати нет ни какого встроенного ЦАПа и я прикручивал внешний. Работать с ЦАПом очень легко, и в этой статейке я попробую рассказать все, что мне известно о ЦАПе в STM32. На картинке ниже - генерация синуса при помощи ЦАПа:

Генерация ШИМ в STM32

В предыдущей статье про базовые таймеры , мы в очередной раз мигали светодиодами, а в этот раз пойдем гораздо дальше и попробуем вкурить как заставить контроллер STM32 генерировать ШИМ. Для этого нам придётся использовать один из таймеров общего назначения, ведь именно у них есть всё что для этого нужно. Весь остальной функционал этих таймеров конечно впечатляет, но в моей практике он пока не пригодился. Хотя возможно, что в будущем мне пригодятся такие полезные фичи как функция подсчёта внешних импульсов и возможность аппаратно обрабатывать повороты энкодера. Но пока займемся ШИМом. Есть вот такая схема из контроллера, трех резисторов и RGB светодиода которым мы будем управлять. Управление заключается в том, чтоб плавно зажечь и погасить каждый цвет. Разумеется можно взять три разных светодиода если нет RGB.

Basic таймеры в STM32

Таймеры - это такая периферия контроллера STM32 позволяющая нам очень точно отсчитывать интервалы времени. Это пожалуй одна из самых важных и наиболее используемых функций, однако есть и другие. Следует начать с того, что в контроллерах STM32 существуют таймеры разной степени крутости. Самые простые это Basic timers . Они хороши тем, что очень просто настраиваются и управляются при помощи минимума регистров. Все что они умеют это отсчитывать временные интервалы и генерировать прерывания когда таймер дотикает до заданного значения. Следующая группа (general-purpose timers ) гораздо круче первой, они умеют генерировать ШИМ, умеют считать испульсы поступающие на определённые ножки, можно подключать энкодер итд. И самый крутой таймер это advanced-control timer , думаю что его я использовать не буду еще очень долго так как мне пока без надобности управлять трехфазным электродвигателем. Начать знакомство с таймерами следует с чего попроще, я решил взяться за Basic таймеры. Задача которую я себе поставил: Заставить таймер генерить прерывания каждую секунду.

Прерывания в STM32




Сайт компьютерной помощи

© Copyright 2024,
rzdoro.ru -Сайт компьютерной помощи

  • Рубрики
  • Программы
  • Microsoft Office
  • Интернет
  • Linux
  • Программы
  • Microsoft Office
  • Интернет
  • Linux