В чем заключается принцип действия электрогенератора. Из чего состоят генераторы переменного тока и как они работают

  • 19.07.2019

Генератор переменного тока или генератор постоянного тока представляют собой устройство выработки электричества путём преобразования механической энергии.

Как выглядит генератор переменного тока

Как работает генератор переменного тока? Ток генерируется в проводнике под действием магнитного поля. Удобно вырабатывать ток, если вращать прямоугольную электропроводную рамку в неподвижном поле или постоянного магнита внутри её.

При его вращении вокруг оси создаваемого им магнитного поля внутри рамки с угловой скоростью ω, вертикальные стороны контура будут активными, поскольку они пересекаются магнитными линиями. На совпадающие по направлению с магнитным полем горизонтальные стороны нет никакого действия. Поэтому в них ток не индуцируется.

Как выглядит генератор с магнитным ротором

ЭДС в рамке составит:

e = 2 B max lv sin ωt ,

B max – максимальная индукция, Тл;

l – высота рамки, м;

v – скорость рамки, м/с;

t – время, с.

Таким образом, от действия изменяющегося магнитного поля в проводнике индуцируется переменная ЭДС.

Для большого количества витков w , выразив формулу через максимальный поток F m , получим такое выражение:

e = wF m sin ω t .

Принцип работы генератора переменного тока другого типа основан на вращении токопроводящей рамки между двумя постоянными магнитами с противоположными полюсами. Простейший пример приведён на рисунке ниже. Появляющееся в ней напряжение снимается токосъёмными кольцами.

Генератор тока с постоянными магнитами

Применение устройства не очень распространено из-за нагрузки подвижных контактов большим током, проходящим через ротор. Конструкция первого приведённого варианта также их содержит, но через них подаётся значительно меньше постоянного тока через витки вращающегося электромагнита, а основная мощность снимается с неподвижной обмотки статора.

Синхронный генератор

Особенностью устройства является равенство между частотой f , наведённой в статоре ЭДС и частотой оборотов ротора ω :

ω = 60∙ f / p об/мин,

где p – количество пар полюсов в обмотке статора.

Синхронный генератор создаёт в обмотке статора ЭДС, мгновенное значение которой определяется из выражения:

e = 2 π B max lwDn sin ω t,

где l и D – длина и внутренний диаметр сердечника статора.

Синхронный генератор вырабатывает напряжение с синусоидальной характеристикой. При подключении к его выводам С 1 , С 2 , С 3 потребителей, через цепь протекает одно-, или трёхфазный ток, схема ниже.

Схема трехфазного синхронного генератора

От действия изменяющейся электрической нагрузки также изменяется механическая нагрузка. При этом увеличивается или снижается скорость вращения, в результате чего меняются напряжение и частота. Чтобы такое изменение не происходило, электрические характеристики автоматически поддерживают на заданном уровне через обратные связи по напряжению и току на роторной обмотке. Если ротор генератора выполнен из постоянного магнита, он имеет ограниченные возможности стабилизации электрических параметров.

Ротор принудительно приводится во вращение. На его обмотку подаётся индукционный ток. В статоре магнитное поле ротора, вращающееся с той же скоростью, индуцирует 3 переменные ЭДС со сдвигом по фазе.

Основной магнитный поток генератора создаётся от действия постоянного тока, проходящего через обмотку ротора. Питание может поступать от другого источника. Также распространён способ самовозбуждения, когда незначительная часть переменного тока забирается от обмотки статора и проходит через обмотку ротора после предварительного выпрямления. Процесс основан на остаточном магнетизме, которого достаточно для запуска генератора.

Основные устройства, вырабатывающие почти всю электроэнергию в мире – это синхронные гидро-, или турбогенераторы.

Асинхронный генератор

Устройство генератора переменного тока асинхронного типа отличается разницей частоты вращения ЭДС ω и ротора ω r . Она выражается через коэффициент, называемый скольжением:

s = (ω — ω r)/ ω.

В рабочем режиме магнитное поле тормозит вращение якоря и его частота ниже.

Асинхронный двигатель может работать в генераторном режиме, если ω r >ω, когда ток меняет направление и энергия отдаётся обратно в сеть. Здесь электромагнитный момент становится тормозящим. Применение этого свойства распространено при опусканиях грузов или на электротранспорте.

Асинхронный генератор выбирают, когда требования к электрическим параметрам не очень высокие. При наличии пусковых перегрузок предпочтительней будет синхронный генератор.

Устройство автомобильного генератора ничем не отличается от обычного, вырабатывающего электрический ток. Он вырабатывает переменный ток, который затем выпрямляется.

Как выглядит автомобильный генератор

Конструкция состоит из электромагнитного ротора, вращающегося в двух подшипниках с приводом через шкив. Обмотка у него всего одна, с подачей постоянного тока через 2 медных кольца и графитовые щётки.

Электронное реле-регулятор поддерживает стабильное напряжение 12В, не зависящее от скорости вращения.

Схема автомобильного генератора

Ток от АКБ поступает на обмотку ротора через регулятор напряжения. Момент вращения передаётся ему через шкив и в витках обмотки статора индуктируется ЭДС. Генерируемый трёхфазный ток выпрямляется диодами. Поддерживание постоянного выходного напряжения производится регулятором, управляющим током возбуждения.

Когда двигатель увеличивает обороты, ток возбуждения уменьшается, что способствует поддерживанию постоянного выходного напряжения.

Классический генератор

Конструкция содержит двигатель, работающий на жидком топливе, вращающий генератор. Обороты ротора должны быть стабильными, иначе качество выработки электричества снижается. При износе генератора скорость вращения становится ниже, что является существенным недостатком устройства.

Если нагрузка на генератор ниже номинальной, он будет частично работать вхолостую, съедая лишнее топливо.

Поэтому важно при его приобретении сделать точный расчёт требуемой мощности, чтобы он был правильно загружен. Нагрузка ниже 25% запрещается, так как это влияет на его долговечность. В паспортах указаны все возможные режимы работы, которые необходимо соблюдать.

Многие виды классических моделей имеют приемлемые цены, высокую надёжность и большой диапазон мощностей. Важно загружать его как следует и вовремя производить техосмотр. На рисунке ниже представлены модели бензинового и дизельного генераторов.

Классический генератор: а) – бензиновый генератор, б) – дизельный генератор

Дизельный генератор

Генератор приводит в действие двигатель, работающий на дизельном топливе. ДВС состоит из механической части, панели управления, системы подачи топлива, охлаждения и смазки. От мощности ДВС зависит мощность генератора. Если она требуется небольшая, например, на бытовые приборы, целесообразным является применение бензинового генератора. Дизельные генераторы применяются там, где нужна большая мощность.

ДВС применяются в большинстве с верхней установкой клапанов. Они компактней, надёжней, удобны в ремонте, меньше выделяют токсичных отходов.

Генератор предпочитают выбирать с корпусом из металла, поскольку пластик менее долговечный. Устройства без щёток долговечней, а вырабатываемое напряжение более стабильное.

Ёмкость топливного бака обеспечивает работу на одной заправке не более 7 часов. В стационарных установках применяется внешний бак с большим объёмом.

Бензогенератор

В качестве источника механической энергии наиболее распространён четырёхтактный карбюраторный двигатель. Большей частью применяются модели от 1 до 6 кВт. Есть устройства до 10 кВт, способные обеспечить на определённом уровне загородный дом. Цены бензиновых генераторов являются приемлемыми, а ресурс – вполне достаточным, хотя и меньшим, чем у дизельных.

Генератор выбирается в зависимости от нагрузок.

Для больших пусковых токов и при частом применении электросварки лучше использовать синхронный генератор. Если взять асинхронный генератор мощнее, он справится с пусковыми токами. Однако, здесь важно, чтобы он был загружен, иначе бензин будет расходоваться нерационально.

Инверторный генератор

Машины применяются там, где требуется электроэнергия высокого качества. Они могут работать непрерывно или промежутками. Объектами энергопотребления здесь являются учреждения, где не допускаются скачки напряжения.

Основой инверторного генератора является электронный блок, который состоит из выпрямителя, микропроцессора и преобразователя.

Блок-схема инверторного генератора

Выработка электроэнергии начинается так же, как и в классической модели. Сначала вырабатывается переменный ток, который затем выпрямляется и поступает на инвертор, где снова превращается в переменный, с нужными параметрами.

Типы инверторных генераторов отличаются по характеру выходного напряжения:

  • прямоугольный – самый дешёвый, способный питать только электроинструменты;
  • трапецеидальный импульс – подходит для многих приборов, за исключением чувствительной техники (средняя ценовая категория);
  • синусоидальное напряжение – стабильные характеристики, подходящие для всех электроприборов (самая высокая цена).

Достоинства инверторных генераторов:

  • небольшие габариты и вес;
  • малый расход топлива за счёт регулирования выработки количества электроэнергии, которое требуется потребителям в данный момент;
  • возможность кратковременной работы с перегрузкой.

Недостатками являются высокие цены, чувствительность к температурным изменениям электронной части, небольшая мощность. Кроме того, дорого обходится ремонт электронного блока.

Инверторная модель выбирается в следующих случаях:

  • устройство приобретается только в тех случаях, когда обычный генератор не подходит, поскольку цена на него высокая;
  • Оцените статью:

Человечество уже больше века использует электричество во всех сферах деятельности. Без него просто невозможно представить себе нормальной жизни. С помощью специальных машин механическая энергия преобразуется в переменный или постоянный ток. Чтобы лучше понять, как это происходит, необходимо разобраться, из чего состоит генератор и как он работает.

Превращение механической энергии в электрическую

В основе работы любого генератора лежит принцип магнитной индукции . Первые электрические машины появились во второй половине XIX века. Их изобретателями стали Майкл Фарадей и Ипполит Пикси. В 1886 году прошла публичная демонстрация альтернатора - устройства, способного вырабатывать ток из механического движения.

Первый трехфазный генератор переменного тока разработал россиянин Доливо-Добровольский. Он же в 1903 году сооружает самую первую на Земле электростанцию промышленного значения, ставшую источником питания для элеватора.

Простейшая схема генератора переменного тока представляет собой проволочную катушку, совершающую вращение в магнитном поле. Альтернативный вариант - когда катушка остаётся недвижима, а её пересекает магнитное поле. В обоих случаях будет вырабатываться электрическая энергия. Пока продолжается движение, в проводнике вырабатывается переменный ток. Генераторы применяются для выработки тока во всем мире. Они являются частью глобальной системы электроснабжения Земного шара.

То как устроен генератор, зависит от его назначения, и возможны различные модификации. Однако существуют две основные составляющие:

  1. Ротор - подвижный элемент, изготовленный из цельного железа.
  2. Статор - неподвижный, он собирается из изолированных железных листов. Внутри на нём есть пазы, в которых проходит проволочная обмотка.

Чтобы получить наибольшую магнитную индукцию, расстояние между этими частями агрегата должно быть как можно меньшим. Обмотка возбуждения, находящаяся на роторе, питается через систему щёток.


Выделяются два типа конструкции:

  • с вращающимся якорем и неподвижным магнитным полем;
  • магнитное поле вращается, а якорь остаётся на месте.

Наибольшее применение получили машины с подвижными магнитными полюсами. Гораздо удобнее снимать электричество со статора, нежели с ротора. В целом генератор построен так же, как электродвигатель.

Классификация и виды агрегатов

Агрегаты для преобразования механической энергии в электрическую имеют сходную конструкцию. Они могут различаться принципом действия генератора и обмотки возбуждения:

По конструкции:

  • явно выраженные полюса;
  • не выраженные.

По способу соединения обмоток:

В зависимости от количества фаз:

  • однофазные;
  • двухфазные;
  • трехфазные.

Агрегаты постоянного тока устроены таким образом, что механизм для съёма энергии состоит из двух изолированных полуколец, на каждое из которых поступает заряд определённого потенциала. На выходе получается пульсирующий ток одной направленности.

Синхронные генераторы имеют якорь с обмоткой, на которую подаётся постоянный ток. Регулируя его величину, можно изменять силу магнитного поля и контролировать напряжение на выходе. В асинхронных нет обмотки, вместо этого используется эффект намагничивания.

Основные сферы применения

Стоит помнить о том, что обычное электричество в розетках появляется благодаря работе огромных генераторов переменного тока на тепловых электростанциях. Сфера использования этих электрических машин включает в себя все виды деятельности человека:

  • используются в качестве резервного источника энергии на объектах, где нельзя допускать перебоев электроснабжения;
  • незаменимы в местах, где отсутствуют линии электропередачи;
  • бо́льшая часть транспортных средств снабжена генератором, он вырабатывает электричество для бортовой сети;
  • питание установок для гидролиза;
  • промышленность;
  • на атомных и гидроэлектростанциях.

В последнее время всё большую популярность набирают бытовые агрегаты для выработки электроэнергии. Они отличаются компактными размерами и малым потреблением топлива. Могут работать на бензине и на дизеле. Применяются в походных условиях, на даче или как аварийный источник питания.

Изобретение способа получения электричества из механического движения имело эпохальное значение для развития современной цивилизации. Окружающий мир полон загадок, ответы на которые неизвестны, но, возможно, людей ждут и другие важные открытия, способные изменить жизнь.

Тот, кто незнаком с генераторами, объясняем, что это агрегат, в котором из одного вида энергии получается другая. А, точнее, из механической электрическая. При этом эти приборы могут генерировать как ток постоянный, так и ток переменный. До середины двадцатого века использовались в основном генераторы постоянного тока. Это были аппараты больших размеров, которые работали не очень хорошо. Появление на рынке диодов полупроводникового типа позволило изобрести трехфазный генератор переменного тока. Именно диоды позволяют выпрямить переменный ток.

Принцип работы

В основе работы трехфазного генератора лежит закон Фарадея – закон электромагнитной индукции, который гласит, что электродвижущая сила будет обязательно индуцироваться во вращающейся прямоугольной рамке, которая установлена между двумя магнитами. При этом делается оговорка, что магниты будут создавать вращающееся магнитное поле. Направление вращения и рамки, и магнитного поля обязательно совпадают. Но электродвижущая сила будет возникать и в том случае, если рамка останется неподвижной, а внутри нее вращать магнит.

Чтобы разобраться, как работает генератор, обратите внимание на рисунок ниже. Это простейшая схема его работы.

Здесь хорошо видны магниты с разными полюсами, рамка, вал и токосъемные кольца, с помощью которых производится отвод тока.

Конечно, это просто схема, хотя лабораторные генераторы так и создавались. На практике же обычные магниты заменяют электромагнитами. Последние – это медная обмотка или катушки индуктивности. Когда по ним проходит электрический ток, образуется необходимое магнитное поле. Такие генераторы установлены во всех автомобилях (это для примера), чтобы их запустить, под капотом устанавливается аккумулятор, то есть, источник постоянного тока. Некоторые модели генераторов запускаются по принципу самовозбуждения или при помощи маломощных генераторов.


Разновидности

В основе классификации заложен принцип действия, поэтому эти агрегаты переменного тока делятся на два класса:

  • Асинхронные. Это самые надежные в работе, небольших размеров и веса, простых по конструкции генераторы. Они прекрасно справляются с перегрузками и коротким замыканием. Правда, необходимо учитывать, что данный вид сразу же выходит из строя, если на него будет действовать большая перегрузка. К примеру, пусковой ток электрооборудования. Поэтому стоит учитывать этот факт, для чего придется приобретать генератор мощностью большей раза в три или четыре, чем потребляемая мощность оборудования при запуске.
  • Синхронные. А вот этот вид легко справляется с краткосрочными нагрузками. Такой генератор может выдержать перегруз раз в пять или шесть. Правда, высокой надежностью он не отличается по сравнению с асинхронным вариантов, к тому же он является обладателем больших размеров и массы.

Конечно, в данном разделении лежит принцип работы агрегата. Но есть и другие критерии.

  • Однофазный.
  • Двухфазный.
  • Трехфазный.
  • Многофазный (обычно шесть фаз).
  • Сварочный.
  • Линейный.
  • Индукционный.
  • Стационарный.
  • Переносной.

Устройство трехфазного генератора

В принципе, устройство трехфазного генератора переменного тока достаточно простое. Это корпус с двумя крышками с противоположных сторон. В каждой из них проделаны отверстия для вентиляции. В крышках устроены ниши под подшипники, в которых вращается вал. На передний конец вала устанавливается передаточный элемент. К примеру, на автомобильном генераторе установлен шкив, с помощью которого вращение передается от двигателя внутреннего сгорания на генератор. На противоположном конце вала производится передача электрического тока, ведь вал в этом случае выступает как электромагнит с одной обмоткой.

Передача производится через графитовые щетки и токосъемные кольца (они из меди). Щетки соединены с электрорегулятором (по сути, это обычное реле), который регулирует подачу напряжение 12 вольт с требуемыми отклонениями. Самое важное, что реле не повышает и не понижает напряжение в зависимости от скорости вращения самого вала.

Так вот если говорить о трехфазных генераторах переменного тока, то это три вот таких однофазных. Только трехфазный агрегат имеет обмотку не на роторе (валу), а в статоре. И таких обмоток три, которые сдвинуты относительно друг друга по фазе. Вал, как и в первой конструкции, выполняет функции электромагнита, который питается через контакты скользящего типа постоянным током.

Вращение вала создает в обмотках магнитное поле. Электродвижущая сила начинает индуцироваться, когда происходит пересечение магнитного поля обмоток с ротором. А так как обмотки располагаются на статоре симметрично, то есть, через каждые 120º, то соответственно и электродвижущая сила будет иметь одинаковое амплитудное значение.


Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.



В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ? , который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Электрогенератор – один из составляющих элементов автономной электростанции , а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии . Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.

Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток . Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях , так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.