Как работает выпрямитель. Что получается после выпрямления

  • 08.09.2019

Основными характеристиками выпрямителей являются:

Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств.

Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.

Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.

Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.

Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.

Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различаюткоэффициент пульсаций на входе фильтра (p0 %) икоэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.

Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

Выпрямители, применяемые для однофазной бытовой сети выполняются по 3 основным схемам: однополупериодной, двухполупериодной с нулевой точкой (или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Герца”),. Для многофазных промышленных сетей применяются две разновидности схем: Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей. Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.

Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе (вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.

Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку.

На рисунке 1 представлена простейшая схема выпрямления. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой.


Рисунок 1 - Однофазный однополупериодный выпрямитель: а) схема - диод открыт, б) схема - диод закрыт, в) временные диаграммы работы

Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал (рис. 1, а). При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр (рис. 1, б).

Т.о. на нагрузке выделяется только одна полуволна напряжения вторичной обмотки. Ток в нагрузке протекает только в одном направлении и представляет собой выпрямленный ток, хотя носит пульсирующий характер (рис. 1, в). Такую форму напряжения (тока) называют постоянно-импульсная.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения.

Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка (рис. 2). Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 - отрицательным полюсом.


Рисунок 2 - Однофазный мостовой выпрямитель: а) схема - выпрямление положительной полуволны, б) выпрямление отрицательной полуволны, в) временные диаграммы работы

Полярность напряжения во вторичной обмотке меняется с частотой питающей сети. Диоды в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 проводят ток диоды VD2, VD3, а к диодам VD1, VD4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 ток протекает через диоды VD1, VD4, а диоды VD2, VD3 закрыты. Ток в нагрузке проходит все время в одном направлении.

Схема является двухполупериодной (двухтактной), т.к. на нагрузке выделяется оба полупериода сетевого напряжения Uн = 0,9U2, коэффициент пульсаций - 0,67.

спользования мостовой схемы включения диодов позволяет для выпрямления двух полупериодов использовать однофазный трансформатор. Кроме того, обратное напряжение, прикладываемое к диоду в 2 раза меньше.

Питание постоянным током потребителей средней и большой мощности производится от , применение которых снижает загрузку диодов по току и уменьшает коэффициент пульсаций.

Схема состоит из шести диодов, которые разделены на две группы (рис. 2.61, а): катодную - диоды VD1, VD3, VD5 и анодную VD2, VD4, VD6. Нагрузка подключается между точками соединения катодов и анодов диодов, т.е. к диагонали выпрямленного моста. Схема подключается к трехфазной сети.


Рисунок 3 - Трехфазный мостовой выпрямитель: а) схема, б) временные диаграммы работы

В каждый момент времени ток нагрузки протекает через два диода. В катодной группе в течение каждой трети периода работает диод с наиболее высоким потенциалом анода (рис. 3, б). В анодной группе в данную часть периода работает тот диод, у которого катод имеет наиболее отрицательный потенциал. Каждый из диодов работает в течение одной трети периода. Коэффициент пульсаций данной схемы составляет всего 0,057.

Управляемыми выпрямителями - выпрямители, которые совместно с выпрямление переменного напряжения (тока) обеспечивают регулирование величины выпрямленного напряжения (тока).

Управляемые выпрямители применяют для регулирования частоты вращения двигателей постоянного тока, яркости свечения ламп накаливания, при зарядке аккумуляторных батарей и т.п.

Схемы управляемых выпрямителей строятся на тиристорах и основаны на управлении моментом открытия тиристоров.

На рисунке 4,а представлена схема однофазного управляемого выпрямителя. Для возможности выпрямления двух полуволн сетевого напряжения используется трансформатор с двухфазной вторичной обмоткой, в которой формируется два напряжения с противоположными фазами. В каждую фазу включается тиристор. Положительный полупериод напряжения U2 выпрямляет тиристор VS1, отрицательный – VS2.

Схема управления СУ формирует импульсы для открывания тиристоров. Время подачи открывающих импульсов определяет, какая часть полуволны выделяется на нагрузке. Тиристор отпирается при наличии положительного напряжения на аноде и открывающего импульса на управляющем электроде.

Если импульс приходит в момент времени t0 (рис. 4,б) тиристор открыт в течении всего полупериода и на нагрузке максимальное напряжение, если в моменты времени t1, t2, t3, то только часть сетевого напряжения выделяется в нагрузке.

Рисунок 4 - Однофазный выпрямитель: а) схема, б) временные диаграммы работы

Угол задержки, отсчитываемый от момента естественного отпирания тиристора, выраженный в градусах, называется углом управления или регулирования и обозначается буквой α. Изменяя угол α (сдвиг по фазе управляющих импульсов относительно напряжения на анодах тиристоров), мы изменяться время открытого состояния тиристоров и соответственно выпрямленное напряжение на нагрузке.

Содержание:

В современном многообразии электрических приборов как бытового назначения, так и для иных задач большинство содержит выпрямитель. Это связано с их непрерывным усложнением в связи с увеличением функциональности. А для многофункциональности необходима электроника, потребляющая постоянный ток. Его обеспечивает источник питания. В нем всегда расположен выпрямитель. Далее расскажем об этом устройстве более подробно.

Какими были первые выпрямители

Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.

Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.

А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей - электролитических.

Механическое выпрямление напряжения

Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.

Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени.

Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя. При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя.

Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения. Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.

Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует. Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время.

Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.

Это устройство работает без коммутации. Однако оно было изобретено только после появления достаточно чистого алюминия. Известно, что этот металл образует тонкую пленку прочного окисла на своей поверхности. Окись алюминия - это почти изолятор. Если погрузить алюминиевую пластину в определенный раствор и подать на нее отрицательный потенциал, пленка разрушится. При этом ток в растворе должен исходить из погруженной рядом железной пластины - анода.

Пленка окиси алюминия моментально растворится в растворе, например, фосфорнокислого натрия. Поэтому поверхность катода получится из чистого алюминия. А ток будет беспрепятственно течь между погруженными электродами. Но как только полярность электродов сменится на противоположную, поверхность алюминиевой пластины моментально окислится. Пленка с большим сопротивлением не будет пропускать электрический ток.

Энергетические характеристики электролитического выпрямителя зависят от объема сосуда, а также от размеров и числа пластин. Пластина из чистого алюминия работоспособна длительное время. Вывести из строя такой выпрямитель можно только механическим разрушением. От увеличения тока он «застрахован» свойствами электролита. Слишком высокое напряжение просто не будет выпрямляться. Но при его возвращении к номинальной величине этот выпрямитель продолжит работу. Он просто не убиваем.

Ламповые варианты

Такие механические и электролитические выпрямляющие устройства просуществовали несколько десятилетий до того времени, как появились электронные лампы. Но и они были ограничены потерями электроэнергии. Хотя и не связанными с коммутацией. Дело в том, что для работы лампы необходим предварительно созданный запас электронов.

А его не научились получать в лампах иначе, как раскаляя нить накала. Вот и получалось, что, несмотря на быстродействие, обычная лампа-диод расходовала слишком много электроэнергии на выпрямление напряжения. Но со временем была изобретена мощная ртутная лампа - ртутный выпрямитель. Она отличалась тем, что в ней возникал управляемый электрический разряд в парах ртути. Разряд существовал только на одной полуволне напряжения.

Это позволило довести мощность выпрямителя до значений, приемлемых для промышленного использования. И на основе ртутных выпрямителей были построены первые ЛЭП, работающие при постоянном напряжении. А во всех остальных электроприборах так и применялись электронные лампы-диоды. В 30-е годы ХХ века появились первые полупроводниковые выпрямители на основе селена. Они так и назывались - «селеновые выпрямители».

Однако характеристики этих выпрямителей оставляли желать лучшего. Поэтому поиски более эффективных технических решений продолжались и завершились появлением полупроводникового диода. Но его преимущества тоже относительны. Температура полупроводника не может превышать 130–150 градусов Цельсия. По этой причине все предшествующие виды выпрямителей имеют свою нишу для условий с высокой температурой и радиацией. При остальных условиях эксплуатации применяются диодные выпрямители.

Полупроводниковые схемы

Любой выпрямитель - это схема. Она включает в себя вторичную обмотку трансформатора, выпрямляющий элемент, электрический фильтр и нагрузку. При этом существует возможность получать умножение напряжения. Выпрямленное напряжение - это сумма постоянного и переменного напряжений. Переменная составляющая - это нежелательная компонента, которую уменьшают тем или иным способом. Но поскольку используются полуволны переменного напряжения, иначе быть не может.

Влияние переменной составляющей оценивается коэффициентом пульсации.

Его можно уменьшить двумя способами:

  • улучшая эффективность электрического фильтра;
  • улучшая параметры выпрямляемого переменного напряжения.

Простейший выпрямитель однополупериодный. Он отсекает одну из полуволн переменного напряжения. Поэтому коэффициент пульсаций в такой схеме получается самым большим. Но если выпрямляется трехфазное напряжение с одним диодом в каждой фазе, а также одним и тем же фильтром, получится в три раза меньший коэффициент пульсаций. Однако наилучшими характеристиками обладают двухполупериодные выпрямители.

Использовать обе полуволны переменного напряжения можно двумя способами:

  • по схеме моста;
  • по схеме со средней точкой обмотки (схема Миткевича).

Сравним обе эти схемы для одного и того же значения выпрямленного напряжения. В схеме моста используется меньше витков вторичной обмотки трансформатора, что является преимуществом. Но при этом в однофазном выпрямительном мосте необходимы четыре диода. В схеме со средней точкой необходимо в два раза больше витков вторичной обмотки со средней точкой, что является недостатком. Еще один недостаток этой схемы - необходимость симметрии частей обмотки относительно средней точки.

Асимметрия будет дополнительным источником пульсаций. Но зато в этой схеме нужны только два диода, что является преимуществом. При выпрямлении на диоде существует напряжение. Его величина почти не изменяется в зависимости от силы тока, протекающего через этот диод. Поэтому мощность, рассеиваемая на полупроводниковом диоде, растет по мере увеличения силы выпрямленного тока. Это весьма ощутимо при большой силе тока, и поэтому полупроводниковые диоды размещаются на охлаждающих радиаторах и при необходимости обдуваются.

При выпрямлении тока большой силы два диода схемы со средней точкой будут экономичнее и компактнее в сравнении с четырьмя диодами выпрямительного моста. Схемы выпрямителей в свое время не появились из ниоткуда. Их изобрели инженеры. Поэтому схемы выпрямителей в литературе иногда называются в связи с именами своих первооткрывателей. Мостовая схема именуется как «полный мост Гретца». Схема со средней точкой - «выпрямитель Миткевича».

Полупроводниковые диоды вместе с конденсаторами позволяют создавать схемы, в которых конденсаторы за полпериода заряжаются и за полпериода разряжаются в нагрузку. При этом напряжения, которые на них накапливаются, суммируются. Таким путем можно создавать схемы для умножения напряжения. Наиболее простая и эффективная схема выпрямителя, который удвоит напряжение, содержит два диода и два конденсатора. Ее называют схемой Латура-Делона. Ее аналогом является схема Гренашера.


Создавая необходимое число ячеек, содержащих конденсаторы и диоды, можно получить любое напряжение, кратное их числу. Схема, соответствующая этому решению, показана далее. В ней каждая из ячеек содержит конденсатор и диод.

В статье были подробно рассмотрены лишь некоторые виды выпрямителей, имеющие наиболее широкое использование.

Делая выбор того или иного устройства, необходимо руководствоваться параметрами напряжения нагрузки. Только таким путем получается эффективное выпрямление напряжения.

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и . Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Устройство и структура выпрямителя

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Блок вентилей, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.


Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U 2 влияет величина напряжения на выходе выпрямительного моста U н .

Трансформатор способен выполнить гальваническую развязку частоты f 1 с сетью питания U 1 , I 1 , и нагрузочную цепь с U н, I н одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Блок вентилей

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В вентильном блоке применяются чаще всего элементы в .

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде , симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам. Рассмотрим основные признаки разделения выпрямителей.

По мощности на выходе:

  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.

По фазности сети питания:

  • 1-фазные.
  • 3-фазные.

По количеству импульсов одного полюса выпрямленного напряжения U 2 за один период:

  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).

По типу управления вентилями выпрямители делятся на:

  • Управляемые . В схеме применяются , тиристоры.
  • Неуправляемые . Используются .

Выпрямители разделяют для следующих видов нагрузки:

  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.

Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:

  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где I d , U d , — средние величина выпрямленного тока и напряжения, I 1 , U 1 — рабочая первичная величина тока и напряжения, I 2 , U 2 – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления

Рассмотрим схемы для устройств выпрямления напряжения отдельно для 1-фазных и 3-фазных выпрямителей.

Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток i d под воздействием ЭДС вторичной обмотки (е 2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток i vd , а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя u d всегда ниже ЭДС обмотки е 2 , из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля U обрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину I d , так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод .

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети - 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 - 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения - тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК . Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов - общий (как правило катод). По виду сдвоенный диод очень похож на транзистор .

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост . Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop - V F ). Для обычных выпрямительных диодов оно может быть 1 - 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x V F , т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор - смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U ). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с