Методы модуляции. Виды модуляции принимаемого сигнала

  • 28.08.2019
6. Виды модуляции. Введение в специальность

6. Виды модуляции

Принципы передачи сигналов электросвязи

Перенос сигнала из одной точки пространства в другую осуществляет система электросвязи. Электрический сигнал является, по сути, формой представления сообщения для передачи его системой электросвязи.

Источник сообщения (рис.6.1) формирует сообщение а(t), которое с помощью специальных устройств преобразуется в электрический сигнал s(t). При передаче речи такое преобразование выполняет микрофон, при передаче изображения – электронно-лучевая трубка, при передаче телеграммы – передающая часть телеграфного аппарата.

Чтобы передать сигнал в системе электросвязи, нужно воспользоваться каким-либо переносчиком. В качестве переносчика естественно использовать те материальные объекты, которые имеют свойство перемещаться в пространстве, например, электромагнитное поле в проводах (проводная связь), в открытом пространстве (радиосвязь), световой луч (оптическая связь). На рис. 6.2 показано использование шкалы частот и волн различных типов для различных видов связи.

Таким образом, в пункте передачи (рис.6.1) первичный сигнал s(t) необходимо преобразовать в сигнал v(t), удобный для его передачи по соответствующей среде распространения. В пункте приема выполняется обратное преобразование. В отдельных случаях (например, когда средой распространения является пара физических проводов, как в городской телефонной связи) указанное преобразование сигнала может отсутствовать.


Доставленный в пункт приема сигнал должен быть снова преобразован в сообщение (например, с помощью телефона или громкоговорителя при передаче речи, электронно-лучевой трубки при передаче изображения, приемной части телеграфного аппарата при передаче телеграммы) и затем передан получателю.

Передача информации всегда сопровождается неизбежным действием помех и искажений. Это приводит к тому, что сигнал на выходе системы электросвязи и принятое сообщение могут в какой-то мере отличаться от сигнала на входе s(t) и переданного сообщения a(t). Степень соответствия принятого сообщения переданному называют верностью передачи информации.

Для различных сообщений качество их передачи оценивается по-разному. Принятое телефонное сообщение должно быть достаточно разборчивым, абонент должен быть узнаваемым. Для телевизионного сообщения существует стандарт (хорошо известная всем телезрителям таблица на экране телевизора), по которому оценивается качество принятого изображения.

Количественной оценкой верности передачи дискретных сообщений служит отношение числа ошибочно принятых элементов сообщения к числу переданных элементов – частость ошибок (или коэффициент ошибок).

Амплитудная модуляция

Обычно в качестве переносчика используют гармоническое колебание высокой частоты – несущее колебание. Процесс преобразования первичного сигнала заключается в изменении одного или нескольких параметров несущего колебания по закону изменения первичного сигнала (т.е. в наделении несущего колебания признаками первичного сигнала) и называется модуляцией.

Запишем гармоническое колебание, выбранное в качестве несущего, в следующем виде:

Это колебание полностью характеризуется тремя параметрами: амплитудой V, частотой w и начальной фазой j. Модуляцию можно осуществить изменением любого из трех параметров по закону передаваемого сигнала.

Изменение во времени амплитуды несущего колебания пропорционально первичному сигналу s(t), т.е. V(t) = V + kAM s(t), где kAM – коэффициент пропорциональности, называется амплитудной модуляцией (АМ).

Несущее колебание с модулированной по закону первичного сигнала амплитудой равно: v(t) = V(t)cos(wt + j). Если в качестве первичного сигнала использовать то же гармоническое колебание (но с более низкой частотой W) s(t) = ScosWt, то модулированное колебание запишется в виде (для упрощения взято j = 0): v(t) = (V + kAMScosWt)coswt.

Вынесем за скобки V и обозначим DV = kAMS и МАМ = = DV/V. Тогда

Параметр МАМ = DV/V называется глубиной амплитудной модуляции. При МАМ = 0 модуляции нет и v(t) = v0(t), т.е. получаем немодулированное несущее колебание (2.1). Обычно амплитуда несущего выбирается больше амплитуды первичного сигнала, так что МАМ 1.

На рис. 6.3 показана форма передаваемого сигнала (а), несущего колебания до модуляции (б) и модулированного по амплитуде несущего колебания (в).

Произведя в (6.2) перемножение, получим, что амплитудно-модулированное колебание

состоит из суммы трех гармонических составляющих с частотами w, w + W и w – W и амплитудами соответственно V, MAMV/2 и MAMV/2. Таким образом, спектр амплитудно-модулированного колебания (или АМ-колебания) состоит из частоты несущего колебания и двух боковых частот, симметричных относительно несущей, с одинаковыми амплитудами (рис. 6.4, б). Спектр первичного сигнала s(t) приведен на рис. 6.4, а.

Если первичный сигнал сложный и его спектр ограничен частотами и (рис. 6.4, в), то спектр АМ-колебания будет состоять из несущего колебания и двух боковых полос, симметричных относительно несущей (рис. 6.4, г).

Анализ энергетических соотношений показывает, что основная мощность АМ колебания заключена в несущем колебании, которое не содержит полезной информации. Нижняя и верхняя боковые полосы несут одинаковую информацию и имеют более низкую мощность.

Угловая модуляция

Можно изменять во времени пропорционально первичному сигналу s(t) не амплитуду, а частоту несущего колебания:

где – коэффициент пропорциональности; величина – называется девиацией частоты (фактически это максимальное отклонение частоты модулированного сигнала от частоты несущего колебания).

Такой вид модуляции называется частотной модуляцией. На рис. 6.5 показано изменение частоты несущего колебания при частотной модуляции.

При изменении фазы несущего колебания получим фазовую модуляцию

где – коэффициент пропорциональности; – индекс фазовой модуляции.

Между частотной и фазовой модуляцией существует тесная связь. Представим несущее колебание в виде

где j – начальная фаза колебания, а Y(t) – его полная фаза. Между фазой Y(t) и частотой w существует связь:

. (6.6)

Подставим в (6.6) выражение (6.3) для w(t) при частотной модуляции:

Величина называется индексом частотной модуляции.

Частотно-модулированное колебание запишется в виде:

Фазо-модулированное колебание с учетом (6.4) для j(t) следующее:

Из сравнения (6.7) и (6.8) следует, что по внешнему виду сигнала v(t) трудно различить, какая модуляция применена – частотная или фазовая. Часто оба эти вида модуляции называют угловой модуляцией, а МЧМ и МФМ – индексами угловой модуляции.

Несущее колебание, подвергнутое угловой модуляции (6.7) или (6.8), можно представить в виде суммы гармонических колебаний:

Здесь М – индекс угловой модуляции, принимающий значение МЧМ при ЧМ и МФМ при ФМ. Амплитуды гармоник в этом выражении определяются некоторыми коэффициентами, значения которых при различных аргументах приводятся в специальных справочных таблицах. Чем больше М, тем шире спектр модулированного колебания.

Таким образом, спектр модулированной несущей при угловой модуляции даже при гармоническом первичном сигнале s(t) состоит из бесконечного числа дискретных составляющих, образующих нижнюю и верхнюю боковые полосы спектра, симметричные относительно несущей частоты и имеющие одинаковые амплитуды (рис. 6.6).

В случае, если первичный сигнал s(t) имеет форму, отличную от синусоидальной, и занимает полосу частот от до , то спектр модулированного колебания при угловой модуляции будет иметь еще более сложный вид.

Иногда отдельно рассматривают модуляцию гармонического несущего колебания по амплитуде, частоте или фазе дискретными первичными сигналами s(t), например телеграфными или передачи данных. На рис. 6.7 показан дискретный первичный сигнал (а), несущее колебание, модулированное по амплитуде (б), частоте (в) и фазе (г).

Модуляцию гармонического несущего колебания первичным сигналом s(t) называют непрерывной, так как в качестве переносчика выбран непрерывный периодический сигнал .

Сравнение различных видов непрерывной модуляции позволяет выявить их особенности. При амплитудной модуляции ширина спектра модулированного сигнала, как правило, значительно меньше, чем при угловой модуляции (частотной и фазовой). Таким образом, налицо экономия частотного спектра: для амплитудно-модулированных сигналов можно отводить при передаче более узкую полосу частот. Как будет показано дальше, это особенно важно при построении многоканальных систем передачи.

Импульсная модуляция

Часто в качестве переносчика используют периодическую последовательность сравнительно узких импульсов. Последовательность прямоугольных импульсов одного знака характеризуется параметрами (рис. 6.8): амплитудой импульсов V; длительностью (шириной) импульсов ; частотой следования (или тактовой частотой) , где Т – период следования импульсов (); положением (фазой) импульсов относительно тактовых (отсчетных) точек. Отношение называется скважностью импульса.

По закону передаваемого первичного сигнала можно изменять (модулировать) любой из перечисленных параметров импульсной последовательности. При этом модуляция называется импульсной.

В зависимости от того, какой параметр модулируется первичным сигналом s(t), различают: амплитудно-импульсную модуляцию (АИМ), когда по закону передаваемого сигнала (рис. 6.8, а) изменяется амплитуда импульсов (см. рис. 6.8, б); широтно-импульсную модуляцию (ШИМ), когда изменяется ширина импульсов (рис. 6.8, в); частотно-импульсную модуляцию (ЧИМ) – изменяется частота следования импульсов (см. рис. 6.8, г); фазо-импульсную модуляцию (ФИМ) – изменяется фаза импульсов, т.е. временнóе положение относительно тактовых точек (см. рис. 6.8, д).

Модуляцию ФИМ и ЧИМ объединяют во временно-импульсную (ВИМ). Между ними существует связь, аналогичная связи между фазовой и частотной модуляцией синусоидального колебания.

Рис. 6.10. Спектр АИМ-сигнала

В качестве примера на рис. 6.10 показан спектр АИМ сигнала при модуляции импульсной последовательности сложным первичным сигналом s(t) с полосой частот от 0 до W. Он содержит спектр исходного сигнала s(t), все гармоники тактовой частоты (т.е. частоты и т.д.) и боковые полосы частот около гармоник тактовой частоты.

Спектры сигналов ШИМ, ЧИМ и ФИМ имеют еще более сложный вид.

Импульсные последовательности, изображенные на рис. 6.8, называются последовательностями видеоимпульсов. Если позволяет среда распространения, то видеоимпульсы передаются без дополнительных преобразований (например, по кабелю). Однако по радиолиниям передать видеоимпульсы невозможно. Тогда сигнал подвергают второй ступени преобразования (модуляции).

Модулируя с помощью видеоимпульсов гармоничное несущее колебание достаточно высокой частоты, получают радиоимпульсы, которые способны распространятся в эфире. Полученные в результате сочетания первой и второй ступеней модуляции сигналы могут иметь названия АИМ–АМ, ФИМ–АМ, ФИМ–ЧМ и др.

Сравнение импульсных видов модуляции показывает, что АИМ имеет меньшую ширину спектра по сравнению с ШИМ и ФИМ. Однако последние более устойчивы к воздействию помех. Для обоснования выбора метода модуляции в системе передачи необходимо сравнить эти методы по различным критериям: энергетическим затратам на передачу сигнала, помехоустойчивости (способности модулированных сигналов противостоять вредному воздействию помех), сложности оборудования и др.

Контрольные вопросы

1. Какова структура устройства передачи сообщений?

2. В чем состоит принцип амплитудной (частотной, фазовой) модуляции?

3. Чем отличается непрерывная модуляция от импульсной?

4. Как осуществляется восстановление исходного сигнала из модулированного?

Список литературы

1. Системы электросвязи: Учебник для вузов; Под ред. В.П.Шувалова. – М.: Радио и связь, 1987. – 512 с.

2. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник. – 3-е изд., перераб. и доп. – М.: Высш. шк., 2000. – 462 с.

Федеральное агентство связи.

Государственное образовательное учреждение.

Высшее учебное заведение.

«Сибирский государственный университет телекоммуникации и информатики».

Кафедра БИС.

ДПР по основам телекоммуникации на тему: модуляция и её разновидности.

Выполнил: студент I курса,

МРМ, Гр-пы С-07

Водичев Александр.

Новосибирск -2010.


Введение

Понятие модуляции

Виды модуляции

Импульсная модуляция

Демодуляция сигналов

Смешанные виды модуляции

Спектр сигнала АИМ

Заключение

Список используемой литературы


Введение

В своём реферате я опишу свойства модуляции и её виды. Опишу, что такое модуляция, что можно с её помощью делать.

Если говорить своими словами, то модуляция-это процесс преобразования оного сигнала в другой, для того чтобы передать сообщение в нужное место. А ещё есть процесс обратный модуляции, и называется он демодуляцией. И заключается он в том, чтобы преобразовать принятое сообщение в первоначальный вид. Отсюда следует, что процесс полной передачи сообщения состоит из трёх основных этапов: первый этап, это процесс изменения сигнала для того, чтобы его передать; второй этап, это передача сообщения; и третий этап, это возвращение сообщения в его начальный вид. И даже есть разные виды переносчиков. И для каждого вида переносчика есть различные виды модуляции.

Ещё есть система связи. Система связи, она же система передачи информации, в неё входят передатчик, канал и приёмник. Передатчик – средство для передачи сообщений. Канал передачи – это технические устройства и физическая среда, в которой сигналы распространяются от передатчика к приёмнику. А приёмник – это средство для приема сообщений и сигналов.


Так выглядит система передачи сообщений.

В процессе передачи на сообщения воздействуют различные помехи. Все помехи для упрощения условно объединены в одном источнике помех.

Характеристики системы связи можно разделить на внешние и внутренние. К внешним характеристикам, по которым получатель оценивает качество связи, относят верность, скорость и своевременность передачи. Внутренние характеристики позволяют оценить степень использования предельных возможностей системы. К ним относятся помехоустойчивость и эффективность.

Перечисленные важнейшие характеристики систем передачи тесно связаны между собой. Эффективность использования существующих систем и обоснованность выбора принципов построения новых систем во многом будут зависеть от того, насколько полно разработчики аппаратуры используют свойства сообщений, сигналов и помех, а также особенности их преобразований в каналах и различных свойствах системы.

Цель работы

Цель моей работы понять, что такое модуляция, разобрать все её свойства, особенности и все существующие виды. Понять, как передаются сообщения и принимаются, зашифровываются и расшифровываются. Рассмотреть, как воздействуют помехи на качество передаваемых сообщений. Узнать какими приборами сигналы преобразуются из одного вида в другой.


Понятие модуляции

Процесс преобразования первичного сигнала заключается в изменении одного или нескольких параметров несущего колебания по закону изменения первичного сигнала (то есть в наделении несущего колебания признаками первичного сигнала) и называется модуляцией.

Перенос сигнала из одной точки пространства в другую осуществляет система электросвязи. Электрический сигнал является, по сути, формой представления сообщения для передачи его системой электросвязи.

Обычно в качестве переносчика используют гармоническое колебание высокой частоты – несущее колебание. Гармоническое колебание, выбранное в качестве несущего, полностью характеризуется тремя параметрами: амплитудой, частотой и начальной фазой. Модуляцию можно осуществить изменением, любого из трёх параметров по закону передаваемого сигнала. Источник сообщения формирует сообщение а(t), которое с помощью специальных устройств преобразуется в электрический сигнал s(t). При передаче речи такое преобразование выполняет микрофон, при передачи изображения – электронно-лучевая трубка, при передаче телеграммы – передающая часть телеграфного аппарата.

Чтобы передать сигнал в системе электросвязи, нужно воспользоваться каким-либо переносчиком. В качестве переносчика естественно использовать те материальные объекты, которые имеют свойство перемещаться в пространстве, например, электромагнитное поле в проводах (проводная связь), в открытом пространстве (радиосвязь), световой луч (оптическая связь).

Таким образом, в пункте передачи первичный сигнал s(t) необходимо преобразовать в сигнал v(t), удобный для его передачи по соответствующей среде распространения. В пункте приёма выполняется обратное преобразование. В отдельных случаях (например, когда средой распространения является пара физических проводов, как в городской телефонной связи) указанное преобразование сигнала может отсутствовать.

Доставленный в пункт приёма сигнал должен быть снова преобразован в сообщение (например, с помощью телефона или громкоговорителя при передаче речи, электронно-лучевой трубки при передаче изображения, приёмной части телефонного аппарата при передачи телеграммы) и затем передан получателю.

Передача информации всегда сопровождается неизбежным действием помех и искажений. Это приводит к тому, что сигнал на выходе системы электросвязи s(t)и принятое сообщение a(t) могут в какой-то мере отличаться от сигнала на входе s(t)и переданного сообщения а(t). Степень соответствия принятого сообщения переданному называют верностью передачи.

Для различных сообщений качество их передачи оценивается по-разному. Принятое телефонное сообщение должно быть достаточно разборчивым, абонент должен быть узнаваемым. Для телевизионного сообщения существует стандарт (хорошо известная всем телезрителям таблица на экране телевизора), по которому оценивается качество принятого изображения.

Количественной оценкой верности передачи дискретных сообщений служит отношение числа ошибочно принятых элементов сообщения к числу переданных элементов – частота ошибок (или коэффициент ошибок).

Спектр модулированной несущей или угловой модуляции даже при гармоническом первичном сигнале s(t) состоит из бесконечного числа дискретных составляющих, образующих нижнюю и верхнюю боковые полосы спектра, симметричные относительно несущей частоты и имеющие одинаковые амплитуды. Иногда отдельно рассматривают модуляцию гармонического несущего колебания по амплитуде, частоте или фазе дискретными первичными сигналами s(t), например телеграфными или передачи данных.

Модуляцию гармонического несущего колебания первичным сигналом s(t) называют непрерывной, так как в качестве переносчика выбран непрерывный периодический сигнал v0(t).

Сравнение различных видов непрерывной модуляции позволяет выявить их особенности. При амплитудной модуляции ширина спектра модулированного сигнала, как правило, значительно меньше, чем при угловой модуляции (частотной и фазовой). Таким образом, на лицо экономия частотного спектра: для амплитудно-модулированных сигналов можно отводить при передачи более узкую полосу частот.

Чтобы правильно выбрать канал связи для передачи по нему модулированных сигналов, необходимо знать такие характеристики последних, как пиковая и средняя мощность, а также энергетический спектр. Эти характеристики модулированных сигналов отличаются от аналогичных характеристик сообщений, которыми производится модуляция. Для различных видов модуляции соотношения между характеристиками сообщения и модулированного сигнала различны. Например, ширина спектра сигнала ЧМ больше, чем ширина спектра сигнала АМ, хотя модуляция производится одним и тем же сообщением.

Сообщения представляют собой некоторые случайные процессы, поэтому сигналы, получающиеся в результате модуляции, также являются случайными, и для отыскания упомянутых выше характеристик сигналов следует использовать методы теории случайных процессов.

Однако в подавляющем большинстве случаев более наглядное представление о свойствах модулированных сигналов можно получить, предположив, что модуляция производится некоторыми детерминированными функциями, такими, как гармоническое колебание или периодическая последовательность импульсов известной формы. Эти функции можно рассматривать, как отдельные реализации из ансамбля возможных сообщений.

модуляция передача сигнал гармонический

Виды модуляции

Существует два вида переносчиков: гармонический и импульсный.

Для гармонического переносчика возможны три вида модуляции: амплитудная модуляция (АМ), фазовая (ФМ) и частотная (ЧМ).

Для импульсного переносчика возможны четыре вида модуляции: амплитудно-импульсная, или высотно-импульсная модуляция (АИМ),когда по закону передаваемого сигнала изменяется амплитуда импульсов, фазо-импульсная, или время-импульсная (ФИМ)-изменяется фаза импульсов, широтно-импульсная или модуляция по длительности (ШИМ), когда изменяется ширина импульсов и, наконец, либо частотно-импульсная (ЧИМ)-изменяется частота следования импульсов, либо интервально-импульсная (ИИМ).

Модуляцию ФИМ и ЧИМ объединяют во временно-импульсную (ВИМ). Между ними существует связь, аналогичная связи между фазовой и частотной модуляцией синусоидального колебания.

Спектры ШИМ, ЧИМ, и ФИМ имеют более сложный вид чем спектр сигнала АИМ.

Импульсные последовательности АИМ, ШИМ, ЧИМ, и ФИМ называются последовательностями видеоимпульсов. Если позволяет среда распространения, то видеоимпульсы передаются без дополнительных преобразований (например, по кабелю). Однако по радиолиниям передать видеоимпульсы невозможно. Тогда сигнал подвергают второй ступени преобразования (модуляции).

Модулируя с помощью видеоимпульсов гармоничное несущее колебание достаточно высокой частоты, получают радиоимпульсы, которые способны распространяться в эфире. Полученные в результате сочетания первой и второй ступеней модуляции сигналы могут иметь названия АИМ-АМ, ФИМ-АМ, ФИМ-ЧМ и др.

Сравнение импульсных видов модуляции показывает, что АИМ имеет меньшую ширину спектра по сравнению с ШИМ и ФИМ. Однако последние более устойчивы к воздействию помех. Для обоснования выбора метода модуляции в системе передачи необходимо сравнить эти методы по различным критериям: энергетическим затратам на передачу сигнала, помехоустойчивости (способности модулированных сигналов противостоять вредному воздействию помех), сложности оборудования и др.

Модулированные по ширине (ШИМ) и по фазе (ФИМ) видеоимпульсы.

Воздействие сообщения на модулируемый параметр может повлечь за собой изменение других параметров. Например, частотная модуляция гармонического переносчика сопровождается изменением начальной фазы, и наоборот. Однако одновременное воздействие на несколько параметров может осуществляться преднамеренно. В этом случае модуляция называется смешанной. Возможны, например, амплитудно-частотная и амплитудно-фазовая модуляции гармонического переносчика.

При многоканальной передаче на разные параметры могут воздействовать различные сообщения.

Иногда модуляция осуществляется в несколько этапов: сперва исходное сообщение модулирует некоторое поднесущее колебание, затем модулированный сигнал воздействует на основной переносчик. Примерами могут служить система ЧМ-АМ, в которой сообщение а(t) модулирует поднесущее колебание по частоте, а затем ЧМ колебание модулирует основной переносчик по амплитуде, АМ-ЧМ, ШИМ-ФМ и т.д. Некоторые системы многоступенной модуляции (например, АМ-АМ, АИМ-АМ) эквивалентны одноступенчатой модуляции сообщением a(t) некоторого условного переносчика, который можно сформулировать, модулируя переносчиком первой ступени переносчик следующей ступени.

Импульсная модуляция

Часто в качестве переносчика используют периодическую последовательность сравнительно узких импульсов. Последовательность прямоугольных импульсов одного знака v0(t) характеризуется параметрами: амплитудой импульсов; длительностью (шириной) импульсов; частотой следования (или тактовой частотой) fT =1/T, где Т – период следования импульсов; положением (фазой) импульсов относительно тактовых (отсчётных) точек. Отношение периода следования импульсов к длительности импульсов называется скважностью импульса.

По закону передаваемого первичного сигнала можно изменять (модулировать) любой из параметров импульсной последовательности. При этом модуляция называется импульсной.


Периодическая последовательность узких импульсов.

Демодуляция сигналов

До сих пор мы рассматривали преобразования сигнала в пункте передачи. В пункте приёма необходимо извлечь первичный сигнал из переносчика, т.е. осуществить демодуляцию принятого сигнала.

Например, при демодуляции АМ–сигнала необходимо выделить закон изменения амплитуды модулированного несущего сигнала, т.е. его огибающую.эта операция выполняется с помощью амплитудного детектора. При линейном детектировании на вход детектора с линейной вольт-амперной характеристикой подаётся АМ-сигнал, и последовательность импульсов тока детектора оказывается промодулированной по амплитуде. Высокочастотные составляющие тока отфильтровываются RC-цепью; падение напряжения на резисторе R создаёт только постоянная составляющая тока.


Амплитудные детекторы: транзисторный (а), диодный (б)

В модулированном колебании амплитуде медленно меняется, следовательно, амплитуда выделяемой на резисторе R постоянной составляющей тока также будет медленно меняться во времени. Таким образом, выходное напряжение амплитудного детектора пропорционально исходному (модулирующему) сигналу.

Один из способов демодуляции ЧМ-колебаний состоит в превращении его в АМ-колебания и последующем детектировании с помощью амплитудного детектора.

Преобразование ЧМ-сигнала в АМ-сигнал выполняется с помощью расстроенного колебательного контура. Предположим, что на колебательный контур, настроенный на определенную резонансную частоту, подаются ЧМ-колебания с постоянной амплитудой и меняющейся со временем частотой w(t).

Полное сопротивление контура при каждой мгновенной частоте принимает своё определенное значение, так что амплитуда напряжения, выделяемого на контуре, будет изменяться во времени с изменением частоты входного ЧМ-сигнала.

Таким образом, амплитуда ЧМ-колебания на выходе колебательного контура изменяется во времени пропорционально модулирующему сигналу, т.е. частотно модулированный сигнал стал модулированным и по амплитуде ЧМ-сигнала на амплитудный детектор.

Аналогичным образом выделение закона изменения закона фазы ФМ-сигнала осуществляется фазовым детектором.

Существуют и способы демодуляции импульсно-демодулированного сигнала. Все устройства, предназначенные для демодуляции сигналов, будут рассмотрены дальше при изучении конкретных систем передачи и аппаратуры, входящей в состав этих систем.

Смешанные виды модуляции

Рассмотрение смешанной модуляции представляет интерес с различных точек зрения. В некоторых приборах (например, магнетронах) при изменениях амплитуды колебания наблюдается изменение частоты генерации. Поэтому при использовании таких устройств в качестве модуляторов выходной сигнал оказывается модулированным как по амплитуде, так и по частоте по одному и тому же закону.

При одновременной модуляции по амплитуде и частоте происходит изменение амплитуд спектральных составляющих сигнала, и при определённых условиях некоторые из них могут быть полностью подавлены. Необходимость такого полного подавления составляющих, образующих нижнюю (или верхнюю) боковую полосу модулированного сигнала, возникает при однополосной модуляции (не обязательно амплитудной). Поэтому смешанная модуляция может рассматриваться как практический способ получения сигналов однополосной модуляции.

модуляции нескольких параметров переносчика одним и тем же сообщением и суммирование напряжений на выходе соответствующих демодуляторов приёмника приведёт ослаблению помехи.

Особенности импульсной модуляции

Характерной особенностью импульсных систем передачи является то, что энергия сигнала излучается не непрерывно, а в виде коротких импульсов, длительность которых обычно составляет незначительную часть периода их повторения. Благодаря этому энергия импульсного сигнала во много раз меньше энергии непрерывного сигнала (при одинаковых пиковых значениях). Различие в энергиях импульсного и непрерывного сигналов зависит от соотношения между длительностью и периодом повторения. Большие временные интервалы между импульсами используются для размещения импульсов других каналов, т.е. для осуществления многоканальной связи с временным разделением каналов.

Частоту повторения импульсов определяют, исходя из допустимой точности восстановления непрерывного сообщения при его демодуляции. Минимальное значение частоты повторения импульсов

F0мин = 1/T0макс =2Fа,

где Fa – максимальная частота в спектре передаваемого непрерывного низкочастотного сообщения a(t).

В большинстве случаев высокочастотный сигнал импульсной модуляции создаётся в два этапа: сначала сообщение модулирует тот или иной параметр периодической последовательности импульсов постоянного тока (или видеоимпульсов), затем видеоимпульсы модулируют (обычно по амплитуде) непрерывное высокочастотное несущее колебание. Тем самым осуществляется перенос спектра модулированных видеоимпульсов на частоту несущего колебания f0. Энергия высокочастотного импульсного сигнала сконцентрирована в полосе частот вблизи несущей f0.

Спектр сигнала АИМ

Перейдём к рассмотрению спектров сигналов импульсной модуляции. Немодулированную последовательность видеоимпульсов, выполняющую роль промежуточного переносчика, можно представить рядом Фурье. Амплитудная модуляция вызывает появление около каждой из составляющих спектра немодулированных видеоимпульсов боковых полос, повторяющих спектр сообщения Sa(w). Таким образом, спектр сигнала АИМ представляет собой как бы многократно повторённый спектр обычной АМ, в котором роль «несущих частот» выполняют гармоники частоты следования импульсов.

Рассмотрение спектра сигнала АИМ позволяет пояснить соотношение, определяющее выбор частоты повторения импульсов. Значение F0мин = 2Fа определяет то минимальное значение частоты повторения, при котором не происходит наложения спектров соседних боковых полос. Структуру, подобную спектру сигнала АИМ, но несколько более сложную, имеют и спектры сигналов при других видах импульсной модуляции. Характерной особенностью спектров сигналов импульсной модуляции является наличие около w=0 составляющих, соответствующих частотам передаваемого сообщения. Это указывает на возможность демодуляции фильтром нижних частот, пропускающим на выход лишь составляющие с частотами от 0 до 2пи Fа и отфильтровывающим все остальные. Демодуляция не будет сопровождаться искажениями, если в полосу пропускания фильтра нижних частот (ФНЧ) не попадут составляющие ближайшей боковой полосы, т. е. нижней боковой полосы. И при демодуляции сигнала АИМ, искажения будут отсутствовать, когда спектры соседних боковых полос не перекрываются, а для этого надо, чтобы частота повторения импульсов была бы F0 больше либо равно 2Fа. Из этого рассмотрения вытекает также необходимость предварительной фильтрации передаваемого сообщения a(t) таким образом, чтобы ширина спектра его ограничивалась некоторой частотой Fа.

Модуляция случайными функциями

До сих пор рассматривалась модуляция гармонического переносчика детерминированными сообщениями. Это позволило получить важные для анализа систем сведения, относящиеся к спектрам модулированных сигналов. Полученные результаты, однако, не дают полного представления о характеристиках модулированных сигналов, относящихся ко всей совокупности возможных модулирующих сообщений. Такое представление можно получить лишь из рассмотрения совокупностей возможных сообщений и модулированных сигналов, как некоторых случайных процессов.

Практический интерес представляет рассмотрение энергетического спектра модулированных сигналов не только в том случае, когда случайным является лишь модулирующее воздействие, а переносчиком служит детерминированная функция, но также, когда и переносчик – некоторый случайный процесс (обычно узкополосный). Такой переносчик называется шумовым несущим колебанием. Необходимость рассмотрения переносчика, как узкополосного шумового колебания, возникает в некоторых оптических системах связи с некогерентным излучением. Применение шумового несущего колебания даёт возможность ослабить мешающее действие замираний уровня сигналов в каналах с многолучевым распространением радиоволн.


Заключение

В моем реферате я рассказал, что такое модуляция. Рассказал о её видах, о том, как и чем, передают сообщения из одного мечта в другое. Как при передачи сообщения подвергаются воздействию различных помех, и как сделать так, чтобы уменьшить это воздействие до минимума. Ещё я рассмотрел особенности модуляции. Каналы по которым передаётся информация. Рассмотрел спектры различных сигналов. Рассказал, что модуляция – это преобразование сигнал из одного вида, в другой, для того чтобы было возможно передать сообщение. И, что демодуляция, это наоборот, процесс преобразования поступившего сигнала в первоначальный вид. И что есть такие приборы, как амплитудные детекторы, которые и производят эту демодуляцию. И что они бывают двух видов: транзисторный (а) и диодный (б).

Я выполнил всё, что задумывал сделать. Тема эта мне эта понравилась. Я узнал много нового для себя.


... (пунктирные линии), например, по алгоритму Рида-Соломона (Reed-Solomon) позволяет повысить помехоустойчивость модулированного сигнала. Достоинства алгоритма. Алгоритм квадратурной амплитудной модуляции является относительно простым в реализации и в то же время достаточно эффективным алгоритмом линейного кодирования xDSL-сигналов. Современные реализации этого алгоритма обеспечивают достаточно...

Комм. PEP 511x2...6x2...6 19600 Синхр. ДПЛ Комм. Выбор операционных систем. Хотя аппаратное обеспечение играет огромную роль в обеспечении нормального функционирования банковской компьютерной системы, но также немалую роль играет программное обеспечение, в частности операционные системы, устанавливаемые на файловых серверах и рабочих станциях. Выбор программного обеспечения требует...


Обработки и документирования сообщений вся полученная информация записывается на различных видах носителей или передается на централизованный пункт автоматической обработки измерений. Используемые при испытаниях и эксплуатации ракет и космических аппаратов РТС можно классифицировать по следующим основным признакам. 1. По назначению: для испытаний и летно-конструкторской отработки новых...

Цифровая модуляция

Цифровая модуляция — процесс преобразования цифровых символов в сигн а лы, совместимые с характеристиками канала связи. Каждому возможному значению передаваемого символа ставятся в соответствие некоторые параме т ры аналогового несущего колебания.

Манипуляция - способ цифровой или импульсной модуляции, когда пар а ме т ры несущего колебания меняются скачкообразно.

При цифровой модуляции используют чаще всего дискретные последов а тельности двоичных символов — двоичных кодов. Закодированный первичный аналоговый сигнал e(t), представляющий собой последовательность кодовых символов {е n } = е n (k ) (n = О, 1, 2, 3, ... — порядковый номер символа; — номер позиции кода; m — основание кода, т. е. число различных его элеме н тов, которые преобразуются в последовательность элементов (посылок) сигнала { U n (t)} путем воздействия кодовых символов на высокочастотное несущее к о лебание U Н (t). Как правило, используют двоичные коды т.е. m =2. Обычно п о средством модуляции частота или фаза несущего в радиоимпульсе изменяется по закону, определяемому цифр о вым кодом.

Наиболее известны следующие виды цифровой модуляции:

  1. Невозвращающийся в нуль код - NRZ (Non Return to Zero). Является простейшим линейным кодом, широко применяемым на практике. Сущ е ствуют две разновидности этого кода — униполярный и биполярный NRZ-коды. В униполярном NRZ-коде логической единице соответствует прямоугольный импульс положительной полярности, а логическому нулю — нулевое напряж е ние (пауза). В биполярном NRZ-коде логической единице соответствует пр я моугольный импульс положительной полярности, а логическому нулю — пр я моугольный импульс отрицательной полярности. Положительное или отриц а тельное напряжение на выходе кодера сохраняется неизменным в течение дл и тельности символа, что и определяет термин «нево з вращающийся в нуль» код. Длительность импульсов и пауз в NRZ-кодах равна длительности одного си м вола (бита) информации (рис. 1, а, б).
  2. Амплитудная манипуляция (АМн; иначе ИКМ-АМ , или цифровая а м плитудная модуляция — ЦАМ; amplitude shift keying — ASK). Битовому си м волу «1» при ИКМ-АМ (рис. 2, в) соответствует передача несущего колеб а ния в течение времени τ И (длительность посылки), символу «0» — отсутствие кол е бания (пауза) на таком же временном интервале.
  3. Частотная манипуляция (ЧМн; иначе ИКМ-ЧМ , или цифровая часто т ная модуляция — ЦЧМ; frequency shift keying — FSK). При ИКМ-ЧМ (рис. 1, г) передача несущего с частотой f 0 соответствует символу «1», а передача колеб а ния с частотой f 1 — символу «0».
  4. Фазовая манипуляция (ФМн; иначе ИКМ-ФМ , или цифровая фаз о вая модуляция — ЦФМ; phase shift keying — PSK ). При двоичной ИКМ-ФМ (рис. 1, д) фаза несущей меняется на 180° при каждом переходе символов от «1» к «0» и от «0» к «1». Долгое время не находила практического применения из-за сложности восстановления в приемнике опорного («несущего») колебания, строго синфазного с несущей частотой принимаемого сигнала.
  5. Относительная фазовая (дифференциальная; фазоразностная) манип у ляция (ОФМ ; differential phase shift keying — DPSK ), часто называемой мног о позиционной амплитудно-фазовой манипуляцией (рис. 1, е). На практике ци ф ровую фазовую манипуляцию применяют при небольшом числе возможных значений начальной фазы — как правило, 2, 4 или 8. Так как на практ и ке при приеме сигнала сложно определить абсолютное значение начальной ф а зы, то проще определять относительный фазовый сдвиг между двумя соседними си м волами. Поэтому обычно используется ОФМ при которой в зависимости от значения информационного элемента изменяется только фаза сигнала при неизменной амплитуде и частоте, при этом фазу канального сигнала отсчит ы вают не от некоторого эталона, а от фазы предыдущего элемента. На рис 1. видно, что изменение фазы несущего сигнала на 180 0 происходит при каждом «приходе» логической «1» - символ «О» передается отрезком синусоиды с начальной фазой предшествующего элемента сигнала, а символ «1» — таким же отрезком с начальной фазой, отличающейся от начальной фазы предш е ствующего элемента на 180°. При ОФМ передача сообщения начинается с п о сылки одного не несущего передаваемой информации элемента, который сл у жит лишь опорным (эталонным) сигналом для сравнения фазы последующ е го элемента. Каждому информационному биту ставится в соответствие не абс о лютное значение фазы, а ее изменение относительно предыдущего знач е ния.
  6. В цифровом телевидении для передачи по спутниковым трактам и в наземном телевещании при тяжелых условиях приема используется двукратная, или четырехфазная ОФМ (ОФМ-4 ; другое название — квадратурная относ и тельная фазовая модуляция — КОФМ ; англ. — Quadrature phase shift keying — QPSK). Модуляция ОФМ-4 (QPSK) обеспечивает необходимый компромисс между скоростью передачи информации и помехоустойчивостью системы и применяется как самостоятельно, так и в комбинациях с другими методами. Этот вид модуляции основан на передаче четырех сигналов, каждый из кот о рых несет информацию о двух битах (дибите) исходной двоичной последов а тельности. Обычно используется два набора фаз: в зависимости от значения дибита (00, 01,10 или 11) фаза сигнала может изменит ь ся на О, 90, 180, 270 или 45, 135, 225, 315° соответственно. При этом, если число кодируемых бит более трех (8 позиций поворота фазы), резко сниж а ется помехоустойчивость ОФМ. Потому для высокоскоростной передачи данных ОФМ использовать не рек о мендуется.

Рис. 1. Формы сигналов при различных видах цифровой модуляции двои ч ным кодом: а — униполярный код; б — биполярный код; в — ИКМ-АМ;

г — ИКМ-ЧМ; д — ИКМ-ФМ; е — ОФМ

Многопозиционные сигналы. Эффективность систем передачи цифровых с о общений можно существенно повысить путем использования многопозицио н ных (многоуровневых) сигналов, которые можно применять при большой мо щ ности сигнала без риска увеличить вероятность ошибки при определении зн а чения принимаемого сигнала. Увеличение числа позиций, или уровней, позв о ляет увеличить удельную скорость модуляции, но лишь за счет увеличения мощности излучаемого колебания. То же самое можно сказать и о выборе ко р ректирующих кодов. Выбор сигналов и кодов в этих случаях является опред е ляющим для построения высокоэффективных кодемов (согласованных между собой кодеков и модемов).

Рис.2. Формирование четырехпозиционного сигнала:

а — передаваемый первичный сигнал; б — четырехпозиционный сигнал

Формирование четырехпозиционного сигнала показано на рис. 2. Пары с о седних значений двоичных данных (длительность каждого символа τ и ) перед а ваемого первичного сигнала u 1 (t) (рис. 2, а) определяют один из четырех уро в ней, который занимает сигнал u 2 (t ) (рис. 2, б). Пара двоичных символов 00 с о ответствует уровню (амплитуде) 0 , пара 01 — уровню 1 , пара 10 — уро в ню

2 и пара 11 — уровню 3 . Сигнал u 2 (t ) меняется в 2 раза реже, чем исходный u 1 (t), для его передачи требуется в 2 раза меньшая полоса частот, следовател ь но, использование четырехпозиционного сигнала позволяет увеличить удел ь ную скорость передачи в 2 раза. Но надо помнить, что применение многопоз и цио н ных сигналов связано со значительным увеличением их мощности.

Виды аналоговой модуляции

где A 0 ,ω 0 = 2πf 0 , - амплитуда, угловая частота и начальная фаза несущей соответственно; k = A m /A 0 - коэффициент пропорциональности между модулирующим сигналом и вариациями амплитуды АМ колеба­ния или коэффициент модуляции; А т Ω = 2πF φ- амплитуда, угловая частота и начальная фаза модулирующего колебания; t - время.

На рис. 5.2 приведен график АМ колебания в зависимости от вре­мени, на котором видно, что огибающая имеет форму гармонического модулирующего колебания.

Выражение (5.1) может быть преобразовано к виду (для простоты начальные фазы опущены)

Данная форма записи показывает, что в спектре модулированного ко­лебания кроме несущей, содержатся две боковые составляющие с ам­плитудой, пропорциональной коэффициенту модуляции и с частотами выше и ниже несущей на частоту модуляции Ω = 2πF (рис. 5.3). Ши­рина спектра такого АМ сигнала

Если низкочастотное модулирующее колебание является сложным, то спектр модулированного колебание будет содержать, кроме несущей, две боковые полосы - верхнюю и нижнюю. Они представляют собой перенесенный в область несущих частот спектр модулирующего сигнала без изменения и с инверсией соответственно. Для определения полной ширины спектра АМ колебания в этом случае в (5.3) подставляют максимальную частоту спектра модулирующего колебания.

Очень наглядна векторная диаграмма модулированного сигнала (рис. 5.4). Несущее гармоническое колебание отображается вектором


Рис. 5.2 График АМ колебания Рис.5.3 Спектр АМ колебания

, вращающимся против часовой стрелки с постоянной скоростью ω 0 радиан в секунду. Боковые составляющие, в свою оче­редь, представляются векторами /2 и /2, симметричными относительно первого векторе и закрепленными на его конце. Они

вращаются против и по часовой стрелке с угловой скоростью модуляции Ω, перемещаясь вместе с вектором несущей. Результирующий вектор модулированного колебания меняет свою длину в зависимости от положения двух симметричных векторов, ча­стота его вращения остается постоянной.

Мощность АМ колебания зависит от глубины модуляции. Мощность несущей частоты неизменна и пропорциональна . Мощность каждой боковой составляющей пропорциональна квадрату её амплитуды, то есть величине .

При наиболее глубокой модуляции (k=1) мощность АМ колеба­ния (равная сумме мощностей всех трех составляющих) лишь в полтора раза превосходит мощность немодулированного колебания. На прак­тике среднее значение коэффициента амплитудной модуляции не превышает 0.5, чтобы уменьшить вероятность перемодуляции при пиковых значениях модулирующей функции.

С целью увеличении эффективности и использования передатчика и экономии полосы частот, занимаемой модулированным сигналом, передаваться может не весь спектр, а одна боковая полоса АМ колебания. При этом несущая и другая боковая подавляются. Такая модуляция называется АМ с одной боковой полосой (ОБП). Следует отметить, что в строгом смысле это уже будет колебание со сложной амплитудно-фазовой модуляцией.

Различают следующие разновидности амплитудной модуляции:

Двухполосная АМ (Double Sideband - DSB);

Двухполосная АМ с подавленной несущей (Double Sideband Supрrеssed Саrrier -DSBSC);

Однополосная АМ (Single Sideband);

Однополосная AM с подавленной несущей (Single Sideband Suppressed Carrier - SSBSC) в вариантах нижней и верхней боковой полосы (Lower Sideband – LSB и Upper Sideband - USB);

АМ с частично подавленной одной из боковых полос (Vestigal Sideband - VSB);

АМ с двумя независимыми боковыми полосами (Independend Single Sideband - ISSB).

Еще одним способом увеличения эффективности АМ является применение динамической АМ (ДАМ), при которой мощность несущей ре­гулируется в зависимости от амплитуды модулирующего колебания.

Амплитудная модуляция и ее разновидности нашли применение в основном в радио- и телевещании. В диапазонах ДВ и СВ применяется двухполосная АМ, в диапазоне КВ и УКВ - однополосная АМ. В диапа­зоне УКВ в системах ТВ для передачи сигнала изображения (яркостной составляющей) используется АМ с частично подавленной одной боко­вой полосой, а для передачи цветоразностных сигналов в системах РАL_ и NTSC используется разновидность балансной модуляции, так называемая квадратурная АМ. Принцип АМ ОБП используется для формирования групп каналов в многоканальных системах связи с частотным уплотнением. Кроме того, данный вид модуляции используется в си­стемах мобильной связи и для связи с самолетами (118...136 МГц).

Частотная модуляция (ЧМ) является частный случаем угловой мо­дуляции При ЧМ изменяемым параметром является частота несущей, т.е. в каждый момент времени ее отклонение от своего номинального значения пропорционально уровню модулирующего сигнала. В случае гармонического модулирующего колебания мгновенная частота

где - амплитуда отклонения несущей частоты от номи­нала или девиациz частоты.

Полная мгновенная фаза связана с его мгновенной частотой че­рез интеграл

Величина

называется индексом частотной модуляции. Для сложного модулирующего сигнала в (5.6) подставляется максимальная частота его спектра. Аналитическое выражение для ЧМ сигнала U(t) записывается сле­дующим образом:


Рис. 5.5 График ЧМ колебания Рис. 5.6 Спектр ЧМ сигнала

График ЧМ сигнала представлен на рис. 5.5.

Спектр ЧМ колебания при однотональной модуляции можно полу­чить, представив колебание (5.7) в виде бесконечного тригонометри­ческого ряда

где - специальная функция Бесселя порядка n аргумента x.При фиксированное аргументе функция Бесселя с ростом поряд­ка убывает по абсолютной величине и при т > п имеет малую вели­чину. Поэтому на практике ограничиваются рассмотрением конечного числа составляющих спектра.

Вид спектра ЧМ колебания при модуляции гармоническим сигна­лом приведен на рис. 5.6.

Различают широкополосную т () и узкополосную т () частотную модуляцию. В первом случае, как правило, учитывают составляющие с номерами n . Это соответствует ши­рине спектра ЧМ колебания при гармонической модуляции в которой сосредоточено 99 % энергии сигнала.

При небольших индексах ЧМ (от 1 до 2.5) следует пользоваться

фор­мулой

За пределами этой полосы амплитуда составляющих в 100 раз меньше амплитуды немодулированной несущей

При т ЧМ колебание (5.7) приближенно описывается как

т.е. можно считать, что в спектре такого сиг­нала с частотной модуляцией присутствуют только несущая и две отстоящие от нее на частоту модуляции боковые компоненты. Од­нако в отличие от амплитудной модуляции вторая боковая составляющая имеет фазо­вый сдвиг на π радиан.

Векторная диаграмма в этом случае имеет вид, представленный на рис. 5.7. В от­личие от АМ колебания сумма векторов боковых колебаний перпендикулярна вектору несущего колебания, что приводит к ускоре­нию и замедлению вращения результирующего вектора. Длина этого вектора, представляющая амплитуду моду­лированного колебания, незначительно изменяется, что связано с допущенными приближениями. В общем случае будет складываться боль­шее число векторов, и конец результирующего вектора при его качании будет перемещаться по дуге окружности, т.е. длина результирующего векторе меняться не будет.

Поскольку спектр ЧМ сигнала шире, чем при АМ, помехоустойчивость такой модуляции выше. Применяется ЧМ по причине своей широкополосности в основном в диапазоне метровых и более коротких волн. Узкополосная ЧМ (Narrow Frequency Modulation - NFM) используется в системах мобильной связи, широкополосная (Wide Frequency Modulation - WFM) в радио- и телевещании. При стереофоническом вещании в модулирующем сигнале имеется поднесущая с дополнитель­ной модуляцией в зависимости от стандарта вещания. Кроме того ЧМ с широко применялась в системах радиорелейной и спут­никовой связи, модуляция несущей осуществлялась широкополосным групповым сигналом, но в настоящее время, такие сигналы практиче­ски вытеснены цифровыми.

В радиолокации ЧМ используется как внутриимпульсная в вариан­тах линейной ЧМ, симметричной, зигзагообразной и др.

Фазовая модуляция (ФМ) также является частным случаем угло­вой модуляции. Рассмотренное выше частотно-модулированное коле­бание является в то же время и фазомодулированным. Однако при фазовой модуляции изменение фазы, а не частоты, должно совпадать с законом изменения модулирующего колебания В случае синусои­дального модулирующего колебания аналитическое представление ФМ колебания имеет вид

где – амплитуда отклонения (девиация) фазы.

Когда осуществляется угловая модуляция гармоническим сигна­лом, отличить частотную модуляцию от фазовой можно, только сравнив изменений мгновенной фазы модулированного колебания с законом из­менения модулирующего напряжения.

Сравнение (5.7) и (5.12) показывает, что индекс частотной модуляции ранен амплитуде отклонения фазы, измеряемой в радианах. Однако при частотной модулями индекс модуляции обратно пропорционален модулирующей частоте, а при фазовой девиация фазы фиксируется и от частоты модуляции не зависит.

Спектр фазомодулированного гармоническим колебанием сигнала будет такой же, как и частотно-модулированного, если одинаковы ин­дексы модуляции. При спектр ФМ сигнала будет содержать несущую и две боковые составляющие, отстоящие от несущей на частоту модуляции. Отличие от спектра АМ сигнала заключается только в том, что боковые составляющие сдвинуты по фазе на 90°.

При больших индексах модуляции ширину спектра ФМ сигнала сле­дует рассчитывать, пользуясь формулами для ЧМ сигналов. Ширина спектра в том и другом случае определяется девиацией частоты. Но следует отметить, что с увеличением частоты модуляции у ЧМ сигнала ширина спектра будет оставаться прежней при меньшем числе спек­тральных составляющих, а при ФМ ширина спектра будет расти при неизменном числе этих составляющих.

Векторная диаграмма ФМ не отличается от векторной диаграммы ЧМ. Нужно лишь иметь в виду, что ФМ определяется угловым откло­нением результирующего вектора от положения вектора несущей ча­стоты, а ЧМ скоростью этого отклонения, т.е. производной фазы по времени. Фазовая модуляция применяется в основном в радионави­гационных системах.

Сталкиваясь в повседневной жизни с новыми понятиями, многие стараются найти ответы на свои вопросы. Именно для этого необходимо описывать любые явления. Одним из них является такое понятие, как модуляция. О нем и пойдет речь далее.

Общее описание

Модуляция - это процесс изменения одного или целого набора параметров высокочастотного колебания в соответствии с законом информационного низкочастотного сообщения. Результатом этого является перенос спектра управляющего сигнала в область высоких частот, так как эффективное вещание в пространство требует, чтобы все приемо-передающие устройства функционировали на разных частотах, не перебивая друг друга. Благодаря этому процессу информационные колебания помещаются на несущую, априорно известную. В управляющем сигнале содержится передаваемая информация. Высокочастотное колебание берет на себя роль переносчика информации, за счет чего приобретает статус несущего. В управляющем сигнале заложены передаваемые данные. Существуют разные типы модуляции, которые зависят от того, какой формы колебания используют: прямоугольные, треугольные или какие-то иные. При дискретном сигнале принято говорить о манипуляции. Итак, модуляция - это процесс, предполагающий колебания, поэтому она может быть частотной, амплитудной, фазовой и др.

Разновидности

Теперь можно рассмотреть, какие виды этого явления существуют. По сути, модуляция - это процесс, при котором низкочастотная волна переносится высокочастотной. Чаще всего используются следующие виды: частотная, амплитудная и фазовая. При происходит изменение частоты, при амплитудной - амплитуды, а при фазовой - фазы. Существуют и смешанные виды. Импульсная модуляция и модификация относятся к отдельным видам. В этом случае параметры высокочастотного колебания изменяются дискретно.

Амплитудная модуляция

В системах с таким видом изменения происходит изменение амплитуды несущей волны с высокой частотой при помощи модулирующей волны. При на выходе выявляются не только входные частоты, но и их сумма и разность. В этом случае, если модуляция - это комплексная волна, как, к примеру, речевые сигналы, состоящие из множества частот, то для суммы и разности частот потребуется две полосы, одна ниже несущей, а вторая выше. Их называют боковыми: верхней и нижней. Первая - это копия первоначального сдвинутого на определенную частоту. Нижняя полоса - это копия изначального сигнала, прошедшая инвертирование, то есть оригинальные верхние частоты - это нижние частоты в нижней боковой.

Нижняя боковая представляет собой зеркальное отображение верхней боковой относительно частоты несущей. Система, использующая амплитудную модуляцию, передающая несущую и обе боковые, называется двухполосной. Несущая не содержит полезной информации, поэтому ее можно убрать, но в любом случае полоса сигнала будет в два раза больше изначальной. Сужение полосы достигается за счет вытеснения не только несущей, но и одной из боковых, так как в них содержится одна информация. Этот вид известен в качестве однополосной модуляции с подавленной несущей.

Демодуляция

Для этого процесса требуется смешать модулированный сигнал с несущей той же частоты, что испускается модулятором. После этого получается изначальный сигнал в виде отдельной частоты или полосы частот, а потом отфильтровывают от других сигналов. Иногда генерирование несущей для демодуляции происходит на месте, при этом она не всегда совпадает с частотой несущей на самом модуляторе. Из-за небольшой разницы между частотами появляются несовпадения, что характерно для телефонных цепей.

В данном случае используется цифровой модулирующий сигнал, то есть это позволяет кодировать более одного бита на бод посредством кодирования бинарного сигнала данных в сигнал с несколькими уровнями. Биты бинарных сигналов иногда разбивают на пары. Для пары бит можно использовать четыре варианта комбинации, при этом каждая пара бывает представлена одним из четырех уровней амплитуды. Такой закодированный сигнал характеризуется тем, что скорость модуляции в бодах наполовину меньше изначального сигнала данных, поэтому его можно использовать для амплитудной модуляции обычным образом. Свое применение она нашла в радиосвязи.

Частотная модуляция

Системы с такой модуляцией предполагают, что частота несущей будет меняться соответственно с формой модулирующего сигнала. Этот вид превосходит амплитудную в плане устойчивости к определенным воздействиям, имеющимся на телефонной сети, поэтому его стоит использовать на низких скоростях, где нет необходимости в привлечении большой полосы частот.

Фазо-амплитудная модуляция

Чтобы увеличить число бит на бод, можно скомбинировать фазовую и амплитудную модуляции.

В качестве одного из современных методов амплитудно-фазовой модуляции можно назвать тот, который базируется на передаче нескольких несущих. К примеру, в каком-то приложении используется 48 несущих, разделенных полосой в 45 Гц. Посредством комбинирования амплитудной и фазовой модуляции для каждой несущей выделяется до 32 дискретных состояний на каждый отдельный период бода, благодаря чему можно переносить по 5 бит на бод. Получается, что вся эта совокупность позволяет переносить 240 бит на бод. При работе со скоростью 9600 бит/с скорость модуляции требует лишь 40 бод. Такой низкий показатель довольно терпим к амплитудным и фазовым скачкам, присущим телефонной сети.

Импульсно-кодовая модуляция

Этот вид обычно рассматривается в качестве системы для трансляции к примеру, голос в цифровом виде. Эта техника модуляции не используется в модемах. Тут происходит стробирование аналогового сигнала со скоростью, вдвое превышающей наивысшую частоту компонента сигнала в аналоговой форме. При использовании таких систем на телефонных сетях стробирование происходит 8000 раз в секунду. Каждый отсчет - это уровень напряжения, закодированный семибитным кодом. Чтобы наилучшим образом представить используется кодирование по логарифмическому закону. Семь бит совместно с восьмым, говорящим о наличии сигнала, формируют октет.

Для восстановления сигнала сообщения требуется модуляция и детектирование, то есть обратный процесс. При этом сигнал преобразуется нелинейным способом. Нелинейные элементы обогащают спектр выходного сигнала новыми компонентами спектра, а для выделения низкочастотных компонентов используются фильтры. Модуляция и детектирование могут осуществляться с применением вакуумных диодов, транзисторов, полупроводниковых диодов в качестве нелинейных элементов. Традиционно используются точечные полупроводниковые диоды, так как у плоскостных входная емкость заметно больше.

Современные виды

Цифровая модуляция обеспечивает намного большую информационную емкость и обеспечивает совместимость с разнообразными службами цифровых данных. Помимо этого с ее помощью повышается защищенность информации, улучшается качество систем связи, и ускоряется доступ к ним.

Существует ряд ограничений, с которыми сталкиваются разработчики любых систем: допустимая мощность и ширина частотной полосы, заданный шумовой уровень систем связи. С каждым днем увеличивается численность пользователей систем связи, а также растет спрос на них, что требует увеличения радиоресурса. Цифровая модуляция заметно отличается от аналоговой тем, что несущая в ней передает большие объемы информации.

Сложности использования

Перед разработчиками систем цифровой радиосвязи стоит такая основная задача - найти компромисс между шириной полосы трансляции данных и сложностью системы в техническом плане. Для этого уместно использовать разные методы модуляции, чтобы получить необходимый результат. Радиосвязь можно организовать и при использовании простейших схем передатчика и приемника, но для такой связи будет использоваться спектр частот, пропорциональный численности пользователей. Для более сложных приемников и передатчиков требуется меньшая полоса частот для трансляции информации в том же объеме. Для перехода к спектрально-эффективным методам передачи необходимо усложнить оборудование соответствующим образом. Эта проблема не зависит от вида связи.

Альтернативные варианты

Широтно-импульсная модуляция характеризуется тем, что ее несущий сигнал представляет собой последовательность импульсов, при этом частота импульсов постоянная. Изменения касаются только длительности каждого импульса соответственно модулирующему сигналу.

Широтно-импульсная модуляция отличается от частотно-фазовой. Последняя предполагает модуляцию сигнала в виде синусоиды. Он характеризуется постоянной амплитудой и изменяемой частотой или фазой. Импульсные сигналы тоже можно промодулировать по частоте. Может быть длительность импульсов фиксированная, а их частота находится в каком-то а вот их мгновенное значение будет меняться в зависимости от модулирующих сигналов.

Выводы

Можно использовать простые виды модуляции, при этом только один параметр будет изменяться соответственно с модулирующей информацией. Комбинированная схема модуляции, которая применяется в современном оборудовании для работы связи, - это когда происходит одновременное изменение и амплитуды, и фазы несущей. В современных системах может использоваться несколько поднесущих, для каждой из которых используется модуляция определенного вида. В этом случае речь идет о схемах модуляции сигналов. Используется этот термин и для сложных многоуровневых видов, когда для исчерпывающей информации требуется дополнительное

В современных системах связи используются наиболее эффективные типы модуляции, благодаря чему обеспечивается минимизация ширины полосы с целью освобождения частотного пространства для других видов сигналов. Качество связи от этого только выигрывает, однако сложность оборудования в данном случае оказывается очень высока. В конечном итоге частота модуляции дает результат, видимый конечному пользователю только в плане удобства использования технических средств.