Функциональная зависимость базы данных. Функциональная зависимость

  • 29.07.2019

Зависимости между атрибутами

    Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует только одно значение В.

Обознач-ся:А В

2. Если существует функциональная зависимость вида А В и В А, то между А и В имеется взаимосвязанное соответствие или функциональная взаимозависимость

Обозн: А В

Частичная функциональная зависимость это зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость

Когда неключевой атрибут полностью зависит от составного ключа.

Пр: Кафедра(ФИО, должен, оклад, стаж, д_стаж, кафедра, предмет, группа, вид занятий)

ФИО кафедра

ФИО должность

Атрибут С зависит от А транзитивно если для атрибутов А,В,С выполняется условие А В и В С, но нет обратной зависимости А С

Пример. ФИО должность оклад

В отношении rатрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами изr.

Обозн. А В, А В, А В ФИО предмет

Замечание: В общем случае между двумя атрибутами одного отношения могут существовать функциональные и многозначные зависимости (1:1, 1:M,M:M) т.к. зависимость между атрибутами является причиной аномалий, то необходимо разбить отношение с зависимостями атрибутов на несколько отношений. В результате получается совокупность связанных отношений, связи между которыми отражают зависимости между атрибутами различных отношений.

Два или более атрибутов называются взаимонезависимыми, если не один из этих атрибутов не зависит функционально от других атрибутов (Обозн. А¬
В).

Выявление зависимостей между атрибутами

Выявление зависимостей между атрибутами необходимо для выполнения проектирования БД методом нормальных форм.

Основной способ определения функциональной зависимости- это внимательный анализ семантики атрибутов .

A1 A3

Кроме того, А2 ¬ А1, А3 ¬ А1

Перечисляя все существующие функциональные зависимости в отношении rполучим полное множество функциональных зависимостей, которые обозначаютсяF + .

Зная некоторые функциональные зависимости, с помощью аксиом вывода можно получить полное множество F + для какого-либо отношения.

Для отношения “кафедра”:

ФИО оклад

ФИО должность

ФИО стаж

ФИО кафедра

ФИО д_стаж

Стаж д_стаж

Должность оклад

Оклад должность

ФИО.Преподаватель.Группа Вид занятий

Нормализация отношений

В реляционной БД каждое отношение должно быть нормализовано. Нормальная форма – это ограничение на схему БД, которое позволяет избежать аномалий при добавлении, удалении и изменении данных.

Отношение считается нормализованным (1НФ), если каждое значение любого атрибута в каждом картеже является неделимым (атомарным) элементом. Такими атомарными значениями являются простые типы данных.

2НФ В основном используются три нормальных формы.

Для всех нормальных форм соблюдается правило вложенности

Преимущества нормализации :

    Лучшая организация БД, что облегчает работу пользователям и администраторам БД.

    Сокращается избыточность информации, что ведет за собой упрощение структуры и рациональное использование дискового пространства.

    Минимизируется дублируемая информация.

    Нормализация с разбиением БД на более мелкие таблицы дает большую гибкость при изменении структур данных.

    Большая безопасность БД.

После нормализации БД организация защиты информации, содержащейся в ней, значительно упрощается.

Недостатки :

Снижение производительности при выполнении запросов в БД.

Определения:

    Отношение находится в 1НФ, если все элементы соответствующих доменов являются атомарными для каждого атрибута в исходном отношении. Исходное отношение строится таким образом чтобы оно находилось в 1НФ.

    Значение является не атомарным, если оно используется приложением по частям.

Перевод отношения в следующую нормальную форму осуществляется методом декомпозиции без потерь.

Такая декомпозиция должна обеспечивать то что запросы к исходному отношению и к отношениям, получаемым в результате декомпозиции, дадут одинаковый результат.

Основной операцией в методе является операция проекции.

r (A,B,C,D,E) C D

r1(A,B,C,E) r2(C,D)π CD (r)

Частичная зависимость от ключа неключевых атрибутов приводит к следующему:

    1. В отношении имеется явное и не явное избыточное дублирование данных, например, повторение о стаже, должности и окладе преподавателя, проводящих занятия в нескольких группах и/или по разным предметам. Повторение данных об окладах для одной и той же должности или данные о надбавке за стаж.

    Следствием избыточного дублирования является проблема редактирования данных. Часть избыточности устраняется при переходе в 2НФ.

Отношение находится в 2НФ, если:

    Отношение находится в 1НФ.

    Каждый неключевой атрибут функционально полностью зависит от первичного ключа.

Для устранения частичной зависимости и перевода отношения в 2НФ необходимо:

    Построить проекцию без атрибутов, находящихся в частичной функциональной зависимости от первичного ключа.

    Построить проекцию на части составного первичного ключа и атрибута, зависящие от этих частей.

В результате получим два отношения r1,r2, находящихся во 2НФ:

Вид занятий

Иванов И.М

Практика

Иванов И.М

Практика

Петров М.И

Петров М.И

Практика

Сидоров Н.Г

Сидоров Н.Г

Егоров В.В

Переход ко 2НФ позволяет исключить явную избыточность данных в отношении r2, тем не менее, дублирование данных сохраняется и поэтому необходимо преобразоватьr2 в 3НФ.

Опр.1: Отношение находится в 3НФ, если:

    Удовлетворяются все требования 2НФ.

    Если каждый неключевой атрибут не транзитивно зависит от первичного ключа.

Опр.2: Отношение находится в 3НФ в том случае, если все неключевые атрибуты взаимно независимы и полностью зависят от первичного ключа.

ФИО оклад должность

ФИО стаж Д_стаж

ФИО должность оклад

Транзитивные зависимости также порождают избыточное порождение данных.

Чтобы устранить транзитивные зависимости, необходимо использовать проекцию на атрибуты, являющиеся причиной данных транзитивных зависимостей.

В результате получим:

Д_стаж

На практике, в большинстве случаев приведение к 3НФ является достаточным, и дальнейшую нормализацию не проводят.

Если в отношении имеется зависимость атрибутов составного ключа от неключевых атрибутов, то необходимо перейти к усиленной 3НФ, она называется НФБК.

Опр. Отношение находится в НФБК, если оно находится в 3НФ, и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

При представлении концептуальной схемы в виде реляционной модели возможны различные варианты выбора схем отношений. Одни варианты выбора рассматривались в предыдущих разделах (п. 6.2.3), другие получаются объединением (или разбиением) некоторых схем отношений. От правильного выбора схем отношений, представляющих концептуальную схему, в значительной степени будет зависеть эффективность функционирования базы данных .

Рассмотрим для примера конкретную схему отношений и проанализируем её недостатки. Предположим, что данные о студентах, факультетах, специальностях, включены в таблицу со следующей схемой отношения: СТУДЕНТ (Код студента, Фамилия, Название факультета, Название специальности).

Эта схема отношений обусловливает следующие недостатки соответствующей базы данных :

  • Дублирование информации (избыточность). У студентов, обучающихся на одном факультете, будет повторяться название факультета. Для разных факультетов будут повторяться специальности.
  • Потенциальная противоречивость (аномалии обновления ). Если, например, изменится название специальности, то изменяя её в одном кортеже (у одного студента), необходимо изменять и во всех других кортежах, где она присутствует.
  • Потенциальная возможность потери сведений (аномалии удаления ). При удалении информации о всех студентах, поступающих на определенную специальность, мы теряем все сведения об этой специальности.
  • Потенциальная возможность невключения информации в базу данных (аномалии включения ). В базе данных будут отсутствовать сведения о специальности, если на ней нет обучающихся студентов.

В теории реляционных баз данных существуют формальные методы построения реляционной модели базы данных , в которой отсутствует избыточность и аномалии обновления , удаления и включения.

Нормализация. Первая нормальная форма .

Построение рационального варианта схем отношений (обладающего лучшими свойствами при операциях включения, модификации и удаления данных, чем все остальные наборы схем) осуществляется путем так называемой нормализации схем отношений . Нормализация производится в несколько этапов. На начальном этапе схема отношений должна находиться в первой нормальной форме ( 1НФ ).

Отношение находится в первой нормальной форме , если все атрибуты отношения принимают простые значения (атомарные или неделимые), не являющиеся множеством или кортежем из более элементарных составляющих .

Рассмотрим следующий пример.

Таблица представляет сущность ЭКЗАМЕНАЦИОННАЯ ВЕДОМОСТЬ

Код студента Фамилия Код экзамена Предмет и дата Оценка
1 Сергеев 1 Математика 5.06.08 4
2 Иванов 1 Математика 5.06.08 5
1 Сергеев 2 Физика 9.06.08 5
2 Иванов 2 Физика 9.06.08 5

Теперь на пересечении любой строки и любого столбца находится одно значение и, следовательно, данная таблица находится в первой нормальной форме .

Далее отношение , представленное в первой нормальной форме , последовательно преобразуется во вторую и третью нормальные формы . Процесс построения второй и третьей нормальных форм будет описан в следующих подразделах. При некоторых предположениях о данных третья нормальная форма является искомым наилучшим вариантом.

Если эти предположения не выполняются, то процесс нормализации продолжается и отношение преобразуется в четвертую и пятую нормальные формы . Построение соответствующих форм описано в литературе и в данной книге не рассматривается.

Прежде чем перейти к построению второй нормальной формы , необходимо определить ряд формальных понятий.

8.2. Функциональные зависимости (зависимости между атрибутами отношения)

Пусть R(A 1 , A 2 , ..., A n) – схема отношения , а X и Y – подмножества {A 1 , A 2 , ..., A n } .

Функциональная зависимость на отношении R – это утверждение вида "Если два кортежа R совпадают по атрибутам множества (т.е. эти кортежи имеют в соответствующих друг другу компонентах одни и те же значения для каждого атрибута множества X ), то они должны совпадать и по атрибутам множества . Формально эта зависимость записывается выражением X -> Y , причем говорится, что X функционально определяет Y . Часто используется другое утверждение: X функционально определяет Y или Y функционально зависит от X (обозначается X -> Y ) тогда и только тогда, когда каждое значение множества X отношения R связано с одним значением множества Y отношения R . Иначе говоря, если два кортежа R совпадают по значению X , они совпадают и по значению Y .

Замечание. Вообще говоря, под термином " отношение " могут подразумеваться два понятия:

  • отношение как переменная, которая может принимать разные значения (таблица, в строки и столбцы которой могут быть вписаны разные значения);
  • отношение, как набор конкретных значений (таблица с заполненными элементами).

Функциональные зависимости характеризуют все отношения, которые могут быть значениями схемы отношения R в принципе. Поэтому единственный способ определить функциональные зависимости – внимательно проанализировать семантику (смысл) атрибутов.

Функциональные зависимости являются, в частности, ограничениями целостности, поэтому целесообразно проверять их при каждом обновлении базы данных .

Пример функциональных зависимостей для отношения ЭКЗАМЕНАЦИОННАЯ ВЕДОМОСТЬ

Код студента -> Фамилия Код студента, Код экзамена -> Оценка

Пример функциональных зависимостей для отношения СТУДЕНТ, приведенного в начале настоящей лекции

Код студента -> Фамилия, Код студента -> Факультет

Заметим, что последняя зависимость существует при условии, что один студент не может обучаться на нескольких факультетах.

Полное множество функциональных зависимостей

Для каждого отношения существует вполне определенное множество функциональных зависимостей между атрибутами данного отношения. Причем из одной или более функциональных зависимостей, присущих рассматриваемому отношению, можно вывести другие функциональные зависимости , также присущие этому отношению.

Заданное множество функциональных зависимостей для отношения R обозначим F , полное множество функциональных зависимостей, которые логически можно получить из F , называется замыканием F и обозначается F + .

Если множество функциональных зависимостей совпадает с замыканием данного множества, то такое множество функциональных зависимостей называется полным .

Введенные понятия позволяют формально определить понятие ключа.

Пусть существует некоторая схема R с атрибутами A 1 A 2 ...A n , F – некоторое множество функциональных зависимостей и X – некоторое подмножество R . Тогда X называется ключом, если, во-первых, в F + существует зависимость X -> A 1 A 2 ...A n и, во-вторых, ни для какого подмножества Y , входящего в X , зависимость Y -> A 1 A 2 ...A n не принадлежит F + .

Полной функциональной зависимостью называется зависимость неключевого атрибута от всего составного ключа .

Частичной функциональной зависимостью будем называть зависимость неключевого атрибута от части составного ключа .

Для вычисления замыкания множества функциональных зависимостей используются следующие правила вывода (

Функциональные зависимости

Функциональная зависимость описывает связь между атрибутами и является одним из основных понятий нормализации. Предположим, что реляционная схема имеет атрибуты (A, B, C,…, Z) и вся база может быть представлена в виде одного универсального отношения R=(A, B, C,…, Z). Следовательно, каждый атрибут в базе имеет уникальное имя.

Если A и B – атрибуты некоторого отношения R, и каждое значение А связано с одним и только одним значением В (причем каждый из атрибутов может состоять из одного или нескольких атрибутов), то атрибут В функционально зависим от атрибута А (ВàА).

Функциональная зависимость, справедливая при любых условиях, называется тривиальной . Нетривиальные зависимости определяют ограничения целостности для отношений.

Транзитивная зависимость для атрибутов A, B и C некоторого отношения означает следующее: если АàВ и ВàС, то С транзитивно зависит от атрибута А через атрибут В (при условии, что А функционально не зависит от В или С).

Для исключения избыточности данных, что может привести к потере целостности, необходимо использовать минимально достаточное множество зависимостей.

Проектирование базы данных с помощью нормализации начинают с определения функциональных зависимостей, очевидных с точки зрения семантики, т.е. приведение к первой нормальной форме.

Таблица, находящаяся в первой нормальной форме, должна отвечать следующим требованиям:

1) таблица не должна иметь повторяющихся записей;

2) в таблице должны отсутствовать повторяющиеся группы полей;

3) каждое поле должно быть семантически неделимым.

Таблица, находящаяся во второй нормальной форме, должна отвечать всем требованиям 1НФ, любое неключевое поле однозначно идентифицируется полным набором ключевых полей, то есть каждый атрибут отношения находится в полной или частичной функциональной зависимости от другого атрибута.

Функциональная зависимость АàВ является полной функциональной зависимостью, если удаление какого либо атрибута из А приводит к утрате этой зависимости. Функциональная зависимость АàВ называется частичной , если в А есть некий атрибут при удалении которого эта зависимость сохраняется.

Таблица, находящаяся в третьей нормальной форме, должна отвечать всем требованиям 2НФ, ни одно из неключевых полей не идентифицируется при помощи другого неключевого поля, то есть отношение, которое находится в первой и второй нормальных формах и не имеет атрибутов, не входящих в первичный ключ атрибутов, которые находились бы в транзитивной функциональной зависимости от этого первичного ключа.

Нормальная форма Бойса-Кода (НФБК) основана на функциональных зависимостях, в которых учитываются все потенциальные ключи отношения, но с более строгими ограничениями.

Детерминантом функциональной зависимости является атрибут (или группа атрибутов), от которого полностью функционально зависит некоторый другой атрибут.

Для проверки принадлежности отношения к НФБК необходимо найти все его детерминанты и убедиться в том, что они являются потенциальными ключами.

Различие между 3НФ и НФБК заключается в том, что функциональная зависимость АàВ допускается в отношении 3НФ, если атрибут В является первичным ключом, а атрибут А не обязательно является потенциальным ключом. В отношении НФБК эта зависимость допускается только тогда, когда атрибут А является потенциальным ключом. Следовательно, НФБК является более строгой версией 3НФ, поскольку каждое отношение НФБК является 3НФ, но не всякое отношение 3НФ является НФБК.

Отношения находятся в НФБК только в том случае, если каждый его детерминант является потенциальным ключом.

Четвертая нормальная форма (4НФ) – отношение в НФБК, которое не содержит нетривиальных многозначных зависимостей.

Многозначная зависимость представляет такую зависимость между атрибутами отношения (например А, В и С), что каждое значение А представляет собой множество значений для В и множество значений для С. Однако множество значений В и С не зависят друг от друга.

Многозначная зависимость может быть дополнительно определена как тривиальная или нетривиальная. Многозначная зависимость АàВ некоторого отношения R определяется как тривиальная, если атрибут В является подмножеством атрибута А или . И наоборот, многозначная зависимость определяется как нетривиальная, если ни то ни другое условие не выполняется. Тривиальная многозначная зависимость не накладывает никаких ограничений на данное отношение, а нетривиальная – накладывает.

При разбиении отношения с помощью операции проекции используемый метод декомпозиции определяется точно. Необходимо, чтобы при обратном соединении полученных отношений можно было восстановить исходное отношение. Такая декомпозиция называется декомпозицией соединения без потерь (или беспроигрышным или неаддитивным соединением), поскольку при ее выполнении сохраняются все данные исходного отношения, а также исключается создание дополнительных фиктивных строк.

Пятая нормальная форма (5НФ), которая также называется проективно-соединительной нормальной формой, означает, что отношение в такой форме не имеет зависимостей соединения. Отношение R с подмножеством атрибутов А,В,…,Z удовлетворяет зависимости соединения, если каждое допустимое значение R равно соединению его проекций на подмножества А,В,…,Z.

Объединение нескольких атрибутов в одно отношение выполняется не случайным образом. Данные, которые будут храниться в этом отношении, взаимосвязаны между собой. Эта взаимосвязь определяется множеством функциональных зависимостей между атрибутами отношения. Это означает, что значения одного атрибута зависят от значений других атрибутов, т. е. допустимы не любые сочетания значений атрибутов. Зависимости эти вытекают из ограничений предметной области. Например, в отношении Поставки существуют следующие ограничения:

· каждый поставщик имеет только один адрес,

· каждый поставщик поставляет товар по определенной цене,

· товары, поставленные разными поставщиками, могут быть распределены по разным складам, но товар одного наименования, поставляемый одним поставщиком, должен храниться только на одном складе,

· каждый склад имеет свой объем.

Эти ограничения являются зависимостями, которые можно сформулировать следующим образом:

· адрес функционально зависит от поставщика,

· цена функционально зависит от товара и поставщика,

· номер склада функционально зависит от товара и поставщика,

· объем функционально зависит от номера склада.

Функциональная зависимость имеет место, когда значения кортежа на одном множестве атрибутов однозначно определяют значения кортежа на другом множестве атрибутов (или на одном атрибуте).

Пусть отношение r имеет схему R , X и Y – подмножества R . Отношение r удовлетворяет функциональной зависимости X→Y , если π Y (σ X=x (r)) имеет не более чем один кортеж для каждого значения xÎX , т. е. значения атрибутов X однозначно определяют значения атрибутов Y.

Функциональную зависимость будем обозначать следующим образом:

· Поставщик → Адрес,

· {Товар, Поставщик}→ Цена,

· {Товар, Поставщик}→ Склад,

· Склад → Объем.

А читаются они так:

· Поставщик определяет Адрес,

· Товар и Поставщик определяют Цену,

· Товар и Поставщик определяют Склад,

· Склад определяет Объем.

На языке функциональных зависимостей ключ для схемы R – это подмножество KÍR , такое, что K R , и никакое собственное подмножество K¢ÍK этим свойством не обладает.

Нормальные формы

Сформулируем правила, по которым следует проводить де­компо­­зицию отношения. Этот процесс называется нормализацией, т. е. при­­ведением отношения к нормальной форме.

Нормальные формы представляют собой ограничения на схему отношения, избавляющие ее от нежелательных свойств, которые были перечислены выше. Прежде чем приводить отношения к нор­мальной форме, следует построить все функциональные зависимости между атрибутами, которые существуют в предметной области.

Схема отношения R находится в первой нормальной форме (1НФ ), если значения всех атрибутов являются атомарными (не составными), т. е. значение каждого атрибута не является ни списком, ни множеством значений.

Например, атрибут ФИО является составным, состоит из трех данных: фамилии, имени и отчества.

Чтобы привести схему в 1НФ, нужно все составные атрибуты заменить простыми.

Чтобы избавиться от избыточности информации, хранящейся в базе данных, существуют вторая и третья нормальные формы.

Схема отношения R находится во второй нормальной форме (2НФ ), если она находится в первой нормальной форме, и каждый непервичный атрибут функционально полно зависит от первичного ключа.

Что такое неполная функциональная зависимость от ключа? Такая зависимость присутствует в отношении, если какой-либо атрибут, не входящий в ключ, функционально зависит от части атрибутов, входящих в ключ. Любой непервичный атрибут обязательно функционально зависит от всех первичных атрибутов по определению ключа отношения. А если какой-либо непервичный атрибут, кроме того, функционально зависит не от всех, а от части первичных атрибутов, то это и есть неполная функциональная зависимость.

Например, в отношении Поставка первичными атрибутами являются Товар и Поставщик . Атрибут Цена функционально полно зависит от ключа, а атрибут Адрес зависит от части ключа, т. е. только от атрибута Поставщик , это неполная функциональная зависимость. Значит, схема Поставки не находится во 2НФ.

Чтобы привести схему, находящуюся в 1НФ, ко 2НФ, нужно разбить ее на несколько схем:

· выполнить проекцию схемы R на первичные атрибуты и атрибуты, функционально полно зависящие от ключа, т. е. исключить непервичные атрибуты, которые неполно зависят от ключа,

· для каждой неполной функциональной зависимости выполнить проекцию схемы R на атрибуты, входящие в эту зависимость, т. е. оставить часть ключа отношения R и атрибуты, функционально зависящие от этой части.

В примере с отношением Поставки в результате приведения схемы ко 2НФ получатся два отношения:

Поставки_1 (Товар , Поставщик , Цена, Склад, Объем ),

Поставки_2 (Поставщик , Адрес ).

Однако информация об объеме склада продолжает дублироваться. Для устранения этого недостатка схемы существует третья нормальная форма.

Схема отношения R находится в третьей нормальной форме (3НФ ), если она находится во второй нормальной форме и в ней отсутствуют транзитивные зависимости непервичных атрибутов от ключа.

Что такое транзитивные зависимости? Транзитивная зависимость имеет место, если какой-либо непервичный атрибут функционально зависит от другого непервичного атрибута, а тот в свою очередь функционально зависит от ключа.

Схема отношения Поставки_1 (Товар , Поставщик , Цена, Склад, Объем ) не находится в 3НФ, так как в ней присутствует транзитивная зависимость:

{Товар, Поставщик } → Склад , Склад Объем .

Чтобы привести схему, находящуюся во 2НФ, в 3НФ, нужно:

· выполнить проекцию схемы R на первичные атрибуты и атрибуты, транзитивно не зависящие от ключа, т. е. исключить непервичные атрибуты, которые транзитивно зависят от ключа,

· для каждого транзитивно зависимого непервичного атрибута выполнить проекцию схемы R на атрибуты, входящие во вторую часть транзитивной зависимости, т. е. оставить только непервичные атрибуты отношения R , между которыми имеется функциональная зависимость.

В примере с отношением Поставки_1 в результате приведения схемы к 3НФ получатся два отношения:

Поставки_1_1 (Товар , Поставщик , Цена, Склад ),

Поставки_1_2 (Склад , Объем ).

Таким образом, последовательно выполняя разделение исходной схемы отношения на несколько других схем согласно рассмотренным правилам, получаем схему в 3НФ, свободную от аномалий обновления и дублирования информации, о чем говорилось в начале раздела.

Процесс разделения схемы отношения на несколько других схем называется декомпозицией схемы отношения. Декомпозиция, приводящая отношение к одной из нормальных форм, называется нормализацией .

В рассмотренном примере в результате декомпозиции вместо одного отношения Поставки мы получили три новых отношения:

Поставки_1_1 (Товар , Поставщик , Цена, Склад ),

Поставки_1_2 (Склад , Объем ),

Поставки_2 (Поставщик , Адрес ).

При такой схеме, состоящей из трех связанных внешними ключами отношений, не будет дублирования информации об адресе поставщика и объеме склада, если склад пуст, то объем его останется в базе данных, если поставщик не поставляет товары, то его адрес все равно будет храниться в базе данных.

Как вы заметили, схема в 3НФ избавляет базу данных от дублирования информации и аномалий обновления, но не всегда.

Рассмотрим отношение Лекции (Студент , Предмет , Преподаватель ), которое хранит информацию о том, какие предметы изучают студенты и кто ведет эти предметы. Предметная область накладывает следующие ограничения:

· каждый студент, изучающий данный предмет, обучается только одним преподавателем,

· каждый преподаватель ведет только один предмет, но каждый предмет может вести несколько преподавателей.

Из этих ограничений вытекают следующие функциональные зависимости:

· {Студент, Предмет} → Преподаватель;

· Преподаватель → Предмет.

Из функциональных зависимостей вытекает, что ключом отношения Лекции будет набор атрибутов {Студент , Предмет }.

Отношение Лекции находится в 3НФ. Но оно страдает аномалиями обновления. Если требуется удалить информацию о том, что Петров изучает Физику, то утратится информация о том, что профессор Серов преподает Физику. В то же время информация о том, что профессор Белый ведет Алгебру, дублируется.

Эти трудности вызваны тем, что существует функциональная зависимость первичного атрибута от непервичного. Эта проблема решается в нормальной форме Бойса–Кодда.

Отношение находится в нормальной форме Бойса–Кодда (НФБК) , если оно находится в 3НФ и в нем отсутствуют зависимости первичных атрибутов от непервичных. Эквивалентное определение требует, чтобы все левые части функциональных зависимостей были потенциальными ключами.

Приведя отношение к НФБК, мы получим два отношения: Лекции_1 (Студент, Преподаватель ) и Лекции_2 (Преподаватель, Предмет ).

Многозначные зависимости

Атрибут X многозначно определяет атрибут Y в R (или Y многозначно зависит от X ), если каждому значению атрибута X соответствует множество (возможно, пустое) значений атрибута Y , никак не связанных с другими атрибутами R . То есть для наличия в отношении многозначной зависимости необходимо иметь как минимум три атрибута.

Многозначная зависимость обозначается двойной стрелкой: X→→Y .

Рассмотрим отношение Преподаватель (Номер , Имя_ребенка , Предмет , Должность ). Предметная область накладывает следующие ограничения:

· каждый преподаватель может иметь несколько детей,

· каждый преподаватель может вести несколько предметов,

· каждый преподаватель может занимать только одну должность,

· каждый предмет могут вести несколько преподавателей.

Тогда отношение Преподаватель имеет две многозначные зависимости и одну функциональную:

· Номер→→Имя_ребенка,

· Номер→→Предмет,

· Номер→Должность.

Отношение Преподаватель , во-первых, содержит избыточную информацию – должность преподавателя повторяется несколько раз. Во-вторых, оно не свободно от аномалий обновления: если у преподавателя появляется еще один ребенок, необходимо добавить в отношение не один кортеж, а столько, сколько предметов ведет этот преподаватель. Аналогично, при добавлении еще одного предмета требуется добавить столько кортежей, сколько детей имеет преподаватель. А если преподаватель не имеет детей, то информацию о том, какие предметы он ведет, вообще нельзя занести в отношение.

Для избавления от этих аномалий необходимо привести отношение к четвертой нормальной форме.

Отношение находится в четвертой нармальной форме (4НФ ), если оно находится в нормальной форме Бойса–Кодда и в нем отсутствуют многозначные зависимости, которые не являются функциональными.

После приведения отношения Преподаватель к 4НФ мы получим три отношения:

Преподаватель_1 (Номер , Должность ),

Преподаватель_2 (Номер , Имя_ребенка ),

Преподаватель_3 (Номер , Предмет ).

Свойства декомпозиции

Выступает нормализация базы данных или функциональная зависимость — это ситуация, в которой значение позволяет выполнить плавный переход к следующему значению в последовательности без какого-либо перерыва. Для этого типа ситуации существует поток информации в базе данных который протекает без каких-либо задержек или проблем, а также сохраняется целостность самих данных. Функциональная зависимость имеет определяющее значение при создании и эксплуатации реляционных баз данных, поскольку в процесс вовлекаются легкие ассоциации с одним значением или типом данных с соответствующими значениями.

Один из самых простых способов, чтобы понять, как функциональная зависимость выполняет работу является рассмотреть использование государственного идентификационного номера, такой как номер социального страхования, который регулярно издается на каждого гражданина России. С помощью этого номера в качестве средства идентификации, возможно, для работодателей получить доступ к информации о владельце этого номера; потенциальные кредиторы и другие кредиторы могут использовать номер доступа к соответствующей финансовой информации о заявителе, а также номер даёт возможность получить доступ к информации, такой как налоги, начисления и уплаченные налоги, доходы от одного года к следующему, и для расчета выхода на пенсию, когда человек будет в конечном итоге пользоваться заслуженной после выхода на пенсию. Во многих случаях, работодатели могут на самом деле использовать этот же номер, что и первичный идентификационный номер сотрудника или некоторые части числа реляционных инструментов для доступа к остальной части электронного файла работника.

В рамках разработки баз данных и её работы, функциональная зависимость служит для того, чтобы позволить пользователям вводить некоторые значения, которые в очередь могут быть использованы для получения информации, которая является желательной. Например, продавец может ввести значение названия компании для того, чтобы извлечь все записи, связанные с контактами, связанными с корпоративным клиентом. Подобным образом, продавец, который планирует продажи может ввести название города в качестве значения и в качестве средства доступа по имени и контактной информации всех клиентов, находящихся рядом с его или ее пунктом назначения, что делает для него легче организовать встречи с этими клиентами.

Пока точная структура, такая как система которая обеспечивает функциональную зависимость может варьироваться в зависимости от приложения, конечный результат будет всё тот же. Одно значение связано с другим, что позволяет получить доступ к необходимой информации с относительной легкостью. С таким количеством записей, которые хранятся в базах данных, а не полагаться на старый метод жесткого копирования файлов, этот тип реляционных зависимостей является очень важным для поиска и использования соответствующих данных.