Анализ существующих подходов к распознаванию лиц. Системы контроля доступа. Кодировка нашего изображения лица

  • 05.07.2019

    Что говорить, если в одной только Москве уже работает сеть из более 150 000 камер наружного видеонаблюдения. От них никуда не скрыться, и это заставляет людей задумываться, но масштабы «слежки» не настолько велики. Сеть использует мощную систему распознавания лиц, но для ее работы необходимо много энергии, поэтому в режиме реального времени работают всего 2-4 тысячи камер. Массовым слежением за населением пока только пугают, поэтому стоит сосредоточиться на реальных плюсах работы данной технологии. Но обо всем по порядку.

    Как работает система распознавания лиц?

    Никогда не задумывались о том, как вы сами узнаете лицо, распознаете его? А как это делает компьютер? Конечно, у человеческих лиц есть определенные свойства, которые легко описать. Расстояние между глазами, положение и ширина носа, форма надбровных дуг и подбородка - все эти детали вы подмечаете бессознательно, когда смотрите на другого человека. Компьютер же делает все это с определенной эффективностью и точностью, потому что, совмещая все эти метрики, получает математическую формулу человеческого лица.

    Итак, насколько хорошо работает система распознавания лиц в настоящее время? Вполне неплохо, но иногда ошибается. Если вы когда-нибудь сталкивались с ПО, распознающим лица на Facebook или на другой платформе, вы наверняка замечали, что забавных результатов бывает столько же, сколько и точных. И все же, хотя технология работает не со 100-процентной точностью, она достаточно хороша, чтобы найти широкое применение. И даже заставить понервничать.

    Пол Хоуи из NEC говорит, что их система распознавания лиц сканирует лица на предмет индивидуальных идентификаторов:

    «К примеру, многие считают расстояние между глазами уникальной характеристикой. Или же это может быть расстояние от подбородка до лба и другие компоненты. Мы, в частности, учитываем 15-20 факторов, которые считаются важными, а также другие факторы, уже не настолько значимые. Создается трехмерное изображение головы человека, поэтому даже если она частично будет закрыта, мы все равно сможем получить точное соответствие. Затем система берет сигнатуру лица и пропускает ее через базу данных».

    Стоит ли переживать о программах, распознающих лица?

    Прежде всего, распознавание лиц - это данные. Данные можно собирать и хранить, зачастую без разрешения. Как только информация собрана и сохранена, она открыта и для взлома. Платформы с ПО, распознающим лица, пока не подвергались серьезным взломам, но по мере распространения технологий ваши биометрические данные оказываются в руках все большего числа людей.

    Существуют также вопросы владения. Большинство людей не знают, что когда они регистрируются в социальных медиаплатформах вроде Facebook, их данные с этого момента принадлежат этой самой Facebook. Поскольку число компаний, использующих распознавание лиц, постоянно растет, очень скоро даже не придется загружать собственные фотографии в Интернет, чтобы оказаться скомпрометированным. Они уже там хранятся, и хранятся давно.

    Говоря о программном обеспечении, все они работают по-разному, но в основе своей используют похожие методы и нейросети. У каждого лица есть множество отличительных признаков (в мире невозможно найти два идентичных лица, а ведь сколько их было за всю историю человечества!). К примеру, программное обеспечение FaceIt определяет эти признаки как узловые точки. Каждое лицо содержит примерно 80 узловых точек, схожих с теми, что мы упоминали прежде: расстояние между глазами, ширина носа, глубина глазных впадин, форма подбородка, длина челюсти. Эти точки измеряются и создают числовой код - «отпечаток лица» - который затем попадает в базу данных.

    В прошлом распознавание лиц опиралось на двумерные снимки для сравнения или идентификации других двумерных снимков из базы данных. Для пущей эффективности и точности изображение должно было быть лицом, прямо смотрящим в камеру, с небольшой дисперсией света и без особого выражения лица. Конечно, работало это чертовски плохо.

    В большинстве случаев снимки не создавались в подходящей среде. Даже небольшая игра света могла снизить эффективность системы, что приводило к высоким показателям отказа.

    На смену 2D пришло 3D-распознавание. Эта недавно появившаяся тенденция в программном обеспечении использует 3D-модель, обеспечивающую высокую точность распознавания лица. Запечатлевая трехмерное изображение поверхности лица человека в реальном времени, ПО выделяет отличительные черты - где больше всего выдаются жесткие ткани и кость, например, кривые глазного гнезда, носа и подбородка - для идентификации субъекта. Эти области уникальны и не меняются со временем.

    Используя глубину и ось измерения, на которые не влияет освещение, система трехмерного распознавания лиц может даже использоваться в темноте и распознавать объекты под разными углами (даже в профиль). Подобное программное обеспечение проходит через несколько этапов, идентифицируя человека:

  • Обнаружение : получение снимка при помощи цифрового сканирования существующей фотографии (2D) или видео для получения живой картинки субъекта (3D).
  • Центровка : определив лицо, система отмечает положение головы, размер и позу.
  • Измерение : система измеряет кривые на лице с точностью до миллиметра и создает шаблон.
  • Репрезентация : система переводит шаблон в уникальный код. Этот код задает каждому шаблону набор чисел, представляющих особенности и черты лица.
  • Сопоставление : если снимок в 3D и база данных содержит трехмерные изображения, сопоставление пройдет без изменений снимка. Но если же база данных состоит из двумерных снимков, трехмерное изображение раскладывается на разные составляющие (словно сделанные под разными углами двумерные снимки одних и тех же черт лица), и они конвертируются в 2D-изображения. И затем находится соответствие в базе данных.
  • Верификация или идентификация : в процессе верификации снимок сравнивается только с одним снимков в базе данных (1:1). Если целью же стоит идентификация, снимок сравнивается со всеми снимками в базе данных, что приводит к ряду возможных совпадений (1:N). Применяется тот или иной другой метод по необходимости.

Где используются системы распознавания лиц?

В прошлом системы распознавания лиц находили применение в основном в сфере правоохранения, поскольку органы использовали их для поиска случайных лиц в толпе. Некоторые правительственные учреждения также использовали подобные системы для безопасности и для устранения мошенничества на выборах.

Однако есть много других ситуаций, в которых такое программное обеспечение становится популярным. Системы становятся дешевле, их распространение растет. Теперь они совместимы с камерами и компьютерами, которые используются банками и аэропортами. Туристические агентства работают над программой «бывалого путешественника»: с ее помощью они проводят быстрый скрининг безопасности для пассажиров, которые добровольно предоставляют информацию. Очереди в аэропортах будут продвигаться быстрее, если люди будут проходить через систему распознавания лиц, сопоставляющую лица с внутренней базой данных.

Другие потенциальные применения включают банкоматы и терминалы выдачи наличных денег. Программное обеспечение может быстро проверить лицо клиента. После разрешения клиента банкомат или терминал делает снимок лица. Программное обеспечение создает отпечаток лица, защищающий клиента от кражи личных данных и мошеннических транзакций, - банкомат просто не выдаст деньги человеку с другим лицом. Даже ПИН-код не потребуется.

Волшебство? Технологии!

Особенно важным и интересным может быть развитие технологии распознавания лиц в сфере банковских переводов. На днях российский банк «Открытие» представил собственное уникальное решение, разработанное под технологическим брендом Open Garage: перевод денег по фотографии . Вместо того чтобы вбивать номер карты или телефона, достаточно просто сфотографировать человека, которому нужно сделать перевод. Система распознавания лиц сравнит фото с эталонным (делается, когда банк выдает карту) и подскажет имя и фамилию. Останется только выбрать карту и ввести сумму. Что особенно важно, клиенты сторонних банков также могут использовать эту функцию для переводов клиентам «Открытия» - отправитель переводов может пользоваться картой любого российского банка.

«Использование фотографии клиента вместо номера банковской карты - это принципиально новый подход к онлайн-переводам, основанный на использовании нейросетевой системы распознавания лиц, которая позволяет с высокой степенью точности идентифицировать клиента по его биометрическим данным, - говорит начальник Управления развития партнерских систем банка «Открытие» Алексей Матвеев. - Сервис открывает для пользователей совершенно новые жизненные сценарии для выполнения денежных переводов. В настоящее время ни один из участников финансового рынка в мире не предлагает подобного сервиса своим клиентам».

Мобильное приложение «Открытие. Переводы» можно .

Лицо человека уникально, технологии биометрического распознавания лиц точны и доступны. Если сложить два этих факта, можно смело делать прогноз: идентификация человека по лицу имеет все шансы стать одним из основных способов подтверждения личности.

Сергей Щербина, директор по маркетингу компании «Вокорд», на пяти примерах показывает, в каких областях эта технология уже работает.

Сегодня на рынке представлены сразу несколько типов подобных систем и выполняют они разные по уровню сложности задачи: от дистанционного распознавания в толпе до учета рабочего времени в офисе. Решения для распознавания лиц доступны заказчикам на разных платформах – это серверная архитектура, мобильные и встраиваемые решения и облачные сервисы.

Современные системы работают на нейросетевых алгоритмах глубокого обучения, поэтому точность распознавания максимальная даже для изображений низкого качества, они устойчивы к поворотам головы и обладают другими преимуществами.

Пример 1. Общественная безопасность

Обеспечение безопасности – это своего рода отправная точка, с которой началось внедрение систем биометрической идентификации. Системы дистанционного распознавания лиц применяются для обеспечения безопасности объектов массового нахождения людей.

Самая сложная задача – идентификация человека в толпе.

Так называемое некооперативное распознавание, когда человек не взаимодействует с системой, не смотрит в объектив камеры, отворачивается или пытается скрыть лицо. Например, на транспортно-пересадочных узлах, метро, крупных международных мероприятиях.

Кейсы

Одним из самых значимых проектов 2017 для нашей компании стала крупнейшая международная выставка EXPO-2017, проходившая в Казахстане этим летом. В системе дистанционного биометрического распознавания лиц применялись специализированные камеры.

Выделение лиц в кадре происходит в самой камере и на сервер передается только изображение лица, это разгружает канал и существенно снижает затраты на сетевую инфраструктуру. Камеры контролировали четыре входные группы, в разных частях комплекса. Архитектура системы была разработана таким образом, что входные группы работали по отдельности или все вместе, при этом корректная работа системы обеспечивалась всего 4 серверами и 48 камерами.

С помощью видеоаналитики в режиме онлайн на крупных территориально-распределенных объектах ищут подозреваемых, пропавших людей, расследуют происшествия и инциденты, ведут анализ пассажиропотоков.

В некоторых аэропортах до конца 2017 года биометрия начнет применяться и для регистрации пассажиров на рейс. По данным портала Tadviser , системы «умных гейтов» в аэропортах планируют также внедрить 12 европейских стран (Испания, Франция, Нидерланды, Германия, Финляндия, Швеция, Эстония, Венгрия, Греция, Италия, Румыния).

А следующим шагом должно стать внедрение систем распознавания лиц для прохождения пограничного и миграционного контроля. При государственной поддержке внедрение идентификации по лицу может стать такой же обыденностью, как рамки металлодетекторов в перспективе ближайших трех-пяти лет.

Пример 2. Знать своего покупателя в лицо

Бизнес тоже делает ставку на биометрическую идентификацию по лицу. В первую очередь, это розничная торговля.

Системы распознают пол и возраст покупателей, частоту и время посещения торговых точек, аккумулируют статистику по каждому отдельному магазину сети.

После этого для отдела в автоматическом режиме выводятся подробные отчеты как в целом по сети, так и с разбивкой по торговым точкам. На основе этих отчетов удобно составлять «портрет клиента», планировать эффективные маркетинговые кампании.

К сожалению, мы не можем разглашать заказчиков. В их числе крупнейшие ритейлеры и DIY (Do It Youself) сети, в ассортименте которых присутствует дорогой инструмент и комплектующие.

Как это работает

Многие опасаются утечек конфиденциальной информации, но мы особо подчеркиваем, что никакие личные данные распознанных людей не хранятся в архивах. Более того, хранится даже не изображение, а его биометрический шаблон, по которому изображение не восстановить.

При повторных визитах «подтягивается» биометрический шаблон лица, поэтому система точно знает, кто и сколько раз был в магазине. За сохранность личных данных можно быть спокойным.

Для небольших магазинов, автосалонов, аптек механизм сбора маркетинговой аналитики реализован в облачном сервисе распознавания. Для предприятий малого и среднего бизнеса такой вариант является более предпочтительным, поскольку не требует затрат на серверное оборудование, найм дополнительного персонала, обновление софта и так далее Это, во-первых, удобный инструмент для оценки эффективности торговых точек, а во-вторых, отличный помощник для выявления воров. То есть одна система выполняет сразу несколько функций.

Пример 3. Системы контроля и управления доступом

Помимо вышеперечисленных функций, систему распознавания лиц удобно применять как альтернативу Proximity-картам в системах контроля и управления доступом (СКУД).

Они имеют ряд преимуществ: обеспечивают высокую достоверность распознавания, их невозможно обмануть, скопировать или украсть идентификатор, их легко интегрировать с существующим охранным оборудованием. Можно даже использовать уже имеющиеся камеры наблюдения. Системы биометрической идентификации лиц работают дистанционно и очень быстро с фиксированием событий в архиве.

На базе биометрической СКУД удобно вести учет рабочего времени сотрудников, особенно в крупных офисных центрах.

Кейс

Мы внедрили такую систему на крупном индийском предприятии, которое специализируется в сфере логистики в прошлом году. Число постоянных сотрудников – более 600 человек. При этом компания работает в круглосуточном режиме и практикует «плавающий» трудовой график. С помощью нашей системы дистанционной биометрической идентификации заказчик получил полный и достоверный учет рабочего времени сотрудников, инструмент превентивной безопасности объекта и СКУД.

Пример 4. Пропуск болельщика на стадион

В момент покупки билета в кассах лицо каждого покупателя автоматически фотографируется и подгружается в систему. Так формируется база посетителей матча. Если покупка была через интернет или мобильное приложение, то авторизация возможна удаленно с помощью «селфи». В дальнейшем, когда человек придет на стадион, система его распознает без всяких паспортов.

Идентификация посетителей спортивных соревнований стала обязательной согласно Федеральному закону № 284-ФЗ «О внесении изменений в статью 20 Федерального закона «О физической культуре и спорте в Российской Федерации» и статьи 32.14 Кодекса Российской Федерации об административных правонарушениях.

На стадион пройдет именно тот, кто купил билет, передать билет другому лицу или пройти по поддельному билету невозможно. Дистанционное распознавание лиц на стадионах работает по такому же принципу, как на крупных территориально-распределенных транспортных объектах: если человек внесен в списки лиц, которым доступ на стадион запрещен, система его не пропустит.

Кейс

В марте 2016 года в рамках совместного проекта Вокорда и Ханты-Мансийского филиала ПАО «Ростелеком» система дистанционного распознавания лиц применялась для обеспечения безопасности Кубка мира по биатлону, проходившего в Ханты-Мансийске. С 2015 года такая же система успешно работает в многофункциональном спортивном комплексе «Арена Омск». Он входит в шестерку самых больших спортивных сооружений России, является крупнейшим спортивно-развлекательным объектом Сибири и базой хоккейного клуба «Авангард».

Пример 5. Интернет-банкинг и банкоматы

Еще одной нишей, в которой обосновалось распознавание лиц, является банковская сфера. Здесь внедрение новых технологий проходит интенсивно, поскольку финансовый сектор больше других заинтересован в достоверности и сохранности персонифицированной информации.

Сегодня биометрия постепенно начинает, если не вытеснять привычные и устоявшиеся «бумажные» документы, то идти с ними вровень. При этом существенно повышается степень защиты при проведении платежей: для подтверждения транзакции достаточно посмотреть в камеру своего смартфона. При этом сами биометрические данные никуда не передаются, соответственно, перехватить их невозможно.

Внедрение технологий биометрической идентификации напрямую связано с массовым использованием электронных сервисов и устройств, развитием интернет-торговли и распространением пластиковых карт взамен наличных денег.

С появлением высокопроизводительных графических процессоров (GPU) и сверхкомпактных аппаратных платформ на их базе – таким как NVIDIA Jetson – распознавание лиц начало внедряться в банкоматы. Теперь снять наличные или провести операции по счету может только владелец карты, например, через банкоматы Тинькофф-банка . А PIN-код скоро может уйти на пенсию.

Биометрическую систему распознавания лиц планируется включить в стандарт «смарт-сити» для российских городов, который начал разрабатывать Минстрой. Об этом рассказал «Известиям» замглавы ведомства Андрей Чибис. Он отметил, что такую технологию было бы удобно использовать в общественном транспорте: пассажир заходит в автобус, программа его узнает и списывает за проезд деньги с банковского счета. Министерство намерено ознакомиться с опытом китайских городов и распространить подобные технологии в России.

Министерство планирует привлечь китайские компании, в том числе Huawei, к внедрению совместно с «Ростелекомом» технологии биометрии и анализа событий в российских городах. Об этом сообщил «Известиям» заместитель министра строительства и ЖКХ Андрей Чибис. По его словам, в случае успеха эта система ляжет в основу стандарта «смарт-сити» - минимального набора решений для повышения комфортности городов. К разработке стандарта ведомство уже приступило.

Представители министерства планируют посетить Китай, чтобы оценить, как современные технологии, включая биометрию, работают там.

Насколько я знаю, сейчас идет дискуссия по поводу внедрения такой технологии в Москве. Очевидно, что из-за необходимости использовать карточки, время посадки пассажиров затягивается. А алгоритм распознавания лиц работает так: пассажир заходит в метро или автобус, программа его распознает и списывает за проезд деньги с банковского счета, - привел пример Андрей Чибис.

Во многих городах уже установлено значительное количество камер, то есть инфраструктура в целом создана, подчеркнул чиновник. Вопрос в нормативном регулировании и реализации пилотных проектов - в случае их успеха дальнейший процесс будет стремителен: «как в свое время быстро ушли от жетонов в метро, так можем уйти и от турникетов».

В пресс-службе «Ростелекома» отметили, что идентификация пассажиров в городском транспорте, в том числе для оплаты проезда, - это одна из самых очевидных возможностей использования системы.

В мире есть реальные примеры, и в России создание такого рода решений ожидается уже в скором времени, - подтвердили «Известиям» в компании.

Проект «Умный город», в рамках которого планируется развивать новую технологию, рассчитан на шесть лет. По словам Андрея Чибиса, никто не говорит, что в течение этого срока везде обязательно появится система распознавания лиц, но нужно двигаться в этом направлении. «Это же не только вопрос безопасности, но и комфорта. Мы изучим эту технологию и в ближайшее время определимся с возможностью внедрения - конечно, в первую очередь, с точки зрения ее стоимости», - указал он.

Генеральный директор компании VisionLabs, специализирующейся на компьютерном зрении, Александр Ханин отмечает, что процесс установки камер и серверов технически несложный, поэтому в ближайшем будущем подобные системы могут быть внедрены повсеместно. Их можно использовать в том числе для поиска пропавших, считает он. Стоимость подключения к каждой камере зависит от сценария использования и типа камеры: от 200 рублей до нескольких тысяч.

Заведующий кафедрой телекоммуникационных систем Московского института электронной техники Александр Бахтин отметил, что сети городов готовы к передаче таких данных. Однако на начальном этапе внедрения новых технологий всегда есть риск нарушения конфиденциальности. Существует достаточно много точек, в которых сведения могут быть перехвачены. Но после тестовых испытаний система выстраивается и эффективно работает.

Томограф в поликлинике генерирует гораздо больше информации, чем видеопоток из какого-нибудь автобуса. Вопрос в том, кто ее анализирует и в каких целях. Хотелось бы, чтобы законодательство защищало нас от тех сотрудников, которые используют персональные данные неправомочно, - сказал «Известиям» Александр Бахтин.

В «Ростелекоме» признают, что оборот таких данных - очень чувствительная тема, поэтому, как и в других странах, в России единая биометрическая система создается под контролем государства. На первом этапе в сотрудничестве с Центробанком она внедряется в интересах банковской сферы. Уже проводились эксперименты по распознаванию лиц для бесконтактного прохода в музеи, и в дальнейшем система будет развиваться, уверены в компании.

В сентябре 2017 года о внедрении системы видеонаблюдения с функцией распознавания лиц объявили власти Москвы. Сообщалось, что столичная сеть включает в себя 160 тыс. видеокамер и охватывает 95% подъездов жилых домов. Лица на записях сканируются, чтобы при необходимости можно было сравнить данные с информацией в различных базах - например, правоохранительных органов, когда речь идет о поиске правонарушителя, указано на портале мэра Москвы. Система способна установить личность человека на видео, его пол и возраст.

Госкорпорация «Ростех» применила технологию распознавания лиц во время ЧМ-2018. С ее помощью, например, удалось вычислить фаната, которому по решению суда запрещено посещать спортивные мероприятия. Алгоритм позволяет узнавать лица с точностью до 99%. В госкорпорации отмечали, что поиск конкретного человека среди миллиарда лиц занимает менее полусекунды.

Одним из залогов качества жизни в современном социуме является правильный подход к обеспечению личной безопасности и сохранности имущества. Требования предъявляемые к системам видео-регистрации постоянно возрастают. Хорошая система наблюдения в наши дни должна не только уметь записывать происходящее на съемные носители, но и распознавать, и идентифицировать людей в кадре.

Места применения

Функция «распознавание лиц» нашла свое применение во многих аспектах человеческой жизни. С помощью систем видеонаблюдения данного типа можно:

  • организовать проходную на предприятии или других закрытых от посторонних объектов. Видеонаблюдение можно связать с турникетами и организовать автоматический пункт пропуска по принципу «свои-чужие»;
  • организовать систему противодействия хищениям в торговых точках и других частных владениях. Любые магазины, особенно большие, сталкиваются с проблемой пристрастия некоторых посетителей к воровству. Зачастую одни и те же люди, склонны осуществлять кражи в одних и тех же торговых точках. Установив камеры с системой распознавания лиц, можно более тщательно приглядываться к действиям уже попавшегося на воровстве человека. Сканер сообщит на пульт охраны как только он зайдет в магазин;
  • организовать систему противодействия проникновению на территорию домовладений и другие закрытые объекты. Порой человеку сложно на мониторе отличить затаившегося злоумышленника от куста, или другого предмета, тем более если камеры установлены на слабоосвещенном участке местности. Но ведь то что недоступно человеку, вполне может сделать компьютерный модуль;
  • фейс-контроль в ночных клубах — 100% защита от непрошеных гостей.

Принцип работы

Система видеонаблюдения с функцией «распознавание лиц» работает по принципу сравнения полученного изображения с имеющимся в базе. Среднестатистический комплекс умеет идентифицировать человеческое лицо на расстоянии не превышающем десяти метров от камеры. При этом посетитель будет узнан даже с учетом наличия изменений физических параметров лица: смена прически, борода, наличие очков и т. д. Анализ основывается на сравнении биометрических параметров строения головы, индивидуальных для каждого человека. При этом сканирование происходит на ходу, посетителю достаточно повернуть лицо к сканеру во время движения. Система видеонаблюдения может быть связана с турникетами и другими устройствами авторизированного входа и работать автоматически. Неопознанные посетители не получат доступа на охраняемую территорию, а их фото будет сохранено в базе для обработки службой охраны.

Обычно такие системы устанавливаются в больших корпорациях, где от безопасности зависит будущий успех компании, например, компании по разработке новых типов вооружения или микросхем, биологическая лаборатория. Система автоматически распознает всех сотрудников и сравнивает с базой данных. В случае несоответствия или отсутствия человека в системе, она активизирует протоколы безопасности, в комнате охраны загорается тревожный сигнал и красная световая индикация. Место обнаружения нарушителя точно указывается на электронной карте объекта и охрана за считаные секунды находит нарушителя.

Методы работы

Камеры систем распознавания лиц работают в двух режимах двухмерном и трехмерном. В случае с 2D системами, распознавание происходит на основе плоского изображения. Двухмерные камеры весьма чувствительны к уровню освещенности помещения, от этого параметра в значимой мере зависит качество конечной картинки. При плохом свете изображение будет трудноразличимым. 3D камеры для индикации воссоздают трехмерный образ на основе полученного изображения. Плохая освещённость для них особой помехой не является, обычно это может лишь незначительно исказить текстуру лица.

Виды

В зависимости от целей и задач, поставленных перед системой видеонаблюдения с функцией распознавания лиц, они делятся на:

  • обнаружения (Камера от 1 Мп, фокусное расстояние от 1 мм). Действие этой охранной системы направлены на фиксирование проникновений на подконтрольные объекты. Сканер в состоянии отличить человека от кошки или белки, но не сможет идентифицировать его;
  • распознавания (Камера от 2 Мп, фокусное расстояние от 6 мм). В данном случае основной функцией сканера является распознавание лиц посетителей по принципу «свои-чужие». При просмотре видеоряда изображение будет достаточно смазанным, Вы узнаете на нем знакомые лица, но в случае если на объект проник вор, найти его по данным кадрам будет весьма затруднительно;
  • идентификации (Камера более 2 Мп, фокусное расстояние от 8 мм) Данные системы могут выполнять все функции предыдущих типов, при этом качества получаемого изображения будет вполне достаточно чтобы опознать злоумышленника. Такое фото вполне можно передать в судебные органы и органы правопорядка.

В скобках к описанию каждого типа систем видеонаблюдения мы обозначили минимальные требования к разрешению камеры и фокусному расстоянию объектива. При заказе оборудования необходимо учитывать, что этих характеристик достаточно при идеальных условиях для съемки. Естественно на практике такое встречается редко, поэтому выбирая сканеры лучше приобрести устройства с запасом, к примеру, для систем распознавания — разрешение в 2 Мп и фокусное расстояние в 8 мм, для систем индикации — разрешение в 5 МП и фокусное расстояние в 12 мм.

Естественно, конечный результат зависит не только от этих характеристик. Фокусное расстояние и разрешение весьма важны, но при монтаже камеры необходимо учесть освещенность, углы обзора и множество других параметров. Поэтому подбор и установку лучше доверить профессионалам.

Взять кредит, оформить визу, да и просто запустить смартфон последней модели — сделать все это сегодня невозможно без участия алгоритмов распознавания лиц. Они помогают полицейским в расследованиях, музыкантам — на сцене, но понемногу превращаются во всевидящее око, следящее за всеми нашими действиями онлайн и офлайн.

Алгоритмы (технологии)

Определить человека по фото с точки зрения компьютера означает две очень разные задачи: во‑первых, найти лицо на снимке (если оно там есть), во‑вторых, вычленить из изображения те особенности, которые отличают этого человека от других людей из базы данных.

1. Найти

Попытки научить компьютер находить лицо на фотографиях проводились еще с начала 1970-х годов. Было испробовано множество подходов, но важнейший прорыв произошел существенно позднее — с созданием в 2001 году Полом Виолой и Майклом Джонсом метода каскадного бустинга, то есть цепочки слабых классификаторов. Хотя сейчас есть и более хитрые алгоритмы, можно поспорить, что и в вашем сотовом телефоне, и в фотоаппарате работает именно старый добрый Виола — Джонс. Все дело в замечательной быстроте и надежности: даже в далеком 2001 году средний компьютер с помощью этого метода мог обрабатывать по 15 снимков в секунду. Сегодня эффективность алгоритма удовлетворяет всем разумным требованиям. Главное, что нужно знать об этом методе, — он устроен удивительно просто. Вы даже не поверите насколько.

  1. Шаг1. Убираем цвет и превращаем изображение в матрицу яркости.
  2. Шаг 2. Накладываем на нее одну из квадратных масок — они называются признаками Хаара. Проходимся с ней по всему изображению, меняя положение и размер.
  3. Шаг 3. Складываем цифровые значения яркости из тех ячеек матрицы, которые попали под белую часть маски, и вычитаем из них те значения, что попали под черную часть. Если хотя бы в одном из случаев разность белых и черных областей оказалась выше определенного порога, берем эту область изображения в дальнейшую работу. Если нет — забываем про нее, здесь лица нет.
  4. Шаг 4. Повторяем с шага 2 уже с новой маской — но только в той области изображения, которая прошла первое испытание.

Почему это работает? Посмотрите на признак . Почти на всех фотографиях область глаз всегда немного темнее области непосредственно ниже. Посмотрите на признак : светлая область посередине соответствует переносице, расположенной между темными глазами. На первый взгляд черно-белые маски совсем не похожи на лица, но при всей своей примитивности они имеют высокую обобщающую силу.

Почему так быстро? В описанном алгоритме не отмечен один важный момент. Чтобы вычесть яркость одной части изображения из другой, понадобилось бы складывать яркость каждого пикселя, а их может быть много. Поэтому на самом деле перед наложением маски матрица переводится в интегральное представление: значения в матрице яркости заранее складываются таким образом, чтобы интегральную яркость прямоугольника можно было получить сложением всего четырех чисел.

Как собрать каскад? Хотя каждый этап наложения маски дает очень большую ошибку (реальная точность ненамного превышает 50%), сила алгоритма — в каскадной организации процесса. Это позволяет быстро выкидывать из анализа области, где лица точно нет, и тратить усилия только на те области, которые могут дать результат. Такой принцип сборки слабых классификаторов в последовательности называется бустингом (подробнее о нем можно прочитать в октябрьском номере «ПМ» или ). Общий принцип такой: даже большие ошибки, будучи перемножены друг на друга, станут невелики.

2. Упростить

Найти особенности лица, которые позволили бы идентифицировать его владельца, означает свести реальность к формуле. Речь идет об упрощении, причем весьма радикальном. Например, различных комбинаций пикселей даже на миниатюрном фото 64 x 64 пикселя может быть огромное количество — (2 8) 64 x 64 = 2 32768 штук. При этом для того, чтобы пронумеровать каждого из 7,6 млрд людей на Земле, хватило бы всего 33 бита. Переходя от одной цифры к другой, нужно выкинуть весь посторонний шум, но сохранить важнейшие индивидуальные особенности. Специалисты по статистике, хорошо знакомые с такими задачами, разработали множество инструментов упрощения данных. Например, метод главных компонент, который и заложил основу идентификации лиц. Впрочем, в последнее время сверточные нейросети оставили старые методы далеко позади. Их строение довольно своеобразно, но, по сути, это тоже метод упрощения: его задача — свести конкретное изображение к набору особенностей.


Накладываем на изображение маску фиксированного размера (правильно она называется ядром свертки), перемножаем яркость каждого пикселя изображения на значения яркости в маске. Находим среднее значение для всех пикселей в «окошке» и записываем его в одну ячейку следующего уровня.


Сдвигаем маску на фиксированный шаг, снова перемножаем и снова записываем среднее в карту признаков.


Пройдясь по всему изображению с одной маской, повторяем с другой — получаем новую карту признаков.


Уменьшаем размер наших карт: берем несколько соседних пикселей (например, квадрат 2x2 или 3x3) и переносим на следующий уровень только одно максимальное значение. То же самое проводим для карт, полученных со всеми другими масками.


В целях математической гигиены заменяем все отрицательные значения нулями. Повторяем с шага 2 столько раз, сколько мы хотим получить слоев в нейросети.


Из последней карты признаков собираем не сверточную, а полносвязную нейросеть: превращаем все ячейки последнего уровня в нейроны, которые с определенным весом влияют на нейроны следующего слоя. Последний шаг. В сетях, обученных классифицировать объекты (отличать на фото кошек от собак и пр.), здесь находится выходной слой, то есть список вероятностей обнаружения того или иного ответа. В случае с лицами вместо конкретного ответа мы получаем короткий набор самых важных особенностей лица. Например, в Google FaceNet это 128 абстрактных числовых параметров.

3. Опознать

Самый последний этап, собственно идентификация, — самый простой и даже тривиальный шаг. Он сводится к тому, чтобы оценить похожесть полученного списка признаков на те, что уже есть в базе данных. На математическом жаргоне это означает найти в пространстве признаков расстояние от данного вектора до ближайшей области известных лиц. Точно так же можно решить и другую задачу — найти похожих друг на друга людей.

Почему это работает? Сверточная нейросеть «заточена» на то, чтобы вытаскивать из изображения самые характерные черты, причем делать это автоматически и на разных уровнях абстракции. Если первые уровни обычно реагируют на простые паттерны вроде штриховки, градиента, четких границ и т. д. , то с каждым новым уровнем сложность признаков возрастает. Маски, которые нейросеть примеряет на высоких уровнях, часто действительно напоминают человеческие лица или их фрагменты. Кроме того, в отличие от метода главных компонент, нейросети комбинируют признаки нелинейным (и неожиданным) образом.

Откуда берутся маски? В отличие от тех масок, что используются в алгоритме Виолы — Джонса, нейросети обходятся без помощи человека и находят маски в процессе обучения. Для этого нужно иметь большую обучающую выборку, в которой имелись бы снимки самых разных лиц на самом разном фоне. Что касается того результирующего набора особенностей, которые выдает нейросеть, то он формируется по методу троек. Тройки — это наборы изображений, в которых первые два представляют собой фотографию одного и того же человека, а третье — снимок другого. Нейросеть учится находить такие признаки, которые максимально сближают первые изображения между собой и при этом исключают третье.

Чья нейросеть лучше? Идентификация лиц давно уже вышла из академии в большой бизнес. И здесь, как и в любом бизнесе, производители стремятся доказать, что именно их алгоритмы лучше, хотя не всегда приводят данные открытого тестирования. Например, по информации конкурса MegaFace, в настоящее время лучшую точность показывает российский алгоритм deepVo V3 компании «Вокорд» с результатом в 92%. Гугловский FaceNet v8 в этом же конкурсе показывает всего 70%, а DeepFace от Facebook с заявленной точностью в 97% в конкурсе вовсе не участвовал. Интерпретировать такие цифры нужно с осторожностью, но уже сейчас понятно, что лучшие алгоритмы почти достигли человеческой точности распознавания лиц.

Живой грим (искусство)

Зимой 2016 года на 58-й ежегодной церемонии вручения наград «Грэмми» Леди Гага исполнила трибьют умершему незадолго до того Дэвиду Боуи. Во время выступления по ее лицу растеклась живая лава, оставив на лбу и щеке узнаваемый всеми поклонниками Боуи знак — оранжевую молнию. Эффект движущегося грима создавала видеопроекция: компьютер отслеживал движения певицы в режиме реального времени и проецировал на лицо картины, учитывая его форму и положение. В Сети легко найти видеоролик, на котором заметно, что проекция еще несовершенна и при резких движениях слегка запаздывает.


Технологию видеомаппинга лиц Omote Нобумичи Асаи развивает с 2014 года и уже с 2015-го активно демонстрирует по всему миру, собрав приличный список наград. Основанная им компания WOW Inc. стала партнером Intel и получила хороший стимул для развития, а сотрудничество с Ишикавой Ватанабе из Токийского университета позволило ускорить проекцию. Впрочем, основное происходит в компьютере, и похожие решения используют многие разработчики приложений, позволяющих накладывать на лицо маски, будь то шлем солдата Империи или грим «под Дэвида Боуи».

Александр Ханин, основатель и генеральный директор VisionLabs

«Подобной системе не нужен мощный компьютер, наложение масок может производиться даже на мобильных устройствах. Система способна работать прямо на смартфоне, без отправки данных в облако или на сервер».

«Эта задача называется трекингом точек на лице. Есть много подобных решений и в открытом доступе, но профессиональные проекты отличаются скоростью и фотореалистичностью, — рассказал нам глава компании VisionLabs Александр Ханин. — Самое сложное при этом состоит в определении положения точек с учетом мимики и индивидуальной формы лица или в экстремальных условиях: при сильных поворотах головы, недостаточной освещенности и большой засветке». Чтобы научить систему находить точки, нейронную сеть обучают — сначала вручную, скрупулезно размечая фотографию за фотографией. «На входе это картинка, а на выходе — размеченный набор точек, — поясняет Александр. — Дальше уже запускается детектор, определяется лицо, строится его трехмерная модель, на которую накладывается маска. Нанесение маркеров осуществляется на каждый кадр потока в режиме реального времени».


Примерно так и работает изобретение Нобумичи Асаи. Предварительно японский инженер сканирует головы своих моделей, получая точные трехмерные прототипы и готовя видеоряд с учетом формы лица. Задачу облегчают и небольшие маркеры-отражатели, которые клеят на исполнителя перед выходом на сцену. Пять инфракрасных камер следят за их движениями, передавая данные трекинга на компьютер. Дальше все происходит так, как нам рассказали в VisionLabs: лицо детектируется, строится трехмерная модель, и в дело вступает проектор Ишикавы Ватанабе.

Устройство DynaFlash было представлено им в 2015 году: это высокоскоростной проектор, способный отслеживать и компенсировать движения плоскости, на которой отображается картинка. Экран можно наклонить, но изображение не исказится и будет транслироваться с частотой до тысячи 8-битных кадров в секунду: запаздывание не превышает незаметных глазу трех миллисекунд. Для Асаи такой проектор оказался находкой, живой грим стал работать действительно в режиме реального времени. На ролике, записанном в 2017 году для популярного в Японии дуэта Inori, отставания уже совсем не видно. Лица танцовщиц превращаются то в живые черепа, то в плачущие маски. Это смотрится свежо и привлекает внимание — но технология уже быстро входит в моду. Скоро бабочка, севшая на щеку ведущей прогноза погоды, или исполнители, каждый раз на сцене меняющие внешность, наверняка станут самым обычным делом.


Фейс-хакинг (активизм)

Механика учит, что каждое действие создает противодействие, и быстрое развитие систем наблюдения и идентификации личности не исключение. Сегодня нейросети позволяют сопоставить случайную смазанную фотографию с улицы со снимками, загруженными в аккаунты социальных сетей и за секунды выяснить личность прохожего. В то же время художники, активисты и специалисты по машинному зрению создают средства, способные вернуть людям приватность, личное пространство, которое сокращается с такой головокружительной скоростью.

Помешать идентификации можно на разных этапах работы алгоритмов. Как правило, атакам подвергаются первые шаги процесса распознавания — обнаружение фигур и лиц на изображении. Как военный камуфляж обманывает наше зрение, скрывая объект, нарушая его геометрические пропорции и силуэт, так и машинное зрение стараются запутать цветными контрастными пятнами, которые искажают важные для него параметры: овал лица, расположение глаз, рта и т. д. По счастью, компьютерное зрение пока не столь совершенно, как наше, что оставляет большую свободу в выборе расцветок и форм такого «камуфляжа».


Розовые и фиолетовые, желтые и синие тона доминируют в линейке одежды HyperFace, первые образцы которой дизайнер Адам Харви и стартап Hyphen Labs представили в январе 2017 года. Пиксельные паттерны предоставляют машинному зрению идеальную — с ее точки зрения — картинку человеческого лица, на которую компьютер ловится, как на ложную цель. Несколько месяцев спустя московский программист Григорий Бакунов и его коллеги даже разработали специальное приложение, которое генерирует варианты макияжа, мешающего работе систем идентификации. И хотя авторы, подумав, решили не выкладывать программу в открытый доступ, тот же Адам Харви предлагает несколько готовых вариантов.


Человек в маске или со странным гримом на лице, может, и будет незаметен для компьютерных систем, но другие люди наверняка обратят на него внимание. Однако появляются способы сделать и наоборот. Ведь с точки зрения нейросети изображение не содержит образов в обычном для нас понимании; для нее картинка — это набор чисел и коэффициентов. Поэтому совершенно различные предметы могут выглядеть для нее чем-то вполне сходным. Зная эти нюансы работы ИИ, можно вести более тонкую атаку и подправлять изображение лишь слегка — так, что человеку перемены будут почти незаметны, зато машинное зрение обманется полностью. В ноябре 2017 года исследователи показали, как небольшие изменения в окраске черепахи или бейсбольного мяча заставляют систему Google InceptionV3 уверенно видеть вместо них ружье или чашку эспрессо. А Махмуд Шариф и его коллеги из Университета Карнеги — Меллон спроектировали пятнистый узор для оправы очков: на восприятие лица окружающими он почти не влияет, а вот компьютерная идентификация средствами Face++ уверенно путает его с лицом человека, «под которого» спроектирован паттерн на оправе.