3 типа алгоритма. Словесный способ записи алгоритмов. Вопросы и задания

  • 27.04.2019
Разработала учитель информатики

ГУ «Средняя школа № 19 отдела образования

акимата горда Костаная»

Елеусизова Айнаш Досымхановна

Тема:

Цели:

повышение интереса к изучению предмета; воспитание навыка быстрого мышления; развитие творческой активности учащихся; развитие познавательных интересов.

Задачи:

1. Образовательные

    Закрепить с учащимися понятия алгоритма, исполнителя, системы команд исполнителя, способы представления алгоритмов;

    Познакомить учащихся с типами алгоритмов: линейным, разветвляющимся, циклическим;

    Научить представлению алгоритмов в виде блок-схем;

2. Развивающие

    Активизировать познавательную активность учащихся через мультимедийные средства обучения;

    Развивать образное, критическое, дивергентное мышление;

3. Воспитательные

    Повышение мотивации учащихся на уроке;

    Достижение сознательного уровня усвоения материала учащимися;

    Формирование чувства коллективизма и здорового соперничества;

    Формирование алгоритмического мышления.

Требования к знаниям и умениям:

    Знать типы алгоритмов;

    знать понятия: линейный, разветвляющийся, циклический алгоритмы;

    уметь применять полученные знания при выполнении практических заданий.

Тип урока: комбинированный.

Технология: формирование коммуникативной компетенции;

Методы:

    частично-поисковый, практический.

    информационный (словесный);

    наглядно-иллюстративный;

Ход урока:

I .Организационный момент.

    Приветствие ребят.

Здравствуйте, ребята! Садитесь! Какое у вас настроение? Если хорошее -улыбнитесь всем! Если нет - посмотрите друг на друга и улыбнитесь! Начнем урок!

Я представила вам алгоритм в словесной форме. Посмотрите на доску. Этот же алгоритм изображен графически. Сегодня на уроке мы научимся с вами представлять типы алгоритмов с помощью блок – схем (страница флипчарта 1).

Эпиграфом к нашему уроку будут слова знаменитого французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”.

2. Объявление целей урока.

II . Актуализация знаний учащихся

Но прежде чем приступим к изучению нового материала. Мы должны вспомнить, что изучали на прошлом уроке.

1. Проверка домашнего задания.

Проверить кроссворды, решенные учениками дома.

Ответы:

    графический

    конечность

    информация

    исполнитель

    алгоритм

    программный

    компьютер

    инструмент

2. Работа с Activote (приложение 4) под музыкально-звуковое сопровождение (ссылка на звуковой файл).

“Повторение – мать учения” так говорили великие.

Учитель объясняет алгоритм решения тестовых заданий. Дети на местах работают с Activote .

III . Изучение нового материала.

1. Теоретическая часть.

Ребята, чтобы познакомиться с типами алгоритмов, мы с вами сейчас просмотрим следующие страницы флипчарта, необходимые определения нужно записать в тетрадь.

Для начала, нам надо запомнить, какие геометрические фигуры используются при составлении блок- схем.

Условные обозначения для блок-схем (страница флипчарта 5-6)

Начало или конец программы

- ввод данных

- действия

-условие решения программы

-вывод данных или текста

--цикл с параметром

-подпрограмма

Алгоритмы бывают трех типов: (страница флипчарта 7)

Линейный

Разветвляющийся

Циклический

Линейные алгоритмы


Пример 1 (страница флипчарта 9). Сказка «Курочка Ряба»

Разветвляющийся алгоритм - алгоритм, в котором в зависимости от

выполнения некоторого условия совершается либо одна, либо другая последовательность действий (страница флипчарта 10)

Полная форма (страница флипчарта 11)

Неполная форма

Пример 2. (страница флипчарта 12-13)

Если пошёл дождь, то откройте зонт (неполная форма разветвляющегося алгоритма).и какие действия не выполняются.

Пример 3. (страница флипчарта 12-13)


“Купить мороженое” .


Циклический алгоритм- (страница флипчарта 14)


Пример 4. (страница флипчарта 15.) Алгоритм «Наполнение».

Начало

Конец

2. Первичное закрепление. Решение задач-тренингов (коллективно)

(страница флипчарта 16-17).

Учащиеся по очереди подходят и заполняют блок-схемы во флипчарте.

Тренинг-задача №1 (страница флипчарта 18). «Почисти ковер»

На интерактивной доске, с помощью указателя, перенести правильный порядок действий)

Тренинг-задача № 2 (страница флипчарта 19).

    Заполнить блок-схему пословицей «Болен - лечись, а здоров - берегись».

    Назови тип алгоритма.

Тренинг-задача № 3 (страница флипчарта 20).


Проверить, перетащив рисунок на свободное место.

    Физкультминутка (страница флипчарта 21).

Мы руками поведем -

Будто в море мы плывем.

Раз, два, три, четыре -

Вот мы к берегу приплыли,

Чтобы косточки размять,

Начнем наклоны выполнять -

Вправо, влево, вправо, влево.

Не забудем и присесть -

Раз, два, три, четыре,

Мы выполнили алгоритм, и достигли определенной цели: отдохнули, расслабились.

4. Выполнение практической работы. Работа по разноуровневым карточкам.

(страница флипчарта 22).

И возвращаемся к словам французского ученого Гюстава Гийома “Дорогу осилит идущий, а информатику мыслящий”.

Укажите стрелочками, к какому типу алгоритма относятся данные изображения.

Дайте названия алгоритмам (страница флипчарта 23).

Заполнить таблицу двумя примерами на каждый тип алгоритма (страница флипчарта 24)..

Paint

Вариант 1.(страница флипчарта 25).

«Посадка саженца».

Вариант 2.(страница флипчарта 26).

IV . Домашнее задание (страница флипчарта 27).

1. Выучить конспект.

2. Нарисовать на А4 формате пример циклического алгоритма и блок – схему к сказке «Колобок».

V . Итог урока. (страница флипчарта 28).

На этом урок заканчивается. Наша цель достигнута. Мы повторили основные понятия алгоритма, познакомились типами алгоритмов, успешно применили знания на практике, вспомнили сказки, пословицы.

VI . Рефлексия. . (страница флипчарта 29).

–Что вам сегодня понравилось на уроке?
– Что вы запомнили?
– Что было интересного?

VII .Оценивание.

Сегодня у вас будут вместо отметок – смайлики, которыми я оценю ваши успехи на уроке.

Приложение 2

Технологическая карта №1

Тема урока: Типы алгоритмов: линейные, разветвляющиеся, циклические.

Цели урока : Научимся составлятьклассификацию типов алгоритмов;

Научимся представлять алгоритмы в виде блок-схем.

1. Проверка домашнего задания.

Выполнение тестовых заданий по тестеру

2. Теоретическая часть

Условные обозначения для блок-схем:

Начало или конец программы

- ввод данных

- действия

-условие решения программы

-вывод данных или текста

--цикл с параметром

-подпрограмма

- стрелки – направление процесса

Алгоритмы бывают трех типов: -линейный

Разветвляющийся

Циклический

Линейные алгоритмы – алгоритм, в котором команды выполняются в порядке их записи, т. е. последовательно друг за другом. (страница флипчарта 8)

Пример 1 . Сказка «Курочка Ряба»

Разветвляющийся алгоритм - алгоритм, в котором в зависимости от выполнения некоторого условия совершается либо одна, либо другая последовательность действий.

В словесном описании разветвляющегося алгоритма используются слова "если", "то", "иначе".

Полная форма : «если выполняется условие, то …, иначе …» . Действия предусмотрены и при выполнении условия, и при его невыполнении.

Неполная форма : «если выполняется условие, то …». Действия предусмотрены только при выполнении условия. При невыполнении условия.

Пример 2.

Если пошёл дождь, то откройте зонт, иначе – зонт положите в сумку (полная форма разветвляющегося алгоритма);

Если пошёл дождь, то откройте зонт (неполная форма разветвляющегося алгоритма).


Пример 3.

“Купить мороженое” .

Циклический алгоритм- алгоритм, в котором действия повторяются конечное число раз.

П
ример 4.
Алгоритм «Наполнение».

Начало

1. Пока ведро неполное, повторять:

2. Налить в ведро кружку воды.

Конец

3. Решение задач-тренингов (коллективная работа).

Тренинг-задача № 1.

Составить алгоритм «Почисти ковер».

Тренинг-задача № 2.

1.Назови тип алгоритма.

2. Заполни алгоритм.

Записать с помощью блок-схемы пословицу «Болен – лечись, а здоров – берегись».


Тренинг-задача № 3.

Мальчик учит наизусть четверостишие, заданное по литературе. Он один раз прочитывает четверостишие и пытается воспроизвести его по памяти. Так он будет делать до тех пор, пока не расскажет четверостишие без единой ошибки. Составить действия мальчика в виде блок-схемы.

4. Физкультминутка.

Мы руками поведем -

Будто в море мы плывем.

Раз, два, три, четыре -

Вот мы к берегу приплыли,

Чтобы косточки размять,

Начнем наклоны выполнять -

Вправо, влево, вправо, влево.

Не забудем и присесть -

Раз, два, три, четыре,

На счет пять - за парты сесть.


Примеры

линейного алгоритма

Примеры

разветвляющегося алгоритма

Примеры

циклического алгоритма


Составьте алгоритм в программе Paint , используя команды перемещения и копирования.

Вариант 1.(страница флипчарта 25).

«Посадка саженца».

Вариант 2.(страница флипчарта 26).

Эпизод из сказки «Гуси-лебеди».

>> Типы алгоритмов

В алгоритмах команды записываются друг за другом в определенном порядке. Выполняются они не обязательно в записанной последовательности: в зависимости от порядка выполнения команд можно выделить три типа алгоритмов:

Линейные алгоритмы;
алгоритмы с ветвлениями;
алгоритмы с повторениями.

Линейные алгоритмы

В котором команды выполняются в порядке их записи, то есть последовательно друг за другом, называется линейным.

Например, линейным является следующий алгоритм посадки дерева:

1) выкопать в земле ямку;
2) опустить в ямку саженец;
3) засыпать ямку с саженцем землей;
4) полить саженец водой.

С помощью блок-схемы данный алгоритм можно изобразить так:

Алгоритмы о ветвлениями

Ситуации, когда заранее известна последовательность требуемых действий, встречаются крайне редко. В жизни часто приходится принимать решение в зависимости от сложившейся обстановки. Если идет дождь, мы берем зонт и надеваем плащ; если жарко, надеваем легкую одежду. Встречаются и более сложные условия выбора. В некоторых случаях от выбранного решения зависит дальнейшая судьба человека.

Логику принятия решения можно описать так:

ЕСЛИ <условие> ТО <действия 1> ИНАЧЕ <действия 2>

Примеры:

ЕСЛИ хочешь бытьздоров , ТО закаляйся, ИНАЧЕ валяйся весь день на диване;
ЕСЛИ низко ласточки летают, ТО будет дождь, ИНАЧЕ дождя не будет;
ЕСЛИ уроки выучены, ТО иди гулять, ИНАЧЕ учи уроки.

В некоторых случаях <действия 2> могут отсутствовать;

ЕСЛИ <условие> ТО <действия 1>

Пример :

ЕСЛИ назвался груздем, ТО полезай в кузов.

Форма организации действий, при которой в зависимости от выполнения некоторого условия совершается одна или другая последовательность шагов, называется ветвлением.

Изобразим в виде блок-схемы последовательность действий ученика 6 класса Мухина Васи, которую он представляет себе так: "Если Павлик дома, будем решать задачи по математике. В противном случае следует позвонить Марине и вместе готовить доклад по биологии. Если же Марины нет дома, то надо сесть за сочинение."

А вот так, с помощью блок-схемы можно очень наглядно представить рассуждения при решении следующей задачи.

Из трёх монет одинакового достоинства одна фальшивая (более легкая). Как ее найти с помощью одного взвешивания на чашечных весах без гирь?

Алгоритмы с повторениями

На практике часто встречаются задачи, в которых одно или несколько действий бывает необходимо повторить несколько раз, пока соблюдается некоторое заранее установленное условие.

Алгоритм, содержащий циклы , называется циклическим алгоритмом или алгоритмом с повторениями.

Ситуация, при которой выполнение цикла никогда не заканчивается, называется зацикливанием. Следует разрабатывать алгоритмы, не допускающие таких ситуаций.

Рассмотрим пример из математики.

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число1.

2, 3, 5, 7 - простые числа; 4, 6, 8 - нет. В III веке до нашей эры греческий математик Эратосфен предложил следующий алгоритм для нахождения всех простых чисел, меньших заданного числа n:

1) выписать все натуральные числа от 1 до n;
2) вычеркнуть 1;
3) подчеркнуть наименьшее из неотмеченных чисел;
4) вычеркнуть все числа, кратные подчеркнутому на предыдущем шаге;
5) если в списке имеются неотмеченные числа, то перейти к шагу 3, в противном случае все подчеркнутые числа - простые.

Это циклический алгоритм. При его выполнении повторение шагов 3-5 происходит, пока в исходном списке остаются неотмеченные числа.

Вот так выглядит блок-схема действий школьника, которому перед вечерней прогулкой следует выполнить домашнее задание по математике:

Напомним, что число 1 не относят ни к составным (имеющим более двух делителей), ни к простым числам.

Самое главное

В зависимости от порядка выполнения команд можно выделить три типа алгоритмов:

> линейные алгоритмы;
> алгоритмы с ветвлениями;
> алгоритмы с повторениями.

Алгоритм, в котором команды выполняются в порядке их записи, то есть последовательно друг за другом, называется линейным.

Форма организации действий, при которой в зависимости от выполнения некоторого условия совершается одна или другая последовательность шагов, называется ветвлением.

Форма организации действий, при которой выполнение одной и той же последовательности команд повторяется, пока выполняется некоторое заранее установленное условие, называется циклом (повторением).

Вопросы и задания

1. Какие алгоритмы называют линейными?
2. Приведите пример линейного алгоритма,
3. Исполнитель «Вычислитель» умеет выполнять только две команды: умножать на 2 и прибавлять Придумайте для него наиболее короткий план получения из О числа 50.
4. Какая форма организации действий называется ветвлением?
5. Какие условия должна была выполнить героиня скази «Гуси-лебеди»?
6. Приведите пример алгоритма, содержащего ветвление»
7. Прочитайте отрывок из стихотворения Дж. Родари «Чем пахнут ремесла?»:

У каждого дела запах особый:
В булочной пахнет тестом и сдобой.
Мимо столярной идешь мастерской -
Стружкою пахнет и свежей доской.
Пахнет маляр скипидаром и краской.
Пахнет стекольщик оконной замазкой.
Куртка шофера пахнет бензином,
Блуза рабочего - маслом машинным.

Перефразируйте
о профессиях с помощью слов «ЕСЛИ... ТО»/

8. Вспомните, герои каких русских народных сказок совершают выбор, определяющий их судьбу.
9. Из 9 монет одинакового достоинства одна фальшивая (более легкая). За сколько взвешиваний на чашечных весах без гирь вы можете ее определить?
10. Какая форма организации действий называется повторением?
11. Приведите пример алгоритма, содержащего повторение.
12. В каких известных вам литературных произведениях имеет место циклическая форма организации действий?
13. Где окажется исполнитель, выполнивший 16 раз подряд следующую группу команд?

пройти 10 метров вперед

повернуть на 90° по часовой стрелке

14. Какую группу действий и сколько раз следует повторить при решении следующей задачи?

Сорок солдат подошли к реке, по которой на лодке катаются двое мальчиков. Как солдатам переправиться на другой берег, если лодка вмещает только одного солдата либо двух мальчиков, а солдата и мальчика уже не вмещает?

15. Вспомните задачу о Вычислителе, умеющем только умножать на 2 и прибавлять 1. Разрабатывать для него рациональные алгоритмы будет значительно проще, если воспользоваться следующей блок-схемой:

Используя эту блок-схему, разработайте рациональные алгоритмы получения из числа 0 чисел 1024 и 500.

Босова Л. Л. Информатика: Учебник для 6 класса / Л. Л. Босова. - 3-е изд., испр. и доп. - М.: БИНОМ. Лаборатория знаний, 2005. - 208 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

1. Линейный - алгоритм, в котором все предписания (шаги) выполняются так, как записаны, без изменения порядка следования, строго друг за другом.

2. Разветвляющийся - алгоритм, в котором выполнение того или иного действия (шага) зависит от выполнения или не выполнения какого-либо условия.

3. Циклический - алгоритм, в котором некоторая последовательность действий повторяется несколько раз.

Форма представления алгоритма зависит от его типа. Применяют не­сколько форм представления алгоритмов:

1) Табличную (применяется только для линейных вычислительных алгоритмов).

2) Словесно – формульное описание алгоритма, т.е описание с помощью слов и формул (применима для алгоритмов всех типов).

3) Графическое описание алгоритма (применима для алгоритмов всех типов), т.е описание с помощью специальных графических схем алгоритмов – блок-схем. Блок-схема алгоритма представляет собой систему связанных геометрических фигур. Каждая фигура обозначает один этап решения задачи и называется блоком. Порядок выполнения этапов указывается стрелками, соединяющими блоки. В схеме блоки стараются размещать сверху вниз в порядке их выполнения. Для наглядности операций разного вида изображаются в схеме различными геометрическими фигурами.

4) Способ, использующий псевдокоды . Псевдокоды – это интерпретация шагов алгоритма на обычном языке, которая описывает действие команды. Псевдокод используется в листингах, чтобы показать общую структуру программы, не применяя реальных операторов языка программирования.

5) Запись алгоритма на одном из языков программирования .

Известны три типа алгоритмов – линейные, разветвляющиеся, циклические.

Линейный тип алгоритмов

Алгоритмы, в которых команды выполняются друг за другом, независимо от каких-либо условий, называются алгоритмами линейного типа.

Например, алгоритм вычисления по самым простейшим формулам, не имеющих ограничений на значения входящих в них переменных.

Пример

Постановка задачи : вычислить площадь круга, если известен радиус.

Дано: R– радиус круга.

Найти: S– площадь круга.

Решение: S=3,14R 2

Словесная форма записи алгоритма

Выберем русский язык для записи алгоритма в этой форме и запишем последовательность команд, выполнение которых при заданном значении радиуса позволит найти площадь:

    Прочесть значение R.

    Умножить значение Rна 3,14.

    Умножить результат второго действия на значение R.

    Записать полученный результат как значение S.

На языке блок-схем – рис. 8

Разветвляющийся тип алгоритмов

Решение задач не всегда можно представить в виде линейного алгоритма.

Алгоритмы, в которых требуется организовать выбор последовательности действий в зависимости от каких-либо условий, называют алгоритмами разветвляющегося типа.

При графическом способе ветвление организуется с помощью логического элемента (ромб), имеющего один вход и два выхода. Назначение логического элемента – проверка заданного условия. В зависимости от выполнения (истинности) или невыполнения (ложности) проверяемого условия возможен выход соответственно на ветвь «Да» или «Нет».

Пример

Постановка задачи : вычислить
.

Дано : х – значение аргумента.

Найти : у – значение функции.

Решение:

y= x , если х  0

- x , если х<0

Блок-схема - см. рис. 9.

Словесное представление

На псевдокоде :

Прочесть значение х

Если х>0, то

Конец ветвления

Записать значение у

Выделяют полную и неполную условную конструкцию .

Циклический тип алгоритмов

При составлении алгоритмов решения достаточно большого круга задач нередко возникает потребность в неоднократном повторении одних и тех же команд.

Алгоритм, составленный с использованием многократных повторений одних и тех же действий (циклов), называется алгоритмов циклического типа .

Однако, «неоднократно» не значит «до бесконечности». Организация циклов, никогда не приводящая к остановке в выполнении алгоритма (так называемое зацикливание), является нарушением требования его результативности.

При разработке алгоритма циклической структуры выделяют следующие понятия:

    параметр цикла – величина, с изменением которой связано многократное выполнение цикла;

    начальное и конечное значение параметра цикла ;

    шаг цикла – это значение, на которое изменяется параметр цикла при каждом повторении.

Циклический алгоритм состоит из подготовки цикла, тела цикла, условия продолжения цикла .

В подготовку цикла входят действия, связанные с заданием исходных значений для параметра цикла (начальное и конечное значения, шаг параметра).

В тело цикла входят: многократно повторяющиеся действия для вычисления искомых величин; подготовка следующего значения параметра цикла, подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

В условии продолжения определяется необходимость дальнейшего выполнения повторяющихся действий. Если параметр цикла превысил конечное значение, то выполнение цикла должно быть прекращено.

Рассмотрим графическое представление циклического блока алгоритма (см. рис. 10).

Циклы могут быть с предусловием (когда условие проверяется перед началом тела цикла) и спостусловием (когда условие проверяется после первого прохождения тела цикла).

Цикл с постусловием

Цикл с предусловием

Алгоритмы могут быть простыми, сложными, однако у всех из них есть общие черты. Вот по этим чертам и принято выделять три типа алгоритмов, с которыми мы и познакомимся.

В алгоритмах команды записываются друг за дру-гом в определенном порядке. Выполняются они не обязательно в записанной последовательности. Могут существовать внутренние отсылки к различным командам.

Вообще, выполнение команд по алгоритму чем-то напоминает настольные игры, в которых участники по очереди бросают кубики и ходят по полям. Причем на полях могут быть комментарии в стиле: «Вернитесь на 2 клетки назад» или «Пройдите на 5 клеток вперед» (рис. 1).

Рис. 1. Настольная игра ()

Более сложной моделью выполнения алгоритма является известная игра «Монополия» или «Менеджер» (рис. 2).

Рис. 2. Игра «Монополия» ()

Существенное отличие этой игры от простого выполнения алгоритма состоит в том, что конечной целью участников является не прохождение пути, а накопление денег при помощи определенных действий.

В зави-симости от порядка выполнения команд можно выде-лить три типа алгоритмов:

Линейные алгоритмы;

Алгоритмы с ветвлениями;

Алгоритмы с повторениями.

«Монополия»

«Монополия» относится к одной из самых популярных настольных игр. Ее правила достаточно просты и понятны каждому, кто хоть раз в нее играл (рис. 4).

Рис. 4. Игра «Монополия» ()

На момент старта игроки обладают равным количеством наличных денег. Бросая кубики и передвигая свои фишки по закольцованному игровому полю, они приобретают участки недвижимости разных цветов. Оказавшись на приобретенном противником участке, игрок обязан выплатить тому установленную арендную плату. Выкупив все участки одной цветовой группы, участник может строить на них дома и отели, которые увеличивают размеры аренды. Цель всего происходящего банальна - разорить всех соперников.

Согласно официальным источникам - компании Parker Brothers, с 1935 года и по сей день выпускающей «Монополию», - легендарная настольная игра появилась на свет следующим образом. В 1934 году безработный инженер Чарльз Дарроу (рис. 5) предложил вышеуказанной конторе выпустить придуманную им игру о торговле недвижимостью.

Рис. 5. Чарльз Дарроу ()

Обнаружив в настольной игре 52 дизайнерские ошибки, братья Паркеры отказали изобретателю. Тот с чисто американской предприимчивостью отправился в типографию, заказал 5 тысяч экземпляров игры и довольно быстро их распродал. Осознав, что прибыль утекает прямо у них из-под носа, Parker Brothers спешно приобрели права на «Монополию», и уже в следующем году она стала самой продаваемой настольной игрой в США, а Дарроу - живым воплощением американской мечты.

Однако вместе с тем известны и более ранние игры, поразительно напоминающие «Монополию». Выходит, Дарроу просто оказался первым, кто подсуетился и получил патент на «народную» забаву? И да, и нет. Расследования последних лет проливают свет на тайну происхождения «Монополии».

Во второй половине позапрошлого века в Соединенных Штатах жил и работал политэкономист Генри Джордж. Он предлагал заменить все поборы одним-единственным налогом - на землю. Проникшись его идеями, в январе 1904 года Мэги получает патент на настольную игру The Landlord’s Game, которая и правилами, и внешним видом напоминает нынешнюю «Монополию». Считается, что «Игра владельца земли» обладала двумя вариантами правил: сыграв партию по действующим законам налогообложения, игроки переходили к модели, предложенной Джорджем, - и якобы убеждались в ее необходимых преимуществах. Таким образом, игра была не развлечением, но инструментом идеологической борьбы.

До массового производства дело не дошло, зато The Landlord’s Game постепенно распространилась по Северной Америке в кустарных копиях. Всплеск интереса к настольной игре пришелся на годы Великой депрессии: тысячи безработных были рады вообразить себя денежными мешками хотя бы за игровым столом. Появление предприимчивого человека вроде Чарльза Дарроу стало делом нескольких месяцев - и он появился, на многие десятилетия присвоив славу единоличного изобретателя «Монополии».

Нашлись, конечно, и те, кто счел должным урвать кусок у правообладателей. Нелицензионные «Монополии» наводнили Китай. И в нашей стране выпускались и выпускаются стройные ряды клонов - «Маклер», «Кооператив», «Менеджер» (рис. 6)...

Рис. 6. Игра «Менеджер» ()

В свете недавнего переосмысления роли Дэрроу в создании «Монополии» и истечения действия авторских прав засудить такие компании не получится. Даже если предположить, что никакой Элизабет Мэги на свете не было, правила «Монополии» давно перешли в общественное достояние. Впрочем, часть патента Hasbro все еще держит при себе: дизайн фишек, графическое оформление, последовательность клеток на игровом поле.

Алгоритм, в котором команды выполняются в по-рядке их записи, то есть последовательно друг за дру-гом, называется линейным .

Рис. 3. Лампочка ()

Например, линейным является следующий алго-ритм замены перегоревшей лампочки (рис. 3):

1. выключить выключатель света;

2. выкрутить перегоревшую лампочку;

3. вкрутить новую лампочку;

4. включить выключатель, чтобы проверить, что лампочка горит.

С помощью блок-схемы данный алгоритм можно изобразить так:

(блок-схему (рис. 7.) см. в конце конспекта)

Ситуации, когда заранее известна последователь-ность требуемых действий, встречаются крайне редко. В жизни часто приходится принимать решение в за-висимости от сложившейся обстановки. Если идет дождь, мы берем зонт и надеваем плащ; если жарко, надеваем легкую одежду. Встречаются и более слож-ные условия выбора. В некоторых случаях от выбран-ного решения зависит дальнейшая судьба человека.

Логику принятия решения можно описать так:

ЕСЛИ <условие>, ТО <действия 1>,

ИНАЧЕ <действия 2>

ЕСЛИ будут деньги, ТО купи хлеба, ИНАЧЕ не покупай.

ЕСЛИ будешь сегодня в центре, ТО набери меня, ИНАЧЕ не набирай.

ЕСЛИ уроки выучены, ТО иди гулять, ИНАЧЕ учи уроки.

В некоторых случаях <действия 2> могут отсут-ствовать. Это может быть связано как с его очевидностью (как, например, в первом примере - понятно, что если у тебя нет денег, то хлеба ты купить просто не сможешь), так и с отсутствием необходимости в нем.

ЕСЛИ <условие>, ТО <действия 1>

ЕСЛИ назвался груздем, ТО полезай в кузов.

ЕСЛИ хочешь быть здоров, ТО закаляйся.

Форма организации действий, при которой в зави-симости от выполнения или невыполнения некоторого условия совершается либо одна, либо другая последо-вательность действий, называется ветвлением .

Изобразим в виде блок-схемы последовательность действий ученика 6 класса, забывшего ключи от квартиры, которую он представляет себе так: «Если мама дома, то я приду и сяду делать домашнее задание. Если мамы дома нет, то я пойду поиграть с друзьями в футбол, пока не придет мама. Если друзей на улице не будет, то покатаюсь на качелях до тех пор, пока не придет мама».

(блок-схему (рис. 8.) см. в конце конспекта)

Необходимые и достаточные условия

Мы уже обсуждали с вами, что существуют необходимые и достаточные условия.

Примером необходимого условия может служить такое:

Чтобы стать врачом, необходимо получить медицинское образование.

Условие наличия медицинского образования является необходимым для работы врачом, однако не является достаточным. Действительно, не все выпускники медицинских вузов становятся врачами.

Примером достаточного условия может стать такое:

Для того чтобы стало прохладнее, достаточно включить кондиционер.

Это условие является достаточным: если включить кондиционер, то действительно станет прохладнее. Однако это условие не является необходимым, ведь для достижения той де цели можно включить вентилятор, открыть окно и т. п.

Конечно же, существуют необходимые и достаточные условия одновременно (такие условия называются равносильными ). Например:

Для того чтобы наступило лето, необходимо и достаточно, чтобы закончилась весна.

Действительно, если весна закончилась, то наступает лето, а если весна не закончилась, то лето наступить не может. То есть условия окончания весны и начала лета являются равносильными.

Понятия необходимого, достаточного и равносильного условий очень важны в таком разделе математики, как математическая логика. К тому же, они очень часто встречаются при доказательстве различных теорем.

На практике часто встречаются задачи, в которых одно или несколько действий бывает необходимо по-вторить несколько раз, пока соблюдается некоторое за-ранее установленное условие.

Например, если вам необходимо перебрать ящик с яблоками, чтобы отделить гнилые от спелых, то нам необходимо повторять следующие действия:

1. Взять яблоко.

2. Посмотреть, не гнилое ли оно.

3. Если гнилое - выбросить, если нет - переложить в другой ящик.

Выполнять этот набор действий необходимо до тех пор, пока не закончатся яблоки в ящике.

Форма организации действий, при которой выпол-нение одной и той же последовательности действий по-вторяется, пока выполняется некоторое заранее уста-новленное условие, называется циклом (повторением) .

Ситуация, при которой выполнение цикла никогда не заканчивается, называется зацикливанием .

Следует разрабатывать алгоритмы, не допускающие таких си-туаций.

Рассмотрим алгоритм работы будильника на телефоне, который должен зазвонить в 8:00 утра, а затем звонить через каждые 10 минут, до тех пор пока его не выключат.

В этом случае его блок-схема выглядит так: (блок-схему (рис. 9.) см. в конце конспекта)

На этом уроке мы обсудили три типа алгоритмов - линейные алгоритмы, алгоритмы с ветвлениями и алгоритмы с повторениями.

На следующем уроке мы на практике обсудим составление алгоритмов.

Решето Эратосфена

Вспомним определение простого натурального числа.

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число. Остальные числа называются составными . При этом число 1 не является ни простым, ни составным.

Примеры простых чисел: 2, 3, 5, 7.

Примеры составных чисел: 4, 6, 8.

В III веке до нашей эры греческий математик Эратос-фен предложил следующий алгоритм для нахождения всех простых чисел, меньших заданного числа п:

1. выписать все натуральные числа от 1 до n ;

2. вычеркнуть 1;

3. подчеркнуть наименьшее из неотмеченных чисел;

4. вычеркнуть все числа, кратные подчеркнутому на предыдущем шаге числу;

5. если в списке имеются неотмеченные числа, то пе-рейти к шагу 3, в противном случае все подчеркну-тые числа - простые.

Это циклический алгоритм. При его выполнении повторение шагов 3-5 происходит, пока в исходном списке остаются неотмеченные числа.

Рассмотрим результат этого алгоритма. Выпишем все простые числа от 1 до 25.

Выпишем числа от 1 до 25.

Вычеркнем 1. Теперь подчеркнем двойку. Вычеркнем все четные числа.

Так как не все числа отмечены, то подчеркиваем 3. Теперь вычеркиваем все числа, которые делятся на 3.

Так как не все числа отмечены, то подчеркиваем 5. Теперь вычеркиваем число 25.

Так как не все числа отмечены, то подчеркиваем 7.

Вычеркнуть ничего нельзя, но не все числа отмечены, поэтому подчеркиваем 11.

Вычеркнуть ничего нельзя, но не все числа отмечены, поэтому подчеркиваем 13. Снова нельзя ничего вычеркнуть - подчеркиваем 17, затем 19 и 23.

Теперь все числа отмечены.

Получаем простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23.

Рис. 7. Блок-схема для смены лампочки

Рис. 8. Блок-схема действий шестиклассника


Рис. 9. Блок-схема работы будильника


Список литературы

1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2010.

3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. - М.: БИНОМ. Лаборатория знаний, 2010.

1. Интернет портал «Наша сеть» ()

2. Интернет портал «Гипермаркет знаний» ()

3. Интернет портал «kaz.docdat.com» ()

Домашнее задание

1. §3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

2. Стр. 81 задание 2, 6 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

3. Стр. 82 задание 9, 11, 13, 14 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).

4. * Стр. 83 задание 15 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса).