Смотреть что такое "Информация" в других словарях. Информация и информационные процессы Но есть информация что

  • 17.08.2020

Понятие информации

Замечание 1

Слово "информация" происходит от латинского глагола informare, что означает - "придавать вид, форму, обучать", а также "мыслить, воображать". В целом информация - это любые сведения независимо от формы их представления.

Определение информации зависит от контекста, в котором используется это понятие:

  • в бытовом смысле это любые интересные сведения;
  • в технике - сообщения, передаваемые по определенным правилам в виде знаков или сигналов, когда есть источник и приемник сообщений, а также канал связи;
  • в кибернетике информация - это часть знаний, которая используется для ориентирования в окружающей обстановке для управления в целях сохранения и развития системы;
  • применительно к компьютерным вычислениям информация это последовательность кодов, несущая смысловую нагрузку и представленная в пригодном для электронных машин формате.

Информация универсальна и может передаваться между разнородными объектами: людьми и животными, биологическими объектами и техническими автоматами. Человечеством предприняты даже попытки передать информацию в адрес инопланетных цивилизаций.

Рисунок 1. Золотой диск с информацией о планете Земля и ее обитателях, отправленный учеными на борту космического аппарата "Вояджер" на случай встречи с инопланетным разумом. Автор24 - интернет-биржа студенческих работ

Виды и свойства информации

Информация может существовать в виде: текста, рисунков, фотографий, чертежей, световых или звуковых сигналов, электрических и нервных импульсов, магнитных записей, жестов и мимики, запахов и вкусовых ощущений, ДНК-последовательностей и т.д.

Человек воспринимает информацию с помощью органов чувств:

  • визуальную (образы, цвета);
  • звуковую (речи, музыку, сигналы, шум);
  • обонятельную (запахи);
  • вкусовую;
  • тактильную или осязательную (прикосновения, холод, жар и т.п.).

Рисунок 2. Пропорции между видами информации, получаемой человеком от органов чувств. Автор24 - интернет-биржа студенческих работ

Информация обладает такими свойствами, как:

  1. релевантность (соответствие потребностям);
  2. полнота;
  3. своевременность;
  4. достоверность;
  5. доступность;
  6. защищенность;
  7. эргономичность (удобство формы подачи).

Информационные процессы

Действия, выполняемые с информацией, называются информационными процессами. К ним относятся получение информации, ее хранение, передача, обработка, использование.

Получение информации . Биологические объекты (растения, животные, вирусы и др.) и технические автоматы получают информацию об окружающем мире для принятия решений, способствующих продолжению своего существования. При этом имеются в виду не только сигналы из внешнего мира. Получать информацию они могут, из собственной памяти, а также из искусственно созданных источников. Это связывает процессы получения, хранения и передачи информации.

Хранение информации . Информация может многократно использоваться, а также иметь "отложенную ценность", т.е. возможность быть потребленной не в момент получения, а с задержкой во времени (например, заранее заготовленное поздравление с праздником). Поэтому большое значение имеет способность информации храниться. Устройства, с помощью которых хранится информация, разрушаются со временем. Это касается как живой природы, так и созданных человеком систем. Например, мозг, хранящий воспоминания, подвержен заболеваниям, ДНК могут разрушаться под действием неблагоприятных излучений, бумажные книги - намокать или сгорать, жесткие диски компьютеров - размагнититься и т.п. Поэтому и природа, и люди заботятся о создании надежных носителей, а также дубликатов и механизмов восстановления хранящейся информации.

Передача информации . Для этого процесса используются различные физические среды: колебания воздуха при передаче звука; для передачи световых и радиосигналов – электромагнитные волны и т.п. При передаче информации между техническими устройствами необходимо кодирование и декодирование, позволяющие отправлять и принимать сообщения в соответствии с заранее оговоренными принципами (протоколами). Информация при этом может теряться или искажаться, поэтому предусматривают механизмы, позволяющие убедиться, что сообщение пришло в том виде, в котором было отправлено.

Обработка информации – процесс получения новой информации из уже имеющейся. В вычислительных устройствах производится по строгим формальным правилам - алгоритмам. Исполнитель алгоритма (устройство или биологический объект) получает информацию на своем входе, преобразует ее и выдает на выход.

Использование информации . Для целенаправленной деятельности объекты живой природы и созданные человеком автоматы, руководствуясь имеющейся в их распоряжении информацией, воздействуют на окружающую среду. Это, в свою очередь, порождает новую информацию, обусловленную реакцией среды. Отклик среды может быть как благоприятным, так и неблагоприятным. В зависимости от этого объект, собирает и обрабатывает информацию об изменениях в окружающей среде, корректирует свою деятельность и принимает новые решения. Такая корректировка называется обратной связью и является одним из фундаментальных понятий информатики.

Рисунок 3. Пример информационного процесса с обратной связью. Автор24 - интернет-биржа студенческих работ

Термин информация происходит от латинского слова informatio , что означает «сведения, разъяснения, изложение». Информация - это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В это слово вкладывается различный смысл в технике, науке и в житейских ситуациях. В обиходе информацией называют любые данные или сведения, которые кого-либо интересуют, например сообщение о каких-либо событиях, о чьей-либо деятельности и т. п. «Информировать» в этом смысле означает «сообщить нечто, неизвестное раньше».

Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертеж, радиопередача и т. п.) может содержать разное количество информации для разных людей в зависимости от их накопленных знаний , от уровня понимания этого сообщения и интереса к нему. Так, сообщение, составленное на японском языке, не несет никакой новой информации человеку, не знающему этого языка, но может быть высокоинформативным для человека, владеющего японским. Никакой новой информации не содержит и сообщение, изложенное на знакомом языке, если его содержание непонятно или уже известно .

Информация есть характеристика не сообщения, а соотношения между сообщением и его потребителем. Без наличия потребителя, хотя бы потенциального, говорить об информации бессмысленно. В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит. Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т. п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объем сообщения.

Информация может существовать в виде:

· текстов, рисунков, чертежей, фотографий;

· световых или звуковых сигналов;

· радиоволн;

· электрических и нервных импульсов;

· магнитных записей;

· жестов и мимики;

· запахов и вкусовых ощущений;

· хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т. д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами.

Что можно делать с информацией

Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

Свойства информации

Информация обладает следующими свойствами:

· достоверность

· полнота

· точность

· ценность

· своевременность

· понятность

· доступность

· краткость и т. д.

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений. Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, т. е. перестает отражать истинное положение дел. Информация полна, если ее достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки. Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п. Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдет применение в каких-либо видах деятельности человека. Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она еще не может быть усвоена), так и ее задержка. Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной. Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация. Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по-разному излагаются в школьных учебниках и научных изданиях. Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, всевозможных инструкциях. Понятие «информация» используется в различных науках, при этом в каждой науке понятие «информация»связано с различными системами понятий. Информация в биологии : Биология изучает живую природу и понятие «информация» связывается с целесообразным поведением живых организмов. В живых организмах информация передается и храниться с помощью объектов различной физической природы (состояние ДНК), которые рассматриваются как знаки биологических алфавитов. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Философский подход : Информация – это взаимодействие, отражение, познание. Кибернетический подход : Информация– это характеристики управляющего сигнала, передаваемого по линии связи.

Можно выделить следующие подходы к определению информации:

* традиционный (обыденный) - используется в информатике: Информация – это сведения, знания, сообщения о положении дел, которые человек воспринимает из окружающего мира с помощью органов чувств (зрения, слуха, вкуса, обоняния, осязания).

* вероятностный - используется в теории об информации: Информация – это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределённости и неполноты знаний.

Для человека: Информация – это знания, которые он получает из различных источников с помощью органов чувств

Знания делят на две группы:

1. Декларативные – от слова декларация (утверждения, сообщения) начинаются со слов «Я знаю, что …»;

2. Процедурные – определяют действия для достижения какой-либо цели, начинаются со слов «Я знаю, как …»

Классификация информации

По способам восприятия - Визуальная, Аудиальная, Тактильная, Обонятельная, вкусовая;

По формам представления –Текстовая, Числовая, Графическая, Музыкальная,Комбинированная и тд.

По общественному значению : Массовая - обыденная, общественно-политическая, эстетическая

Специальная - научная, техническая, управленческая, производственная

Личная – наши знания, умения, интуиция

Основные свойства информации:

Объективность – не зависит от чего-либо мнения

Достоверность – отражает истинное положение дел

Полнота – достаточна для понимания и принятия решения

Актуальность – важна и существенна для настоящего времени

Ценность (полезность, значимость) - обеспечивает решение поставленной задачи, нужна для того чтобы принимать правильные решения

Понятность (ясность) – выражена на языке, доступном получателю

Кроме этого информация обладает еще следующими свойствами:

1) Атрибутивные свойства (атрибут – неотъемлемая часть чего-либо). Важнейшими среди них являются:- дискретность (информация состоит из отдельных частей, знаков) и непрерывность (возможность накапливать информацию)

2) Динамические свойства связаны с изменением информации во времени:

Копирование – размножение информации

Передача от источника к потребителю

Перевод с одного языка на другой

Перенос на другой носитель

Старение (физическое – носителя, моральное – ценностное)

3) Практические свойства - информационный объем и плотность

Информация храниться, передается и обрабатывается в символьной (знаковой) форме. Одна и та же информация может быть представлена в различной форме:1) Знаковой письменной, состоящей из различных знаков среди которых выделяют символьную в виде текста, чисел, спец. символов; графическую; табличную и тд.; 2) В виде жестов или сигналов; 3) В устной словесной форме (разговор). Представление информации осуществляется с помощью языков, как знаковых систем, которые строятся на основе определенного алфавита и имеют правила для выполнения операций над знаками.

Язык – определенная знаковая система представления информации. Существуют:

Естественные языки – разговорные языки в устной и письменной форме. В некоторых случаях разговорную речь могут заменить язык мимики и жестов, язык специальных знаков (например, дорожных);

Формальные языки – специальные языки для различных областей человеческой деятельности, которые характеризуются жестко зафиксированным алфавитом, более строгими правилами грамматики и синтаксиса. Это язык музыки (ноты), язык математики (цифры, математические знаки), системы счисления, языки программирования и т.д.

В основе любого языка лежит алфавит – набор символов/знаков. Полное число символов алфавита принято называть мощностью алфавита .


Информационные процессы.

Хранение, обработка и передача информации

Взаимосвязь процессов хранения, обработки и передачи информации, виды информационных носителей, способы обработки информации, виды источников и приемников информации, каналы связи, их виды и способы защиты от шума, единица измерения скорости передачи информации, пропускная способность канала связи

Процессы хранения, обработки и передачи информации являются основными информационными процессами. В разных сочетаниях они присутствуют в получении, поиске, защите, кодировании и других информационных процессах. Рассмотрим хранение, обработку и передачу информации на примере действий школьника, которые он выполняет с информацией при решении задачи.

Опишем информационную деятельность школьника по решению задачи в виде последовательности информационных процессов. Условие задачи (информация) хранится в учебнике. Посредством глаз происходит передача информации из учебника в собственную память школьника, в которой информация хранится . В процессе решения задачи мозг школьника выполняет обработку информации. Полученный результат хранится в памяти школьника. Передача результата - новой информации - происходит с помощью руки школьника посредством записи в тетради. Результат решения задачи хранится в тетради школьника.

Таким образом (рис. 9), можно выделить процессы хранения информации (в памяти человека, на бумаге, диске, аудио- или видеокассете и т. п.), передачи информации (с помощью органов чувств, речи и двигательной системы человека) и обработки информации (в клетках головного мозга человека).

Информационные процессы взаимосвязаны. Например, обработка и передача информации невозможны без ее хранения, а для сохранения обработанной информации ее необходимо передать. Рассмотрим каждый информационный процесс более подробно.

Рис. 9. Взаимосвязь информационных процессов

Хранение информации является информационным процессом, в ходе которого информация остается неизменной во времени и пространстве.

Хранение информации не может осуществляться без физического носителя.

Носитель информации - физическая среда, непосредственно хранящая информацию.

Носителем информации, или информационным носителем , может быть:

■ материальный предмет (камень, доска, бумага, магнитные и оптические диски);

■ вещество в различных состояниях (жидкость, газ, твердое тело);

■ волна различной природы (акустическая, электромагнитная, гравитационная).

В примере о школьнике были рассмотрены такие носители информации, как бумага учебника и тетради (материальный предмет), биологическая память человека (вещество). При получении школьником визуальной информации носителем информации являлся отраженный от бумаги свет (волна).

Выделяют два вида информационных носителей: внутренние и внешние . Внутренние носители (например, биологическая память человека) обладают быстротой и оперативностью воспроизведения хранимой информации. Внешние носители (например, бумага, магнитные и оптические диски) более надежны, могут хранить большие объемы информации. Их используют для долговременного хранения информации.

Информацию на внешних носителях необходимо хранить так, чтобы можно было ее найти и, по возможности, достаточно быстро. Для этого информацию упорядочивают по алфавиту, времени поступления и другим параметрам. Внешние носители, собранные вместе и предназначенные для длительного хранения упорядоченной информации, являются хранилищем информации . К числу хранилищ информации можно отнести различные библиотеки, архивы, в том числе и электронные. Количество информации, которое может быть размещено на информационном носителе, определяет информационную емкость носителя. Как и количество информации в сообщении, информационная емкость носителя измеряется в битах.

Обработка информации является информационным процессом, в ходе которого информация изменяется содержательно или по форме.

Обработку информации осуществляет исполнитель по определенным правилам. Исполнителем может быть человек, коллектив* животное, машина.

Обрабатываемая информация хранится во внутренней памяти исполнителя. В результате обработки информации исполнителем из исходной информации получается содержательно новая информация или информация, представленная в другой форме (рис. 10).

Рис. 10. Обработка информации


Вернемся к рассмотренному примеру о школьнике, решившем задачу. Школьник, который являлся исполнителем , получил исходную информацию в виде условия задачи, обработал информацию в соответствии с определенными правилами (например, правилами решения математических задач) и получил новую информацию в виде искомого результата. В процессе обработки информация хранилась в памяти школьника, которая является внутренней памятью человека.

Обработка информации может осуществляться путем:

■ математических вычислений, логических рассуждений (например, решение задачи);

■ исправления или добавления информации (например, исправление орфографических ошибок);

■ изменения формы представления информации (например, замена текста графическим изображением);

■ кодирования информации (например, перевод текста с одного языка на другой);

■ упорядочения, структурирования информации (например, сортировка фамилий по алфавиту).

Вид обрабатываемой информации может быть различным, и правила обработки могут быть разными. Автоматизировать процесс обработки можно лишь в том случае, когда информация представлена специальным образом, а правила обработки четко определены.

Передача информации является информационным процессом, в ходе которого информация переносится с одного информационного носителя на другой.

Процесс передачи информации, как ее хранение и обработка, также невозможен без носителя информации. В примере о школьнике в тот момент, когда он читает условие задачи, информация передается с бумаги (с внешнего информационного носителя) в биологическую память школьника (на внутренний информационный носитель). Причем процесс передачи информации происходит с помощью отраженного от бумаги света - волны, которая является носителем информации.

Процесс передачи информации происходит между источником информации , который ее передает, и приемником информации , который ее принимает. Например, книга является источником информации для читающего ее человека, а читающий книгу человек - приемником информации. Передача информации от источника к приемнику осуществляется по каналу связи (рис.11). Каналом связи могут быть воздух, вода, металлические и оптоволоконные провода.

Рис. 11. Передача информации

Между источником и приемником информации может существовать обратная связь . В ответ на полученную информацию приемник может передавать информацию источнику. Если источник является одновременно и приемником информации, а приемник является источником, то такой процесс передачи информации называется обменом информацией.

В качестве примера рассмотрим устный ответ ученика учите лю на уроке. В этом случае источником информации являете! ученик, а приемником информации - учитель. Источник и приемник информации имеют носители информации - биологиче скую память. В процессе ответа ученика учителю происходи1: передача информации из памяти ученика в память учителя Каналом связи между учеником и учителем является воздух а процесс передачи информации осуществляется с помощью носителя информации- акустической волны. Если учитель ш только слушает, но и корректирует ответ ученика, а ученик учитывает замечания учителя, то между учителем и учеником происходит обмен информацией.

Информация передается по каналу связи с определенной скоростью, которая измеряется количеством передаваемой информации за единицу времени (бит/с). Реальная скорость передач* информации не может быть больше максимально возможно* скорости передачи информации по данному каналу связи, которая называется пропускной способностью канала связи и зависит от его физических свойств.

Скорость передачи информации - количество информации, передаваемое за единицу времени.

Пропускная способность канала связи - максимально возможная скорость передачи информации по данному каналу связи.

По каналу связи информация передается с помощью сигналов. Сигнал - это физический процесс, соответствующий какому-либо событию и служащий для передачи сообщения об этом событии по каналу связи. Примерами сигналов являются взмахи флажками, мигания ламп, запуски сигнальных "ракет, телефонные звонки. Сигнал может передаваться с помощью волн. Например, радиосигнал передается электромагнитной волной, а звуковой сигнал - акустической волной. Преобразование сообщения в сигнал, который может быть передан по каналу связи от источника к приемнику информации, происходит посредством кодирования. Преобразование сигнала в сообщение, которое будет понятно приемнику информации, выполняется с помощью декодирования (рис. 12).

Рис. 12. Передача сигналов

Кодирование и декодирование может осуществляться как живым существом (например, человеком, животным), так и техническим устройством (например, компьютером, электронным переводчиком).

В процессе передачи информации возможны искажения или потери информации под воздействием помех, которые называются шумом . Шум возникает из-за плохого качества каналов связи или их незащищенности. Существуют разные способы защиты от шума, например техническая защита каналов связи или многократная передача информации.

Например, из-за шума улицы, доносящегося из открытого окна, ученик может не расслышать часть передаваемой учителем звуковой информации. Для того чтобы ученик услышал объяснение учителя без искажений, можно заранее закрыть окно или попросить учителя повторить сказанное.

Сигнал может быть непрерывным или дискретным. Непрерывный сигнал плавно меняет свои параметры во времени. Примером непрерывного сигнала являются изменения атмосферного давления, температуры воздуха, высоты Солнца над горизонтом. Дискретный сигнал скачкообразно меняет свои параметры и принимает конечное число значений в конечном числе моментов времени. Сигналы, представленные в виде отдельных знаков, являются дискретными. Например, сигналы азбуки Морзе, сигналы, служащие для передачи текстовой и числовой информации, - это дискретные сигналы. Поскольку каждому отдельному значению дискретного сигнала можно поставить в соответствие определенное число, то дискретные сигналы иногда называют цифровыми.

Сигналы одного вида могут быть преобразованы в сигналы другого вида. Например, график функции (непрерывный сигнал) может быть представлен в виде таблицы отдельных значений (дискретный сигнал). И наоборот, зная значения функции для разных значений аргументов, можно построить график функции по точкам. Звучащую музыку, которая передается непрерывным сигналом, можно представить в виде дискретной нотной записи. И наоборот, по дискретным нотам можно сыграть непрерывное музыкальное произведение. Во многих случаях преобразования одного вида сигнала в другой могут приводить к потере части информации.

Существуют технические устройства, которые работают с непрерывными сигналами (например, ртутный термометр, микрофон, магнитофон), и технические устройства, работающие с дискретными сигналами (например, проигрыватель для компакт-дисков, цифровой фотоаппарат, сотовый телефон). Компьютер может работать как с непрерывными, так и дискретными сигналами.


Термин "информация" происходит от латинского слова "informatio", что означает сведения, разъяснения, изложение. Несмотря на широкое распространение этого термина, понятие информации является одним из самых дискуссионных в науке.

В "Большом энциклопедическом словаре" информация определяется как "общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом обмен сигналами в животном и растительном мире; передачу признаков от клетки к клетке, от организма к организму (генетическая информация). В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация , но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

· в обиходе информацией называют любые данные или сведения, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п. "Информировать" в этом смысле означает "сообщить нечто , неизвестное раньше" ;

· в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов;

· в кибернетике под информацией понимает ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы (Н. Винер).

Понятие данные более общее чем информатика, в нем смысловые свойства сообщения как бы отступают на второй план. Когда нет необходимости подчеркнуть разницу между понятиями данные (вся совокупность сведений) и информация (новые полезные сведения) эти слова используют как синонимы .

В соответствии с этим для оценки количества информации используются разные единицы.

При передаче информации важно обратить внимание на то, какое количество информации пройдет через передающую систему. Ведь информацию можно измерить количественно, подсчитать. И поступают при подобных вычислениях самым обычным путем: абстрагируются от смысла сообщения, как отрешаются от конкретности в привычных всем нам арифметических действиях (как от сложения двух яблок и трех яблок переходят к сложению чисел вообще: 2+3).

1.2.2 Свойства информации

К важнейшим свойствам информации относятся:

  • полнота;
  • ценность;
  • своевременность (актуальность);
  • понятность;
  • доступность;
  • краткость;
  • и др.

Адекватность информации может выражаться в трех формах: семантической, синтаксичес-кой, прагматической.

Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной.

Информация становится понятной , если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по-разному излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях.

1.2.1. Информатизация и компьютеризация общества. Информационные ресурсы.

Информационные процессы (сбор, обработка и передача информации) всегда играли важную роль в жизни общества. В ходе эволюции человечества просматривается устойчивая тенденция к автоматизации этих процессов.

Средства обработки информации — это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер — универсальная машина для обработки информации.

Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов.

Живые организмы и растения обрабатывают информацию с помощью своих органов и систем.

Человечество занималось обработкой информации тысячи лет. Существует мнение, что мир пережил несколько информационных революций.

Первая информационная революция связана с изобретением и освоением человеческого языка, который, точнее устная речь, выделила человека из мира животных. Это позволило человеку хранить, передавать, совершенствовать, увеличивать приобретенную информацию.

Вторая информационная революция заключалась в изобретении письменности. Прежде всего, резко возросли (по сравнению с предыдущим этапом) возможности по хранению информации. Человек получил искусственную внешнюю память. Организация почтовых служб позволила использовать письменность и как средство для передачи информации. Кроме того, возникновение письменности было необходимым условием для начала развития наук (вспомним Древнюю Грецию , например). С этим же этапом, по всей видимости, связано и возникновение понятия натуральное число . Все народы, обладавшие письменностью, владели понятием числа и пользовались той или иной системой счисления.

Все-таки, зафиксированное в письменных текстах знание было ограниченным, и, следовательно, мало доступным. Так было до изобретения книгопечатания .

Что обосновало третью информационную революцию. Здесь наиболее очевидна связь информации и технологии. Книгопечатание можно смело назвать первой информационной технологией. Воспроизведение информации было поставлено на поток, на промышленную основу. По сравнению с предыдущим этот этап не столько увеличил возможности по хранению (хотя и здесь был выигрыш: письменный источник - часто один-единственный экземпляр, печатная книга - целый тираж экземпляров, а следовательно, и малая вероятность потери информации при хранении (вспомним "Слово о полку Игореве ")), сколько повысил доступность информации и точность ее воспроизведения. Механизмом этой революции был печатный станок, который удешевил книгу и сделал информацию более доступной.

Четвертая революция, плавно переходящая в пятую , связана с созданием современных информационных технологий. Этот этап связан с успехами точных наук (прежде всего математики и физики) и характеризуется возникновением таких мощных средств связи, как телеграф (1794г. - первый оптический телеграф , 1841г. - первый электромагнитный телеграф), телефон (1876г.) и радио (1895г.), к которым по завершению этапа добавилось и телевидение (1921г.). Кроме средств связи появились новые возможности по получению и хранению информации - фотография и кино. К ним также очень важно добавить разработку методов записи информации на магнитные носители (магнитные ленты, диски). Но самым поразительным было создание современных компьютеров и средств телекоммуникаций.

В настоящее время термин "информационная технология" употребляется в связи с использованием компьютеров для обработки информации. Информационные технологии охватывают всю вычислительную технику и технику связи и, отчасти, — бытовую электронику, телевидение и радиовещание.

Они находят применение в промышленности, торговле, управлении, банковской системе , образовании, здравоохранении, медицине и науке, транспорте и связи, сельском хозяйстве, системе социального обеспечения, служат подспорьем людям различных профессий и домохозяйкам.

Народы развитых стран осознают, что совершенствование информационных технологий представляет самую важную, хотя дорогостоящую и трудную задачу.

В настоящее время создание крупномасштабных информационно-технологических систем является экономически возможным, и это обусловливает появление национальных исследовательских и образовательных программ, призванных стимулировать их разработку.

После решения задачи обработки информации результат должен быть выдан конечным пользователям в требуемом виде. Эта операция реализуется в ходе решения задачи выдачи информации. Выдача информации , как правило, производится с помощью внешних устройств вычислительной техники в виде текстов, таблиц, графиков и т.д.

Стержнем любой информационной технологии является выбор и реализация наиболее рационального информационного процесса, который можно определить как совокупность процедур по преобразованию и обработке информации.

В свою очередь информационной процедурой принято считать совокупность однородных операций, воздействующих определенным образом на информацию. Основными информационными процедурами являются: регистрация, сбор, передача, кодирование, хранение и обработка информации.

Реализация любой задачи конкретного пользователя требует создания системы информационного обслуживания, которую чаще называют информационной системой.

Пусть А={а1, а2, …, аn} - алфавит некоторого языка. А* - множество всевозможных последовательностей символов этого языка.

Язык - это подмножество А*, которое удовлетворяет двум системам правил: синтаксическим (голубая штриховка) и семантическим (штриховка бордо), причем семантическим правилам могут удовлетворять только те конструкции, которые удовлетворяют синтаксическим правилам.

Пример: ббсе - не удовлетворяет синтаксису русского языка

Петя съел трактор - все синтаксические правила соблюдены, но предложение не удовлетворяет семантике русского языка

Таким образом, знание языка означает

1. Знание его алфавита,

2. Знание синтаксических правил

3. Знание семантических правил

В этом случае вы сможете общаться и будете правильно поняты.

Преобразование конструкций одного языка в последовательность букв другого алфавита называется кодированием.

Если говорить о кодировании, то сначала надо определить, какую конструкцию языка будем рассматривать в качестве символа, т.е. некоторой неделимой конструкции.

Рассмотрим некоторое предложение языка Q. Предложение состоит из слов, которые в свою очередь состоят из букв. Возможны 3 варианта определения символа (неделимой конструкции языка):

1. символ = буква: предложение - последовательность букв алфавита. Такой подход используется при письменной записи.

2. символ = слово. Такое представление предложений используется в стенографии.

3. символ = предложение. Такая ситуация возникает при переводе с одного языка на другой, причем особенно ярко это проявляется при переводе пословиц, шуток, поговорок.

Проблемой кодирования начал заниматься великий немецкий математик Готфрид Вильгельм Лейбниц ; он доказал, что минимальное количество букв, необходимое для кодирования любого алфавита, равно 2.

Пример. Русский язык: 33 буквы*2 (прописные, строчные)-2(ъ,ь) + 10 знаков препинания +10 цифр = 84 символа. Обязательным условием правильного кодирования является возможность однозначного преобразования АÛВ. Сколько двоичных символов необходимо, чтобы закодировать один символ русского языка?

буква код
а
А
б
Б
в
В
м
М

Предположим, надо закодировать слово Мама. Закодируем его: 10011 0 10010 0. Сделайте обратное преобразование (декодирование). Возникают проблемы, т.к. не понятно, где заканчивается одна буква и начинается другая. Основное правило однозначного преобразования из А в В и обратно нарушено, причина - использование кода переменной длины, следовательно необходимо выбрать код одинаковой заранее определенной длины. Какой?

Вывод: чем меньше букв в алфавите, тем длиннее символ. В русском языке 33 буквы, слова в среднем состоят из 4-6 букв. В японском языке около 3000 иероглифов, в среднем 1 предложение ~ 1 иероглиф.

В вычислительных машинах используется двоичное кодирование информации любого типа: программы, текстовые документы, графические изображения , видеоклипы, звуки и т.д. Удивительно, но все это богатство информации кодируется с помощью всего двух состояний: включено или выключено (единица или ноль). Формирование представления информации называется ее кодированием . В более узком смысле под кодированием понимается переход от исходного представления информации, удобного для восприятия человеком, к представлению, удобному для хранения, передачи и обработки. В этом случае обратный переход к исходному представлению называется декодированием .

При любых видах работы с информацией всегда идет речь о ее представлении в виде определенных символических структур. Наиболее распространены одномерные представления информации, при которых сообщения имеют вид последовательности символов. Так информация представляется в письменных текстах, при передаче по каналам связи, в памяти ЭВМ . Однако широко используется и многомерное представление информации, причем под многомерностью понимается не только расположение элементов информации на плоскости или в пространстве в виде рисунков, схем, графов, объемных макетов и т.п., но и множественность признаков используемых символов, например цвет, размер, вид шрифта в тексте.

Драйвер - это программа-посредник между оборудованием и другими программами.

Таким образом, тексты хранятся на диске или в памяти в виде чисел и программным способом преобразовываются в изображения символов на экране.

1.2.5. Кодирование изображений

В 1756 году выдающийся русский ученый Михаил Васильевич Ломоносов (1711 -1765) впервые высказал мысль, что для воспроизведения любого цвета в природе достаточно смешать в определенных пропорциях три основных цвета: красный, зеленый, синий. Теория трехкомпонентности цвета утверждает, что в зрительной системе человека возникают нервные возбуждения трех типов, каждое из которых независимо от остальных.

Компьютерное кодирование изображений также построено на этой теории. Картинка разбивается вертикальными и горизонтальными линиями на маленькие прямоугольники. Полученная матрица прямоугольников называется растром , а элементы матрицы - пикселями (от англ. Picture"s element - элемент изображения). Цвет каждого пикселя представлен тройкой значений интенсивности трех основных цветов. Такой метод кодирования цвета называется RGB (от англ. red - красный, green - зеленый, blue - синий). Чем больше битов выделено для каждого основного цвета, тем большую гамму цветов можно хранить про каждый элемент изображения. В стандарте, называемом true color (реальный цвет), на каждую точку растра тратится 3 байта, по 1 байт на каждый основной цвет. Таким образом, 256 (=2 8) уровней яркости красного цвета, 256 уровней яркости зеленого цвета и 256 уровней яркости синего цвета дают вместе примерно 16,7 млн различных цветовых оттенков, это превосходит способность человеческого глаза к цветовосприятию.

Чтобы хранить всю картинку, достаточно записывать в некотором порядке матрицу значений цветов пикселей, например, слева направо и сверху вниз. Часть информации о картинке при таком кодировании потеряется. Потери будут тем меньше, чем мельче пиксели. В современных компьютерных мониторах с диагональю 15 -17 дюймов разумный компромисс между качеством и размером элементов картинки на экране обеспечивает растр в 768х1024 точки.

Информация относится к фундаментальным, неопределяемым понятиям науки информатика. Тем не менее смысл этого понятиядолжен быть разъяснен. Предпримем попытку рассмотреть это понятие с различных позиций.

Термин информация происходит от латинского слова informatio , что означает сведения, разъяснения, изложение . В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

    в быту информацией называют любые данные, сведения, знания, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.;

    в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов (в этом случае есть источник сообщений, получатель (приемник) сообщений, канал связи);

    в кибернетике под информацией понимают ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы;

    в теории информации под информацией понимают сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Информация может существовать в виде:

    текстов, рисунков, чертежей, фотографий;

    световых или звуковых сигналов;

    радиоволн;

    электрических и нервных импульсов;

    магнитных записей;

    жестов и мимики;

    запахов и ощущений;

    хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т.д.

Свойства информации

Свойства информации (с точки зрения бытового подхода к определению);

    релевантность - способность информации соответствовать нуждам потребителя;

    полнота;

    своевременность;

    достоверность;

    доступность;

    защищенность;

    эргономичность - свойство, характеризующее удобство формы или объема информации с точки зрения данного потребителя.

С этой точки зрения свойства информации:

    запоминаемость;

    передаваемость;

    воспроизводимость

    преобразуемость

    стираемость.

Фундаментальное свойство информации - преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может. Высшей формой информации, проявляющейся - в управлении в социальных системах, являются знания.

Информационные процессы

Под информационным понимают процесс, связанный с определенными операциями над информацией в ходе которого может измениться содержание информации или форма ее представления.

В информатике к таким процессам относят:

получение,

хранение,

передачу,

обработку,

использование информации.

Определение количества информации

Вероятностный подход к измерению информации

Любая информация может рассматриваться как уменьшение неопределенности наших знаний об окружающем мире (в теории информации принято говорить именно об уменьшении неопределенности, а не об увеличении объема знаний). Случайность события заключается в том, что реализация того или иного исхода имеет некоторую степень неопределенности. Пусть, например, абсолютно незнакомый нам ученик сдает экзамен, результатом которого может служить получение оценок 2, 3, 4 или 5. Поскольку мы ничего не знаем о данном ученике, то степень неопределенности всех перечисленных результатов сдачи экзамена совершенно одинакова. Напротив, если нам известно, как он учится, то уверенность в некоторых исходах будет больше, чем в других: так, отличник скорее всего сдаст экзамен на пятерку, а получение двойки для него - это нечто почти невероятное. Наиболее просто определить количество информации в случае, когда все исходы события могут реализоваться с равной долей вероятности . В этом случае для вычисления информации используется формула Хартли .

В более сложной ситуации, когда исходы события ожидаются с разной степенью уверенности, требуются более сложные вычисления по формуле Шеннона , которую обычно выносят за рамки школьного курса информатики. Очевидно, что формула Хартли является некоторым частным случаем более общей формулы Шеннона.

Формула Хартли была предложена в 1928 году американским инженером Р.Хартли. Она связывает количество равновероятных состояний N с количеством информации I в сообщении о том, что любое из этих состояний реализовалось.

Наиболее простая форма для данной формулы зафиксируется следующим образом:

2 I = N

Причем обычно значение N известно, а I приходится подбирать, что не совсем удобно. Поэтому те, кто знает математику получше, предпочитают преобразовать данную формулу так, чтобы сразу выразить искомую величину I в явном виде:

I = log 2 N

Единица информации носит название бит (от англ. Вinary digiT - двоичная цифра); таким образом, 1 бит - это информация о результате опыта с двумя равновероятными исходами.

Чем больше возможных исходов, тем больше информации в сообщении о реализации одного из них.

Пример 1. Из колоды выбрали 16 карт (все “картинки” и тузы) и положили на стол рисунком вниз. Верхнюю карту перевернули (дама пик). Сколько информации будет заключено в сообщении о том, какая именно карта оказалась сверху? Все карты одинаковы, поэтому любая из них могла быть перевернута с одинаковой вероятностью. В таких условиях применима формула Хартли. Событие, заключающееся в открытии верхней карты, для нашего случая могло иметь 16 возможных исходов. Следовательно, информация о реализации одного из них равняется

I = log 2 16 = 4 бита

Примечание. Если вы не любите логарифмы, можно записать формулу Хартли в виде 2 i = 16 и получить ответ, подбирая такое I , которое ей удовлетворяет.

Алфавитный (объемный) подход к измерению информации

Он заключается в определении количества информации в каждом из знаков дискретного сообщения с последующим подсчетом количества этих знаков в сообщении. Пусть сообщение кодируется с помощью некоторого набора знаков. Заметим, что если для данного набора установлен порядок следования знаков , то он называется алфавитом . Пусть алфавит, с помощью которого записываются все сообщения, состоит из N символов . Для простоты предположим, что все они появляются в тексте с одинаковой вероятностью. Тогда применима формула Хартли для вычисления информации