Формула для расчета пропускной способности канала. Пропускная способность каналов связи. Скорость интернет-соединения

  • 20.04.2019

Пропускная способность систем передачи информации

Одной из основных характеристик любой системы передачи информации, кроме перечисленных выше, является ее пропускная способность.

Пропускная способность – максимально возможное количество полезной информации, передаваемое в единицу времени:

c = max{Imax} / TC ,

c = [бит/с].

Иногда скорость передачи информации определяют как максимальное количество полезной информации в одно элементарном сигнале:

s = max{Imax} / n,

s = [бит/элемент].

Рассмотренные характеристики зависят только от канала связи и его характеристик и не зависят от источника.

Пропускная способность дискретного канала связи без помех. В канале связи без помех информацию можно передавать неизбыточным сигналом. При этом число n = m, а энтропия элементарного сигнала HCmax = logK.

max{IC} = nHCmax= mHCmax .

Длительность элементарного сигнала , где – длительность элементарного сигнала.

где FC – спектр сигнала.

Пропускная способность канала связи без помех

Введем понятие скорости генерации элементарного сигнала источником информации:

Тогда, используя новое понятие, можно преобразовать формулу для скорости передачи информации:

Полученная формула определяет максимально возможную скорость передачи информации в дискретном канале связи без помех. Это следует из предположения о том, что энтропия сигнала максимальна.

Если HC < HCmax, то c = BHC и не является максимально возможной для данного канала связи.

Пропускная способность дискретного канала связи с помехами. В дискретном канале связи с помехами наблюдается ситуация, изображенная на рис. 6.

Учитывая свойство аддитивности, а также формулы Шеннона для определения количества информации, рассмотренные выше, можно записать

IC = TC FC log(AK PC),

IПОМ = TП FП log(APП).

Для получателя источник полезной информации и источник помехи равноценны, поэтому нельзя на приемной стороне выделить составляющую помехи в сигнале с результирующей информацией

IРЕЗ = TC FC log(AK (PП + PC)), если TC = TП, FC = FП.

Приемник может быть узкополосным, а помеха находиться в других интервалах частот. В этом случае она не будет влиять на сигнал.

Будем определять результирующий сигнал для наиболее “неприятного” случая, когда параметры сигнала и помехи близки друг к другу или совпадают. Полезная информация определяется выражением

Эта формула получена Шенноном. Она определяет скорость передачи информации по каналу связи в случае, если сигнал имеет мощность PC, а помеха – мощность PП. Все сообщения при такой скорости передадутся с абсолютной достоверностью. Формула не содержит ответа на вопрос о способе достижения такой скорости, но дает максимально возможное значение с в канале связи с помехами, то есть такое значение скорости передачи, при которой полученная информация будет абсолютно достоверной. На практике экономичнее допустить определенную долю ошибочности сообщения, хотя скорость передачи при этом увеличится.

Рассмотрим случай PC >> PП. Если ввести понятие отношения сигнал/шум

PC >> PП означает, что . Тогда

Полученная формула отражает предельную скорость мощного сигнала в канале связи. Если PC << PП, то с стремится к нулю. То есть сигнал принимается на фоне помех. В таком канале в единицу времени сигнал получить не удается. В реальных ситуациях полностью помеху отфильтровать нельзя. Поэтому приемник получает полезную информацию с некоторым набором ошибочных символов. Канал связи для такой ситуации можно представить в виде, изображенном на рис. 7, приняв источник информации за множество передаваемых символов {X}, а приемник – за множество получаемых символов {Y}.

Рис.7 Граф переходных вероятностей K- ичного канала связи

Между существует определенное однозначное соответствие. Если помех нет, то вероятность однозначного соответствия равна единице, в противном случае она меньше единицы.

Если qi – вероятность принятия yi за xi, a pij = p{yi / xi} – вероятность ошибки, то

.

Граф переходных вероятностей отражает конечный результат влияния помехи на сигнал. Как правило, он получается экспериментально.

Полезная информация может быть оценена как IПОЛ = nH(X · Y), где n – количество элементарных символов в сигнале; H(X · Y) – взаимная энтропия источника X и источника Y.

В данном случае источником X является источник полезной информации, а источником Y является приемник. Соотношение, определяющее полезную информацию, можно получить исходя из смысла взаимной энтропии: заштрихованный участок диаграммы определяет сообщения, переданные источником Xи полученные приемником Y; незаштрихованные участки отображают сигналы источника X, не дошедшие до приемника и полученные приемником посторонние сигналы, не передаваемые источником.

B – скорость генерации элементарных символов на выходе источника.

Для получения max нужно по возможности увеличить H(Y) и уменьшить H(Y/X). Графически эта ситуация может быть представлена совмещением кругов на диаграмме (Рис. 2г).

Если же круги вообще не пересекаются, X и Y существуют независимо друг от друга. В дальнейшем будет показано, как можно использовать общее выражение для максимальной скорости передачи при анализе конкретных каналов связи.

Характеризуя дискретный канал, используют два понятия скорости: техническая и информационная.

Под технической скоростью передачи RT, называемой также скоростью манипуляции, подразумевают число символов (элементарных сигналов), передаваемых по каналу в единицу времени. Она зависит от свойств линии связи и быстродействия аппаратуры канала.

С учетом различий в длительности символов техническая скорость определяется как

где - среднее время длительности символа.

Единицей измерения служит »бод» - это скорость, при которой за одну секунду передается один символ.

Информационная скорость или скорость передачи информации определяется средним количеством информации, которое передается по каналу за единицу времени. Она зависит как от характеристик конкретного канала (таких как объем алфавита используемых символов, технической скорости их передачи, статистического свойства помех в линии), так и от вероятностей поступающих на вход символов и их статистической взаимосвязи.

При известной скорости манипуляции скорость передачи информации по каналу задается соотношением:

,

где – среднее количество информации, переносимое одним символом.



Для практики важно выяснить, до какого предела и каким путем можно повысить скорость передачи информации по конкретному каналу. Предельные возможности канала по передаче информации характеризуются его пропускной способностью.

Пропускная способность канала с заданными переходными вероятностями равна максимуму передаваемой информации по всем входным распределениям символов источника X:

С математической точки зрения поиск пропускной способности дискретного канала без памяти сводится к поиску распределения вероятностей входных символов источника Х, обеспечивающего максимум переданной информации . При этом, на вероятности входных символов накладывается ограничение: , .

В общем случае, определение максимума при заданных ограничениях возможно с помощью мультипликативного метода Лагранжа. Однако такое решение требует чрезмерно больших затрат.

В частном случае для дискретных симметричных каналов без памяти пропускная способность (максимум , достигается при равномерном распределении входных символов источника X.

Тогда для ДСК без памяти, считая заданной вероятность ошибки ε и для равновероятных входных символов = = = =1/2, можно получить пропускную способность такого канала по известному выражению для :

где = – энтропия двоичного симметричного канала при заданной вероятности ошибки ε.

Интерес представляют граничные случаи:

1. Передача информации по бесшумному каналу (без помех):

, [бит/символ].

При фиксированных основных технических характеристиках канала (например, полосе частот, средней и пиковой мощности передатчика), которые определяют значение технической скорости, пропускная способность канала без помех будет равна [бит/сек].

В любой системе связи через канал передается информация. Скорость передачи информации зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Характеристики системы связи в значительной мере зависят от параметров канала связи, который используется для передачи сообщений. Большинство реальных каналов обладают переменными параметрами, которые, как правило, изменяются во времени случайным образом. Однородный симметричный канал связи полностью определяется алфавитом передаваемого сообщения, скоростью передачи элементов сообщения и вероятностью ошибочного приема элемента сообщения Р ош (вероятностью ошибки).

Пропускной способностью канала называют максимальное значение скорости передачи информации по этому каналу. То есть, пропускная способность характеризует потенциальные возможности передачи информации.

Пропускная способность рассчитывается по формуле:

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах на секунду (Бодах):

При пропускная способность двоичного канала С=0, поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т.е. последовательности на выходе и входе канала независимы. Случай С=0 называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т.е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Производительность источника информации равна:

кбит/с (7.3)

Рассчитаем пропускную способность канала с оптимальным приёмником по формуле

кбит/с(7.2):

В данном случае пропускная способность канала больше производительности источника. Это позволяет сделать вывод, что рассчитанный канал удовлетворяет условию Шеннона и может использоваться на практике для передачи аналоговых и цифровых сигналов.

Помехоустойчивое кодирование

приемник кодирование аналоговый сигнал

При передаче цифровых данных по каналу с шумом всегда существует вероятность того, что принятые данные будут содержать некоторый уровень частоты появления ошибок. Получатель, как правило, устанавливает некоторый уровень частоты появления ошибок, при превышении которого принятые данные использовать нельзя. Если частота ошибок в принимаемых данных превышает допустимый уровень, то можно использовать кодирование с исправлением ошибок., которое позволяет уменьшить частоту ошибок до приемлемой. В каналах с помехами эффективным средством повышения достоверности передачи сообщений является помехоустойчивое кодирование. Оно основано на применении специальных кодов, которые корректируют ошибки, вызванные действием помех. Код называется корректирующим, если он позволяет обнаруживать или обнаруживать и исправлять ошибки при приеме сообщений. Код, посредством которого только обнаруживаются ошибки, носит название обнаруживающего кода. Исправление ошибки при таком кодировании обычно производится путем повторения искаженных сообщений. Запрос о повторении передается по каналу обратной связи. Код, исправляющий обнаруженные ошибки, называется исправляющим кодом. В этом случае фиксируется не только сам факт наличия ошибок, но и устанавливается, какие кодовые символы приняты ошибочно, что позволяет их исправить без повторной передачи. Известны также коды, в которых исправляется только часть обнаруженных ошибок, а остальные ошибочные комбинации передаются повторно.

Для того чтобы код обладал корректирующими способностями, в кодовой последовательности должны содержаться дополнительные (избыточные) символы, предназначенные для корректирования ошибок. Чем больше избыточность кода, тем выше его корректирующая способность, но и тем ниже скорость передачи информации по каналу.

Корректирующие коды строятся так, чтобы количество комбинаций k превышало число сообщений n источника. Однако в этом случае используется лишь n комбинаций источника из общего числа для передачи информации. Такие комбинации называются разрешенными, а остальные - запрещенными. Приемнику известны все разрешенные и запрещенные комбинации. Если при приеме некоторого разрешенного сообщения, в результате ошибки, оно попадает в разряд запрещенных, то такая ошибка будет обнаружена, а также, при определенных условиях, исправлена. Следует заметить, что при ошибке, приводящей к появлению другого разрешенного сигнала, такая ошибка не обнаружима.

Таким образом, если комбинация на выходе оказывается запрещенной, то это указывает на то, что при передаче возникла ошибка. Отсюда видно, что избыточный код позволяет обнаружить, в каких принятых кодовых комбинациях имеются ошибочные символы. Безусловно, не все ошибки могут быть обнаружены. Существует вероятность того, что, несмотря на возникшие ошибки, принятая последовательность кодовых символов окажется разрешенной комбинацией (но не той, которая передавалась). Однако при разумном выборе кода вероятность необнаруженной ошибки (т.е. ошибки, которая переводит разрешенную комбинацию в другую разрешенную комбинацию) может быть сделана очень малой.

Эффективность помехоустойчивого кода возрастает при увеличении его длины, так как вероятность ошибочного декодирования уменьшается при увеличении длины кодируемого сообщения.

Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.

Разновидностями как блочных, так и непрерывных кодов являются разделимые (с возможностью выделения информационных и контрольных символов) и неразделимые коды. Наиболее многочисленным классом разделимых кодов составляют линейные коды. Их особенность состоит в том, что контрольные символы образуются как линейные комбинации информационных символов.

Расстоянием Хэмминга d между двумя последовательностями называется число позиций, в которых две последовательности отличаются друг от друга.

Ошибка обнаруживается всегда, если её кратность, т.е. число искаженных символов в кодовой комбинации: qd, то некоторые ошибки также обнаруживаются. Однако полной гарантии обнаружения ошибок нет, т.к. ошибочная комбинация может совпадать с какой-либо разрешенной комбинацией. Минимальное кодовое расстояние, при котором обнаруживаются любые одиночные ошибки: d=2.

Чаще всего применяются систематические линейные коды, которые строятся следующим образом. Сначала строится простой код длиной n, т.е. множество всех n-последовательностей двоичных символов, называемых информационными. Затем к каждой из этих последовательностей приписывается r=p-n проверочных символов, которые получаются в результате некоторых линейных операций над информационными символами.

Простейший систематический код (n, n-1) строится путём добавления к комбинации из n-1 информационных символов одного проверочного, равного сумме всех информационных символов по модулю 2. Легко видеть, что эта сумма равна нулю, если среди информационных символов содержится чётное число единиц, и равна единице, если число единиц среди информационных символов нечётное. После добавления проверочного символа образуются кодовые комбинации, содержащие только чётное количество единиц. Такой код имеет, поскольку две различные кодовые комбинации, содержащие по четному числу единиц, не могут различаться в одном разряде. Следовательно, он позволяет обнаружить одиночные ошибки. Легко убедиться, что, применяя этот код в схеме декодирования с обнаружением ошибок, можно обнаруживать все ошибки нечетной кратности. Для этого достаточно подсчитать число единиц в принятой комбинации и проверить, является ли оно четным. Если при передаче комбинации произойдут ошибки в нечетном числе разрядов q, то принятая комбинация будет иметь нечетный вес и, следовательно, окажется запрещенной. Такой код называют кодом с одной проверкой на четность.

Простейшим примером кода с проверкой на четность является код Бодо, в котором к пятизначным комбинациям информационных символов добавляется шестой контрольный символ. Вероятность необнаруженной кодом ошибки при независимых ошибках определяется биномиальным законом:

где - число ошибочных комбинаций:

Таким образом, учитывая, что, используя формулы (8.1) и (8.2), найдём вероятность необнаружения ошибки:

Определим избыточность рассчитанного канала связи, используя результаты расчётов, произведённых в параграфе 7, используя результаты формул (7.2) и (7.3):

Избыточность кода Бодо (6,5)

Избыточность кода Хэмминга (7,4)

При сравнении (8.3), (8.4) и (8.5) заметно, что избыточность канала позволяет применить только обнаруживающий код Бодо (6,5) с проверкой на чётность.

Рассчитаем вероятность ошибки корректирующего кода, учитывая оставшееся свободное время (см. п. 3):

Как следует из выражения (8.6), нет смысла применять помехоустойчивое кодирование, потому что высока вероятность ошибки корректирующего кода.

Ранее мы рассмотрели кодирование и передачу информации по каналу связи в идеальном случае, когда процесс передачи информации осуществляется без ошибок. В действительности этот процесс неизбежно сопровождается ошибками (искажениями). Канал передачи, в котором возможны искажения, называется каналом с помехами (или шумами). В частном случае ошибки возникают в процессе самого кодирования, и тогда кодирующее устройство может рассматриваться как канал с помехами.

Наличие помех приводит к потере информации. Чтобы в условиях наличия помех получить на приемнике требуемый объем информации, необходимо принимать специальные меры. Одной из таких мер является введение так называемой «избыточности» в передаваемые сообщения; при этом источник информации выдает заведомо больше символов, чем это было бы нужно при отсутствии помех. Одна из форм введения избыточности – простое повторение сообщения. Таким приемом пользуются, например, при плохой слышимости по телефону, повторяя каждое сообщение дважды. Другой общеизвестный способ повышения надежности передачи состоит в передаче слова «по буквам» – когда вместо каждой буквы передается хорошо знакомое слово (имя), начинающееся с этой буквы.

Пропускная способность канала, когда число элементарных символов более двух и когда искажения отдельных символов зависимы может быть определена с помощью второй теоремы Шеннона. Зная пропускную способность канала, можно определить верхний предел скорости передачи информации по каналу с помехами.

Рассмотрим на примере: Пусть имеется источник информации Х, энтропия которого в единицу времени равна , и канал с пропускной способностью Х. Тогда если

то при любом кодировании передача сообщений без задержек и искажений невозможна.

то всегда можно достаточно длинное сообщение закодировать так, чтобы оно было передано без задержек и искажений с вероятностью, сколь угодно близкой к единице.

Задача 2 : Выяснить, достаточна ли пропускная способность каналов для передачи информации, поставляемой источником, если имеются источник информации с энтропией в единицу времени =110 (дв. ед.) и количество каналов связи n = 2 , каждый из них может передавать в единицу времени К = 78 двоичных знаков (0 или 1); каждый двоичный знак заменяется противоположным с вероятностью μ=0.17 .

η(μ) = 0,434587

η(1 – μ) = 0,223118

η(μ) + η(1 – μ) = 0,434587 + 0,223118 = 0,657688

На один символ теряется информация 0,584239 (дв. ед.).

Пропускная способность канала равна:

С = 78∙(1 – 0,657688) =26,7≈27 двоичных единиц в единицу времени.

Максимальное количество информации, которое может быть передано по двум каналам в единицу времени:

27∙2 = 54 (дв. ед.), чего не достаточно для обеспечения передачи информации от источника, так как источник передает 110 дв. ед. в единицу времени. Для обеспечения передачи информации в достаточном объеме и без искажения необходимо увеличить количество пропускных каналов связи до трех. Тогда максимальное количество информации, которое может быть передано по трем каналам в единицу времени:

3*54=162 двоичных единиц в единицу времени. 162>110, следовательно информация будет передаваться без искажений.

Для передачи информации без задержек можно:

1. Использовать способ кодирования-декодирования;

2. Применять компандирование сигнала;

3. Увеличить мощность передатчика;

4. Применять дорогие линии связи с эффективным экранированием и малошумящей аппаратурой для снижения уровня помех;

5. Применять передатчики и промежуточную аппаратуру с низким уровнем шума;

6. Использовать для кодирования более двух состояний;

7. Применять дискретные системы связи с применением всех посылок для передачи информации.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

5.1. Скорость передачи информации в дискретной системе связи

В дискретной системе связи при отсутствии помех информация на выходе канала связи (канала ПИ) полностью совпадает с информацией на его входе, поэтому скорость передачи информации численно равна производи­тельности источника сообщений:

При наличии помех часть информации источника теряется и скорость пере­дачи информации оказывается меньшей, чем производительность источ­ника. Одновременно в сообщение на выходе канала добавляется информация о помехах (рис.12).

Поэтому при наличии помех необходимо учитывать на выходе канала не всю информацию, даваемую источником, а только взаимную информа­цию:

бит/с. (5.2)

На основании формулы (5.1) имеем

где H (x ) производительность источника;

H (x / y )  ненадёжность “ канала(потери) в единицу времени;

H (y )  энтропия выходного сообщения в единицу времени;

H (y / x ) =H ’(n ) –энтропия помех (шума) в единицу времени.

Пропускной способностью канала связи (канала передачи информации) C называется максимально возможная скорость передачи информации по каналу


.
(5.4)

Для достижения максимума учитываются все возможные источники на выходе и все возможные способы кодирования.

Таким образом, пропу­скная способность канала связи равна максимальной производительности источника на входе канала, полностью согласованного с характеристиками этого канала, за вычетом потерь информации в канале из-за помех.

В канале без помех C = max H (x ) , так как H (x / y )=0 . При использовании равномерного кода с основанием k , состоящего из n элементов длительностью э , в канале без помех


,

при k =2
бит/c. (5.5)

Для эффективного использования пропускной способности канала необходимо его согласование с источником информации на входе. Такое согласование возможно как для каналов связи без помех, так и для каналов с помехами на основании двух теорем, доказанных К.Шенноном.

1-ая теорема (для канала связи без помех):

Если источник сообщений имеет энтропию H (бит на символ), а канал связи – пропу­скную способность C (бит в секунду), то можно закодировать сообще­ния таким образом, чтобы передавать информацию по каналу со средней скоростью, сколь угодно близкой к величине C , но не превзойти её.

К.Шеннон предложил и метод такого кодирования, который получил название статистического или оптимального кодирования. В дальнейшем идея такого кодирования была развита в работах Фано и Хаффмена и в настоящее время широко используется на практике для “cжатия сообщений”.

5.2. Пропускная способность однородного симметричного канала связи

В однородном канале связи условные(переходные) вероятности p (y 1 / x 1 ) не зависят от времени. Граф состояний и переходов однородного двоичного канала связи приведен на рис. 13.

На этом рисунке x 1 и x 2 – сигналы на входе канала связи, y 1 и y 2 – сиг­налы на выходе. Если передавался сигнал x 1 и принят сигнал y 1 , это озна­чает, что первый сигнал (индекс 1) не исказился. Если передавался первый сигнал (x 1), а принят второй сигнал (y 2), это означает, что произошло иска­жение первого сигнала. Вероятности переходов указаны на рис. 13. Если канал симметричный, то вероятности переходов попарно равны.

Обозначим: p (y 2 / x 1 )= p (y 1 / x 2 )= p э – вероятности искажения элемента сигнала, p (y 1 / x 1 )= p (y 2 / x 2 )=1- p э – вероятности правильного приёма элемента сигнала.

В соответствии с формулами (5.1) и (5.3)


.

Если сигналы x 1 и x 2 имеют одинаковую длительность э , то
. Тогда пропускная способность канала будет равна

. (5.7)

В этой формуле maxH (y )= logk . Для двоичного канала (k= 2) maxH (y )= 1 и формула (5.4) примет вид


. (5.8)

Остаётся определить условную энтропию H (y / x ) . Для двоичного источника имеем


Подставив это значение условной энтропии в (5.8), получим оконча­тельно

. (5.9)

Для канала связи с k >2


бит/c.

На рис. 14 построен график зависимости пропускной способности двоичного канала от вероятности ошибки.

Для канала связи с k >2 пропускная способность определяется почти аналогичной формулой:

В заключении рассмотрим один пример. Пусть имеется двоичный источник с производительностью
бит/c.

Если вероятность искажения p э = 0,01, то из этого следует, что из 1000 элементов сигнала, переданных за одну секунду, в среднем 990 элементов будут приняты без искажений и только 10 элементов будут искажены. Казалось бы, пропускная способность в этом случае будет составлять 990 бит в секунду. Однако вычисление по формуле (5.9) даёт нам величину, значительно меньшую (C = 919 бит/с). В чём здесь дело? А дело в том, что мы получили бы C = 990 бит/с, если бы точно знали, какие именно элементы сообщения искажены. Незнание этого факта (а это практически знать невозможно) приводит к тому, что 10 искажённых элементов настолько сильно снижают ценность принимаемого сообщения, что пропускная способность резко уменьшается.

Другой пример. Если p э = 0,5, то из 1000 переданных элементов 500 не будут искажены. Однако теперь уже пропускная способность будет составлять не 500 бит/с, как можно было бы предполагать, а формула (5.9) даст нам величину C = 0. Действительно при p э = 0,5 сигнал по каналу связи фактически уже не проходит и канал связи просто эквивалентен генератору шума.

При p э 1 пропускная способность приближается к максимальной величине. Однако в этом случае сигналы на выходе системы связи необходимо инвертировать.

Рассмотрим канал связи, представленный на рис. 5-1. На его передающий конец подается сигнал x(t) , который поступает на вход приемника в искаженном шумом n(t) виде y(t) [Л. 47, 53]. Введем понятие пропускной способности канала связи. Пропускная способность канала связи определяется как максимальная величина относительной информации выходного сигнала относительно входного:

где I(x, y) - относительная информация, задаваемая формулой (7-8), причем все сигналы рассматриваются как эквивалентные дискретные (рис. 7-1), так что


Иногда величина называется скоростью передачи информации по каналу связи. Эта величина равна количеству относительной информации, передаваемой в единицу времени. За единицу времени при дискретном канале связи удобно считать время передачи одного символа. В этом случае в формулах для скорости передачи информации понимают энтропии и количества информации на один символ. Для непрерывных каналов связи используются две единицы измерения или обычная единица (к примеру, секунда), или интервал времени между отсчетами , в этом последнем случае в формулах понимаются дифференциальные энтропии на один отсчет (или степень свободы). Нередко в руководствах специально не указывается, какая конкретно из двух единиц применяется. В связи с этим часто используют другую формулу для средней скорости передачи информации


где N=2f c t 0 . Если отсчеты независимы, то V=I 1 (х, y) . Очевидно, что с помощью величины V пропускная способность канала связи может быть определена по формуле


Для энтропии шума можно написать:

Н(n)=2f c t 0 H 1 (n),


Энтропия шума на один отсчет для нормального шума.

Аналогичные формулы можно записать для нормальных сигналов х и y .

Формулу (7-10) для единицы отсчета можно записать в виде

Смысл этого определения требуется разъяснить. Отметим, что максимум здесь взят по множеству распределений вероятности входных сигналов при неизменном шуме, которое предполагается заданным. В частном случае это множество распределений может состоять из одного нормального, как это часто и считается.

Если пропускная способность одного канала связи больше, чем другого (С 1 >С 2) при остальных одинаковых условиях, то физически это означает, что в первом случае совместная плотность распределения вероятности входного и выходного сигналов больше, чем во втором, так как с помощью формулы (7-11) нетрудно убедиться, что пропускная способность определяется в основном величиной совместной плотности распределения вероятности. Если относительная информация (или энтропия) выходного сигнала относительно входного больше, то канал обладает большей пропускной способностью. Ясно, что если шумы возрастают, то пропускная способность падает.

Если вероятностная связь выходного и входного сигналов пропадает, то

р(х,y)=р(х)р(y)

и в формуле (7-11) логарифм и, следовательно, пропускная способность становятся равными нулю.

Другой случай, когда

р(х,y)=р(х|y)р(у)

стремится к нулю, требует детального рассмотрения, так как log р(х,y) стремится к - ∞. Если р(y)→ 0, то


Рассуждения можно продолжить следующим образом. Так как вероятность появления выходного сигнала стремится к нулю, то можно положить, что вероятность появления сигнала х не зависит от y , т. е.

p(х|y)=р(х)


В этом случае пропускная способность равна нулю, что согласуется с физической интерпретацией, т. е. если на выходе канала связи не появляется никакого сигнала [ни полезного x(t) , ни шумов n(t) ], это означает, что в канале есть "пробка" (разрыв). Во всех остальных случаях пропускная способность отлична от нуля.

Естественно определить пропускную способность канала связи так, чтобы она не зависела от входного сигнала. Для этого введена операция максимизации, которая в соответствии с экстремальными свойствами энтропии чаще всего определяет входной сигнал с нормальным законом распределения. Покажем, что если x(t) и n(t) независимы и y(t)=x(t)+n(t) , то

I(х,y)=Н(y)-Н(n), (7-12)

где Н(y) и Н(n) - дифференциальные энтропии принимаемых сигнала и шума. Условие (7-12) означает линейность канала связи в том смысле, что шум просто добавляется к сигналу как слагаемое. Оно непосредственно следует из

I(х,y)=Н(x)-Н(х|y)=Н(y)-Н(y|х).

Так как x и n статистически независимы, то

Подставив это соотношение в предыдущее, получим (7-12). Очевидно, если шум аддитивен и не зависит от входного сигнала, то максимальная скорость передачи сообщений по каналу связи (максимальная пропускная способность) достигается при maxН(y) , так как

Рассмотрим гауссов канал связи, исходя из следующих предположений: ширина полосы частот канала ограничена частотой f с ; шум в канале - нормальный белый со средней мощностью на единицу полосы S n =S n 2 ; средняя мощность полезного сигнала Р x ; сигнал и шум статистически независимы; выходной сигнал равен сумме полезного сигнала и шума.

Очевидно, что в соответствии с формулой (7-4) пропускная способность такого канала определится как

H(n)=Flog2πeS n f c . (7-14)

Так как сигнал и шум статистически независимы, то они не коррелированы между собой, поэтому средняя мощность суммарного сигнала

Р y =Р x +S n f c =Р x +Р n

В соответствии с формулой (7-13) необходимо найти максимум энтропии сигнала y(t) на один отсчет при заданной средней мощности. В силу экстремальных свойств энтропии (см. гл. 6) сигнал y(t) должен быть распределен нормально. Белый шум в полосе f c эквивалентен сигналу в этой же полосе со спектральной плотностью S , если равны их средние мощности, т. е.


Действительно, для нормального сигнала была доказана формула для энтропии на один отсчет