Управление мощной нагрузкой переменного тока. Управление мощной нагрузкой

  • 22.05.2019

МОП (по буржуйски MOSFET ) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной , по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.


У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314 , способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:


Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или I D выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это V GS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость I D от V DS при разных значениях V GS . И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или t on ,t off , в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора C iss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО . Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги:).

06 Jan 2017

На практике часто возникает необходимость управлять при помощи цифровой схемы (например, микроконтроллера) каким-то мощным электрическим прибором. Это может быть мощный светодиод, потребляющий большой ток, или прибор, питающийся от электрической сети. Рассмотрим типовые решения этой задачи.

Виды управления

Условно можно выделить 3 группы методов:

  1. Управление нагрузкой постоянного тока.
    • Транзисторный ключ на биполярном транзисторе.
    • Транзисторный ключ на МОП-транзисторе (MOSFET).
    • Транзисторный ключ на IGBT.
  2. Управление нагрузкой переменного тока.
    • Тиристорный ключ.
    • Симисторный ключ.
  3. Универсальный метод.
    • Реле.

Выбор способа управления зависит как от типа нагрузки, так и от вида применяемой цифровой логики. Если схема построена на ТТЛ-микросхемах, то следует помнить, что они управляются током, в отличие от КМОП, где управление осуществляется напряжением. Иногда это важно.

Ключ на биполярном транзисторе

Для тока $I_{LED} = 0{,}075\,А$ управляющий ток должен быть в $\beta = 50$ раз меньше:

Падение напряжения на переходе эмиттер - база примем равным $V_{EB} = 0{,}7\,В$.

Сопротивление округлялось в меньшую сторону, чтобы обеспечить запас по току.

Таким образом, мы нашли значения сопротивлений R1 и R2.

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать нескольких ампер. Для мощных транзисторов коэффициент $\beta$ может быть недостаточным. (Тем более, как видно из таблицы, для мощных транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый транзистор управляет током, который открывает второй транзистор. Такая схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты $\beta$ двух транзисторов умножаются, что позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток база - эмиттер. Типичные значения - 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры таких транзисторов приведены в таблице.

В остальном работа ключа остаётся такой же.

Ключ на полевом транзисторе

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET, то есть полевые транзисторы с изолированным затвором (они же МОП, они же МДП). Они удобны тем, что управляются исключительно напряжением: если напряжение на затворе больше порогового, то транзистор открывается. При этом управляющий ток через транзистор пока он открыт или закрыт не течёт. Это значительное преимущество перед биполярными транзисторами, у которых ток течёт всё время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET (даже для двухтактных схем). Это связано с тем, что n-канальные транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её «снизу», то схема не будет работать. Дело в том, что транзистор открывается, если напряжение между затвором и истоком превышает пороговое. При подключении «снизу» нагрузка будет давать дополнительное падение напряжения, и транзистор может не открыться или открыться не полностью.

При управлении типа push-pull схема разряда конденсатора образует, фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где $V$ - напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы ограничить ток заряда - разряда до 10 мА. Но чем больше сопротивление резистора, тем медленнее он будет открываться и закрываться, так как постоянная времени $\tau = RC$ увеличится. Это важно, если транзистор часто переключается. Например, в ШИМ-регуляторе.

Основные параметры, на которые следует обращать внимание - это пороговое напряжение $V_{th}$, максимальный ток через сток $I_D$ и сопротивление сток - исток $R_{DS}$ у открытого транзистора.

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель $V_{th}$ $\max\ I_D$ $\max\ R_{DS}$
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для $V_{th}$ приведены максимальные значения. Дело в том, что у разных транзисторов даже из одной партии этот параметр может сильно отличаться. Но если максимальное значение равно, скажем, 3 В, то этот транзистор гарантированно можно использовать в цифровых схемах с напряжением питания 3,3 В или 5 В.

Сопротивление сток - исток у приведённых моделей транзисторов достаточно маленькое, но следует помнить, что при больших напряжениях управляемой нагрузки даже оно может привести к выделению значительной мощности в виде тепла.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока превышает пороговое напряжение, то транзистор открывается и сопротивление сток - исток мало. Однако, напряжение при включении не может резко скакнуть до порогового. А при меньших значениях транзистор работает как сопротивление, рассеивая тепло. Если нагрузку приходится включать часто (например, в ШИМ-контроллере), то желательно как можно быстрее переводить транзистор из закрытого состояния в открытое и обратно.

Ещё раз обратите внимание на расположение нагрузки для n-канального транзистора - она расположена «сверху». Если расположить её между транзистором и землёй, из-за падения напряжения на нагрузке напряжение затвор - исток может оказаться меньше порогового, транзистор откроется не полностью и может перегреться и выйти из строя.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору между стоком и землёй, то решение есть. Можно использовать готовую микросхему - драйвер верхнего плеча. Верхнего - потому что транзистор сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например, IR2151) для построения двухтактной схемы, но для простого включения нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять «висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее эффективно использовать транзистор.

IGBT

Ещё один интересный класс полупроводниковых приборов, которые можно использовать в качестве ключа - это биполярные транзисторы с изолированным затвором (IGBT).

Они сочетают в себе преимущества как МОП-, так и биполярных транзисторов: управляются напряжением, имеют большие значения предельно допустимых напряжений и токов.

Управлять ключом на IGBT можно так же, как и ключом на MOSFET. Из-за того, что IGBT применяются больше в силовой электронике, они обычно используются вместе с драйверами.

Например, согласно даташиту, IR2117 можно использовать для управления IGBT.

Пример IGBT - IRG4BC30F.

Управление нагрузкой переменного тока

Все предыдущие схемы отличало то, что нагрузка хоть и была мощной, но работала от постоянного тока. В схемах была чётко выраженные земля и линия питания (или две линии - для контроллера и нагрузки).

Для цепей переменного тока нужно использовать другие подходы. Самые распространённые - это использование тиристоров, симисторов и реле. Реле рассмотрим чуть позже, а пока поговорим о первых двух.

Тиристоры и симисторы

Тиристор - это полупроводниковый прибор, который может находится в двух состояниях:

  • открытом - пропускает ток, но только в одном направлении,
  • закрытом - не пропускает ток.

Так как тиристор пропускает ток только в одном направлении, для включения и выключения нагрузки он подходит не очень хорошо. Половину времени на каждый период переменного тока прибор простаивает. Тем не менее, тиристор можно использовать в диммере. Там он может применяться для управления мощностью, отсекая от волны питания кусочек требуемой мощности.

Симистор - это, фактически двунаправленный тиристор. А значит он позволяет пропускать не полуволны, а полную волну напряжения питания нагрузки.

Открыть симистор (или тиристор) можно двумя способами:

  • подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
  • подать достаточно высокое напряжение на его «рабочие» электроды.

Второй способ нам не подходит, так как напряжение питания у нас будет постоянной амплитуды.

После того, как симистор открылся, его можно закрыть поменяв полярность или снизив ток через него то величины, меньшей чем так называемый ток удержания. Но так как питание организовано переменным током, это автоматически произойдёт по окончании полупериода.

При выборе симистора важно учесть величину тока удержания ($I_H$). Если взять мощный симистор с большим током удержания, ток через нагрузку может оказаться слишком маленьким, и симистор просто не откроется.

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше использовать оптопару или специальный симисторный драйвер. Например, MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот фотосимистор можно использовать для управления мощным симисторным ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток - 60 мА, поэтому при подключении к микроконтроллеру, возможно, придётся использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до 1 А. Этого достаточно для управления мощными бытовыми приборами через второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой накаливания).

Таким образом, эта оптопара выступает в роли драйвера симистора.

Существуют и драйверы с детектором нуля - например, MOC3061. Они переключаются только в начале периода, что снижает помехи в электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же резистора R3 определяется исходя из пикового напряжения в сети питания и отпирающего тока силового симистора. Если взять слишком большое - симистор не откроется, слишком маленькое - ток будет течь напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для России, Украины и многих других стран) - это значение действующего напряжения. Пиковое напряжение равно $\sqrt2 \cdot 230 \approx 325\,В$.

Управление индуктивной нагрузкой

При управлении индуктивной нагрузкой, такой как электродвигатель, или при наличии помех в сети напряжение может стать достаточно большим, чтобы симистор самопроизвольно открылся. Для борьбы с этим явлением в схему необходимо добавить снаббер - это сглаживающий конденсатор и резистор параллельно симистору.

Снаббер не сильно улучшает ситуацию с выбросами, но с ним лучше, чем без него.

Керамический конденсатор должен быть рассчитан на напряжение, большее пикового в сети питания. Ещё раз вспомним, что для 230 В - это 325 В. Лучше брать с запасом.

Типичные значения: $C_1 = 0{,}01\,мкФ$, $R_4 = 33\,Ом$.

Есть также модели симисторов, которым не требуется снаббер. Например, BTA06-600C.

Примеры симисторов

Примеры симисторов приведены в таблице ниже. Здесь $I_H$ - ток удержания, $\max\ I_{T(RMS)}$ - максимальный ток, $\max\ V_{DRM}$ - максимальное напряжение, $I_{GT}$ - отпирающий ток.

Модель $I_H$ $\max\ I_{T(RMS)}$ $\max\ V_{DRM}$ $I_{GT}$
BT134-600D 10 мА 4 А 600 В 5 мА
MAC97A8 10 мА 0,6 А 600 В 5 мА
Z0607 5 мА 0,8 А 600 В 5 мА
BTA06-600C 25 мА 6 А 600 В 50 мА

Реле

Электромагнитные реле

С точки зрения микроконтроллера, реле само является мощной нагрузкой, причём индуктивной. Поэтому для включения или выключения реле нужно использовать, например, транзисторный ключ. Схема подключения и также улучшение этой схемы было рассмотрено ранее.

Реле подкупают своей простотой и эффективностью. Например, реле HLS8-22F-5VDC - управляется напряжением 5 В и способно коммутировать нагрузку, потребляющую ток до 15 А.

Твердотельные реле

Главное преимущество реле - простота использования - омрачается несколькими недостатками:

  • это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
  • меньшая скорость переключения,
  • сравнительно большие токи для переключения,
  • контакты щёлкают.

Часть этих недостатков устранена в так называемых твердотельных реле . Это, фактически, полупроводниковые приборы с гальванической развязкой, содержащие внутри полноценную схему мощного ключа.

Заключение

Таким образом, в арсенале у нас достаточно способов управления нагрузкой, чтобы решить практически любую задачу, которая может возникнуть перед радиолюбителем.

  • Ключ на плечо! – особенности применения высоковольтных драйверов производства IR
  • Редактор схем

    Все схемы нарисованы в KiCAD . В последнее время для своих проектов использую именно его, очень удобно, рекомендую. С его помощью можно не только чертить схемы, но и проектировать печатные платы.

    Использование оптотиристоров

    Оптосимисторы МОС301х, МОС302х, МОС303х, МОС304х, МОС306х, МОС308х
    Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения.
    Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большой мощности. Подобные оптопары были задуманы для осуществления связи между логическими схемами с малыми уровнями напряжений и нагрузкой, питаемой сетевым напряжением 220 В. Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами, его цоколевка и внутренняя структура показаны на рис.1.

    В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе (VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.

    Что касается элементов с обнаружением нуля напряжения питания, то их выходной каскад срабатывает при превышении напряжением питания некоторого порога, обычно это 5 В (максимум 20 В). Серии МОС301х и МОС302х чаще используются с резистивной нагрузкой или в случаях, когда напряжение питания нагрузки должно отключаться. Когда симистор находится в проводящем состоянии, максимальное падение напряжения на его выводах обычно равно 1,8В (максимум 3В) при токе до 100мА. Ток удержания (IH), поддерживающий проводимость выходного каскада оптосимистора, равен 100мкА, каким бы он ни был (отрицательным или положительным) за полупериод питающего напряжения.
    Ток утечки выходного каскада в закрытом состоянии (ID) варьируется в зависимости от модели оптосимистора. Для оптосимисторов с обнаружением нуля ток утечки может достигать 0,5мА, если светодиод находится под напряжением (протекает ток IF).
    У инфракрасного светодиода обратный ток утечки равен 0,05 мкА (максимум 100 мкА), и максимальное падение прямого напряжения 1,5В для всех моделей оптосимисторов. Максимально допустимое обратное напряжение светодиода 3 вольта для моделей МОС301х, МОС302х и МОС303х и 6 вольт для моделей МОС304х. МОСЗО6х и МОСЗО8х.
    Предельно допустимые характеристики
    Максимально допустимый ток через светодиод в непрерывном режиме - не более 60ма.
    Максимальный импульсный ток в проводящем состоянии переключателя выходного каскада - не более 1 А.
    Полная рассеиваемая мощность оптосимистора не должна превышать 250 мВт (максимум 120 мВт для светодиода и 150 мВт для выходного каскада при Т - 25˚С).

    Применение оптосимисторов

    На рис.2 а-д представлены различные схемы типичных применений оптосимисторов, отличающиеся друг от друга характером нагрузки и способами подключения нагрузки и питания.
    Сопротивление Rd
    Расчет сопротивления этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора. Следовательно, Rd = (+V - 1,5) / IF.
    Например, для схемы транзисторного управления оптосимистором c напряжением питания +5 В (рис.3) и напряжением на открытом транзисторе (Uкэ нас), равном 0.3 В, +V будет 4,7 В, и IF должен находиться в диапазоне между 15 и 50 ма для МОС3041. Следует принять IF - 20 мА с учетом снижения эффективности светодиода в тече¬ние срока службы (запас 5 мА), целиком обеспечивая работу оптопары с постепенным ослаблением силы тока. Таким образом, имеем:
    Rв = (4,7 - 1,5) / 0,02 = 160 Ом.
    Следует подобрать стандартное значение сопротивления, то есть 150 Ом для МОС3041 и сопротивление 100 Ом для МОС3020.
    Сопротивление R
    Резистор R необязательно включать, когда нагрузка чисто резистивная. Однако, если симистор защищен цепочкой RР - CР, чаще всего называемой искрогасящей, резистор R позволяет ограничить ток через управляющий электрод оптосимистора. Действительно, в случае индуктивной нагрузки проходящий через симистор ток и напряжение, приложенное к схеме, находятся в противофазе. Так как симистор перестает быть проводником, когда ток проходит через нуль, конденсатор защитной цепочки СР может разряжаться через оптосимистор. Тогда резистор R ограничивает этот ток разряда. Минимальное значение его сопротивления зависит от максимального напряжения конденсатора и максимально допустимого для оптосимистора тока, поэтому для напряжения питания 220 В:
    Rmin = 220 В х 1,41 / 1А - 311 Ом.
    С другой стороны, слишком большая величина R может привести к нарушению работы. Поэтому принимают R - 330 или 390 Ом.
    Сопротивление RG
    Резистор RG необходим только тогда, когда входное сопротивление управляющего электрода очень велико, то есть в случае чувствительного симистора. Значение резистора RG может быть в диапазоне от 100 до 500 Ом.
    Резисторы RG и R вводят задержку отпирания симистора, которая будет тем значительнее, чем выше сопротивления этих резисторов. Цепочка Ra - Сa
    Чтобы ограничить скорость изменения напряжения dV/dt на выходе оптосимистора, необходима snubber-цепочка (рис.2 г).
    Выбор значения сопротивления резистора Ra зависит от чувствительности симистора и напряжения Va, начиная с которого симистор должен срабатывать. Таким образом, имеем:
    R + Ra = Va / IG.
    Для симистора с управляющим током IG = 25мА и напряжением отпирания Va = 20В получим: R + Ra = 20 / 0,025 - 800 Ом
    или: Ra = 800 - 330 = 470 Ом.
    Для того чтобы переключение симистора происходило быстро, должно быть выполнено следующее условие: dV / dt = 311 / Ra х Ca.
    Для МОС3020 максимальное значение dV / dt - 10 В/мкс.
    Таким образом: Сa = 311 / (470 х 107) = 66 нФ.
    Выбираем: Сa = 68 нФ.
    Замечание.
    Что касается snubber-цепочки, то экспериментальные значения, как правило, предпочтительнее теоретических расчетов.
    Защита
    Настоятельно рекомендуется защищать симистор и оптосимистор при работе на индуктивную нагрузку или при часто воздействующих на сеть помехах.
    Для симистора искрогасящая RC-цепочка просто необходима. Для оптосимистора с обнаружением нуля, такой как МОС3041, - желательна. Сопротивление резистора R следует увеличить с 27 Ом до 330 Ом (за исключением случая, когда управляемый симистор малочувствительный).
    Если используется модель без обнаружения нуля, то snubber-цепочка Ra - Сa обязательна.

    Сегодня я поделюсь результатами своих экспериментов в области управления нагрузками, подключенными к бытовой сети 220 вольт. А именно займемся диммированием - будем плавно зажигать и гасить лампочку накаливания с помощью микроконтроллера.

    На первый взгляд тут ничего сложного нет - и регулируем в свое удовольствие. Но не стоит забывать что напряжение в розетке переменное, а значит что сделать это будет немного сложнее. Дальше будет немного теории, схема и метод управления.

    При работе с высоким сетевым напряжением следует быть осторожным и внимательным! Ни в коем случае не дотрагиваться до оголенных участков схемы.

    Так почему же нельзя в данном случае использовать простой шим сигнал?

    Как известно в розетке у нас переменное напряжение синусоидальной формы, как на рисунке ниже.

    Если использовать управление с помощью ШИМ, ключ через который регулируем сигнал (например симистор) будет открываться и пропускать в нагрузку куски синусоиды, имеющие разную мощность. Как итог, никакого плавного регулирования не получится, а будет безупорядоченный сигнал на выходе:


    Для того чтобы этого избежать, мы должны знать когда включать и выключать симистор, то есть привязать управляющий сигнал к управляемому. Как? Все просто, достаточно знать когда сигнал проходит через 0. Зная где начинается каждая следующая полуволна мы сможем открывать ключ в нужные моменты, тем самым отдавая нагрузке одинаковую мощность. А изменяя время, которое управляющий ключ находится в открытом состоянии мы можем плавно изменять отдаваемую мощность.


    Момент прохождения сетевого напряжения через 0, можно определять с помощью оптопары. Для того чтобы детектировать начало каждой полуволны (и отрицательной и положительной) оптопару подключаем через диодный мост. Таким образом на выходе детектора нуля получаем короткие положительные импульсы в момент когда напряжение в сети проходит через 0.

    Для наглядности приведу картинку с виртуального осциллографа смоделлированной схемы в proteus. Синим цветом изображен исходный сигнал (~220V), красным - сигнал после выпрямления диодным мостом. Зеленым цветом изображены импульсы на выходе оптопары U3.

    Сигнал с детектора нуля можно завести на вход внешнего прерывания, чтобы ловить начало новой полуволны, а дальше открывать симистор U4 (я использовал BT16-600) на необходимое время. Для опторазвязки я использовал оптосимистор MOC3022 (U2).

    Остается только подсчитать время на которое нужно открывать симистор. При частоте сетевого напряжения равной 50 Гц время полупериода (длительность одной полуволны) составит 0,01 сек. То есть если мы откроем симистор на 0,005 сек, мы пропустим половину полуволны, мощность составит 50%, если откроем симистор на 0,01 сек (или больше), пропустим всю полуволну и отдаваемая мощность составит 100%. Тут думаю все понятно.

    код в Bascom-AVR

    $regfile = "attiny2313.dat"
    $crystal = 8000000

    Dim N As Bit "1-плавно зажигаем лампочку, 0-гасим

    Config Int0 = Falling
    On Int0 Imp

    Config Timer0 = Timer , Prescale = 1024 "переполнение за 0,032 сек
    Dim Wt As Byte
    On Timer0 Perepolnenie

    Config Portd . 0 = Output
    Opto Alias Portd . 0
    Opto = 0

    Enable Interrupts
    Enable Timer0
    Start Timer0
    Enable Int0

    Wt = 195 "минимальный накал
    N = 1

    Wait 2

    Do "бесконечный цикл

    Loop

    End

    Imp : "прерывание от детектора нуля
    Timer0 = Wt "чем большее значение сюда положим, тем быстрее переполнится таймер
    Start Timer0

    If N = 1 Then "плавно зажигаем лампу
    Incr Wt "увеличиваем до максимального значения
    If Wt = 255 Then
    N = 0
    End If
    Else "плавно гасим
    Decr Wt "уменьшаем до минимального значения
    If Wt = 195 Then
    N = 1
    End If
    End If
    Return

    Perepolnenie : "переполнение таймера
    Stop Timer0 "останавливаем таймер
    Opto = 1 "включение симистора
    Waitus 100
    Opto = 0 "выключение оптосимистора
    Return

    Иногда нужно слабым сигналом с микроконтроллера включить мощную нагрузку, например лампу в комнате. Особенно эта проблема актуальна перед разработчиками умного дома . Первое что приходит на ум — реле . Но не спешите, есть способ лучше:)

    В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток.

    Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры . Что это такое? А сейчас расскажу.

    Если на пальцах, то тиристор похож на диод , даже обозначение сходное. Пропускает ток в одну сторону и не пускает в другую. Но есть у него одна особенность, отличающая его от диода кардинально — управляющий вход .
    Если на управляющий вход не подать ток открытия , то тиристор не пропустит ток даже в прямом направлении. Но стоит подать хоть краткий импульс, как он тотчас открывается и остается открытым до тех пор, пока есть прямое напряжение. Если напряжение снять или поменять полярность, то тиристор закроется . Полярность управляющего напряжения предпочтительно должна совпадать с полярностью напряжения на аноде.

    Если соединить встречно параллельно два тиристора , то получится симистор — отличная штука для коммутации нагрузки на переменном токе.

    На положительной полуволне синусоиды пропускает один, на отрицательной другой. Причем пропускают только при наличии управляющего сигнала. Если сигнал управления снять, то на следующем же периоде оба тиристора заткнутся и цепь оборвется. Крастота да и только. Вот ее и надо использовать для управления бытовой нагрузкой.

    Но тут есть одна тонкость — коммутируем мы силовую высоковольтную цепь, 220 вольт. А контроллер у нас низковольтный , работает на пять вольт. Поэтому во избежание эксцессов нужно произвести потенциальную развязку . То есть сделать так, чтобы между высоковольтной и низковольтной частью не было прямого электрического соединения. Например, сделать оптическое разделение . Для этого существует специальная сборка — симисторный оптодрайвер MOC3041 . Замечательная вещь!
    Смотри на схему подключения — всего несколько дополнительных деталек и у тебя силовая и управляющая часть разделены между собой. Главное, чтобы напряжение на которое расчитан конденсатор было раза в полтора два выше напряжения в розетке. Можно не боятся помех по питанию при включении и выключении симистора. В самом оптодрайвере сигнал подается светодиодом, а значит можно смело зажигать его от ножки микроконтроллера без всяких дополнительных ухищрений.

    Вообще, можно и без развязки и тоже будет работать, но за хороший тон считается всегда делать потенциальную развязку между силовой и управляющей частью. Это и надежность и безопасность всей системы. Промышленные решения так просто набиты оптопарами или всякими изолирующими усилителями.