Методы минимизации функций алгебры логики. Схемотехника. Минимизация логических функций

  • 18.04.2019

Студент должен:

Знать:

· Методы минимизации логических функций.

Уметь:

· Выполнять минимизацию функций методом непосредственных преобразований; Выполнять минимизацию функций методом непосредственных преобразований;

· Выполнять минимизацию функций с помощью карт Карно.

Метод непосредственных преобразований

Логическая функция, задающая принцип построения схемы цифрового устройства, может быть, как было показано выше, представлена в виде таблицы истинности или в виде СДНФ или СКНФ и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизация (упрощение формы записи) функции является важной операцией при синтезе логической схемы, так как благодаря предварительно проведенной минимизацией схема реализуется с наименьшим числом элементов.

Для минимизации разработан ряд методов. Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики.

Например, логическую функцию

в виде СДНФ, можно минимизировать следующим образом:

1. Добавим к данной функции слагаемое , которое уже есть в данной функции, используя правило х+х=х

2. Применим метод склеивания одинаково подчеркнутых элементарных конъюнкций

3. Применим метод склеивания для двух последних элементарных конъюнкций

Полученная в результате минимизации логическая функция называется тупиковой. Логическая функция может иметь несколько тупиковых форм.

Выявление и устранить избыточности в записи функции путем её преобразований с использованием аксиом, законов, тождеств и теорем алгебры логики требуют громоздких выкладок и связаны с большой затратой времени.

Карты Карно

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.



Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

Карта Карно - это графическое представление таблицы истинности логических функций. Она представляет собой таблицу, содержащую по 2 n прямоугольных ячеек, где n - число логических переменных.

Например, карта Карно для функции четырех переменных имеет 2 4 = 16 ячеек.


Структура карты Карно для функций двух переменных показана на рисунке 2.2. 2

Рисунок 2.2


На рисунке 2.3 представлена структура карты Карно для функции трёх переменных.

а) таблица истинности; б) структура карты Карно

Рисунок 2.3

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных (рисунок 2.3) соответствует нулевому значению переменной x1, а нижняя - ее единичному значению.

Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной.

Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 2.4.

а) таблица истинности; б) карта Карно

Рисунок 2.4

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число.

В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Например, на рисунке 2.4,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 2.4 б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 2 2 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 2.4 б, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0.

Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Двум ячейкам сторого столбца соответствует сумма двух произведений

Функция, соответствующая рисунку 2.4 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 2.5 а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение включающее все четыре переменные.


а) б) в)

Рисунок 2.5

Функция, соответствующая покрытию, показанному на рисунке 2.5 а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 2.5 б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение .

Окончательно функция, соответствующая покрытию, изображенному на рисунке 2.5 б, имеет вид

Карта Карно, показанная на рисунке 2.5 в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение

Рассмотренные выше примеры позволяют сформулировать последовательность проведения минимизации логических функций с помощью карт Карно:

1. Изображается таблица для n переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2 n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

Контрольные вопросы:

1. Что называют минтермами и минтермами?

2.Записать функции, заданные таблицами 2.9 и 2.10 в СДНФ и СКНФ.

Таблица 2.9

3. Упростите логические функции, используя аксиомы тождества и законы алгебры логики:

a)

c)

Логические элементы

Студент должен

Знать:

· Таблицы логических состояний для основных функциональных логических схем;

· Основные базисы построения логических схем.

Уметь:

· Определять логические состояния на выходах цифровых схем по известным состояниям на входах;

· Выполнять логическое проектирование в базисах микросхем;

· Выбирать микросхему по справочнику, исходя из заданных параметров и условий использования.

Принцип логического устройства базируется в ИМС на работе биполярных транзисторов в режиме ключа (либо замкнут, либо разомкнут).


Логическое действие осуществляется как с одной (одновходовый логический элемент) так и с множеством (многовходовый логический элемент) входных переменных.

При работе логических устройств используются три основных действия согласно алгебры Буля – «И», «ИЛИ», «НЕ».

Логическая функция может быть выражена словесно, в алгебраической форме, таблицей истинности, называемой переключательной таблицей, с помощью временных диаграмм. Рассмотрим все варианты представления логических функций.

Метод применим для функций от любого числа переменных, но мы рассмотрим его для функций от 3-х переменных.

Представим в виде ДНФ с неопределенными коэффициентамиk:

(**)

В этой ДНФ представлены все возможные элементарные коньюнкции, которые могут входить в функцию, а коэффициенты kмогут принимать значения 0 или 1. Значения коэффициентов нужно выбрать так, чтобы данная ДНФ была минимальной.

Будем рассматривать данную нам функцию на всех наборах и приравнивать выражение (**) на каждом из наборов (отбрасывая нулевые конъюнкции) соответствующему значению функции. Получим систему изуравнений вида:

Если в каком-то из этих уравнений правая часть равна 0, то все слагаемые левой части тоже равны 0. Эти коэффициенты можно исключить из всех уравнений, правые части которых равны 1. В этих уравнениях значение 1 следует присвоить тому коэффициенту, который соответствует коньюнкции наименьшего ранга. Эти коэффициенты и определят МДНФ.

Пример

Составляем систему, используя выражение (**).

После исключения нулевых слагаемых получаем

Полагаем остальные коэффициенты считаем нулевыми. Получаем МДНФ:

2.2. Метод Квайна - Мак - Класки

Рассмотренный метод неопределенных коэффициентов эффективен, если число аргументов функции не больше, чем 5 – 6. Это связано с тем, что число уравнений равно 2 n . Более эффективным является выписывание не всех возможных конъюнкций для функции, а только тех, которые могут присутствовать в ДНФ данной функции. На этом основан метод Квайна. При этом предполагается, что функция задана в виде СДНФ. В данном методе элементарные конъюнкции рангаn, входящие в ДНф, называются минитермами рангаn. Метод Квайна состоит из последовательного выполнения следующих этапов.

1. Нахождение первичных импликант

Просматриваем последовательно каждый минитерм функции и производим склеивание его со всеми минитермами, с которыми это возможно. В результате склеивания минитермов n-го ранга, мы получим минитермы (n-1)-га ранга. Минитермыn-го ранга, которые участвовали в операции склеивания, помечаем. Затем рассматриваем минитермы (n-1)-го ранга и операцию склеивания применяем к ним. Помечаем склеивающиеся минитермы (n-1)-го ранга и записываем получившиеся в результате склеивания минитермы (n-2)-го ранга и т. д. Этап заканчивается, если вновь полученные минитермыl -го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются первичными импликантами. Их дизъюнкция представляет собой Сокр. ДНФ функции.

Склеиваем минитермы 4-го ранга и помечаем склеивающиеся минитермы звездочками

Образуем минитермы 2-го ранга:

Первичными (простыми) импликантами являются:

2. Расстановка меток

Для данной функции Сокр. ДНФ имеет вид:

Для построения тупиковых ДНФ и Сокр. ДНФ нужно выбросить лишние интервалы. Строим таблицу, строки которой соответствуют первичным импликантам, а столбцы – минитермам СДНФ. Если в некоторый из минитерм входит какой-то из импликант, то на пересечении соответствующей строки и столбца ставится метка, например, 1.

Продолжение примера

3. Нахождение существенных импликант

Если в каком-либо столбце содержится только одна единица, то первичная импликанта, определяющая эту строку, называется существенной. Например, существенной импликантой является . Существенная импликанта не может быть удалена из Сокр. ДНФ, т. к. только она способна покрыть некоторые минитермы СДНФ. Поэтому из таблицы исключаем строки, соответствующие этим импликантам, и столбцы, имеющие единицы в этих строках.

В рассматриваемом примере исключаем строку и столбцы.

В результате получаем таблицу

4. Вычеркивание лишних столбцов и строк

Если в полученной таблице есть одинаковые столбцы, то вычеркиваем все, кроме одного. Если после этого в таблице появятся пустые строки, то их вычеркиваем.

5. Выбор минимального покрытия максимальными интервалами

В полученной таблице выбираем такую совокупность строк, которая содержит единицы во всех столбцах. При нескольких возможных вариантах такого выбора, предпочтение отдается варианту с минимальным числом букв в строках, образующих покрытие.

Продолжение примера

Минимальное покрытие таблицы образуют строки, соответствующие импликантам . Тогда МДНФ имеет вид:

В методе Квайна есть одно существенное неудобство, связанное с необходимостью полного по парного сравнивания минитермов на этапе построения Сокр. ДНФ. В 1956 г. Мак - Класки предположил модернизацию первого этапа метода Квайна, дающую существенное уменьшение количества сравнений минитермов.

Идея метода Мак - Класки заключается в следующем. Все минитермы записываются в виде двоичных номеров, например, как 1010. Эти номера разбиваются на группы по числу единиц в номере, т. е. вi-ю группу попадают номера, имеющие в своей записиiединиц. По парное сравнение производится только между соседними по номеру группами, т. к. минитермы, пригодные для склеивания, отличаются друг от друга только в одном разряде. При образовании минитермов с ранга выше нулевого, в разряды, соответствующие исключенным переменным, ставится тире.

Пример

Найдем МДНФ для функции:

Минитермы 4-го ранга по группам

Минитермы 3-го ранга

Минитермы 2-го ранга

Непомеченные минитермы или простые импликанты

Строим таблицу меток

Обе первичные импликанты существенны и определяют минимальное покрытие, т. е. МДНФ имеет вид.

для первого – X 3 X 4 ;

для второго – X 1 X 3 ;

для третьего – X 2 X 3 ;

для четвертого – X 1 X 2 X 4 ;

для пятого – X 1 X 2 X 4 ;


Минимальная ДНФ будет выглядеть так:

Сравнивая метод карт Карно с другими методами минимизации функции можно сделать вывод, что первый больше всего подходит для ручного исполнения. Время ручной работы значительно сокращается (за счет наглядного представления склеивающихся импликант). Программная реализация данного метода имеет свои сложности. Так, очень сложно будет реализовать оптимальный выбор правильных прямоугольников, особенно для большого числа аргументов.

1.3.5 Метод неопределенных коэффициентов

Этот метод может быть использован для любого числа аргументов. Но так как этот метод достаточно громоздок, то применяется только в тех случаях, когда число аргументов не более 5-6.

В методе неопределенных коэффициентов используются законы универсального и нулевого множеств и законы повторения. В начале все коэффициенты неопределенны (отсюда и название метода).

Построим матрицу неопределенных коэффициентов для четырех аргументов. В этом случае мы будем иметь систему из 16-ти уравнений.

Система приведена на следующей странице.

Приравняем все коэффициенты 0 в тех строках, которым соответствует 0 в векторе столбце. Затем приравняем 0 соответствующие коэффициенты в других строках. После этих преобразований система примет следующий вид:

V = 1 VVVVVV = 1 VVV V VV = 1 V = 1 VVV = 1 VVVVVV = 1 VVV = 1 VVVVV = 1 VVV = 1

Теперь в каждой строке необходимо выбрать коэффициент минимального ранга и приравнять его единице, а остальные коэффициенты – 0. После этого вычеркиваем одинаковые строки, оставляя при этом одну из них (те строки, у которых все коэффициенты равны 0, также вычеркиваются).

= 1 = 1 = 1 = 1 = 1

Запишем теперь конъюнкции, соответствующие коэффициентам, равным единицам. Мы получим минимальную ДНФ.

F(X 1 X 2 X 3 X 4) = X 1 X 3 V X 2 X 3 V X 3 X 4 V X 1 X 2 X 4 V X 1 X 2 X 4 .

Итак, мы получили несколькими способами минимальную ДНФ, Во всех случаях она получилась одинаковой, то есть любой из описанных методов может быть использован для минимизации функции. Однако эти методы существенно отличаются друг от друга как по принципу нахождения МДНФ, так и по времени исполнения. Для ручных расчетов очень удобен метод карт Карно. Он нагляден, не требует рутинных операций, а выбрать оптимальное расположение правильных прямоугольников не составляет большого труда. В то время как машинная реализация данного метода осложняется необходимостью нахождения оптимального расположения прямоугольников. Естественно применение других методов (метод Квайна, метод Квайна-Маккласки, метод неопределенных коэффициентов) для ручных расчетов нецелесообразно. Они больше подойдут для машинной реализации, так как содержат большое число повторяющихся простых операций.

Задание 2.

2.1 Схема алгоритма для метода Квайна

1. Начало.

2. Ввести матрицу ДСНФ исходной функции.

3. Проверить на склеиваемость i-ю (i=1,m-1: где m – количество строк в ДСНФ) и j-ую (j=i+1, m) строки. Если строки склеиваются, то перейти к пункту 6, в противном случае перейти к пункту 5.

4. Формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

5. Перейти к пункту 2.

6. Строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

7. Перейти к пункту 2.

8. Вывод полученной матрицы.

Логическая схема алгоритма в нотации Ляпунова

V H V 1 Z 1 ­ V 2 ¯ V 3 V 4 V K

V H – начало.

V 1 – ввести матрицу ДСНФ исходной функции.

V 2 – формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

V 3 – строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

V 4 – вывод полученной матрицы.

Z 1 – если строки склеиваются, то перейти к пункту 3, в противном случае перейти к пункту 5.

V K – конец.

Граф-схема алгоритма.


Описание машинных процедур

Procedure Stuck(S1, S2: Diz; IndexS1, IndexS2: byte);

Данная процедура склеивает два, передаваемых ей дизъюнкта. Дизъюнкты задаются в параметрах S1, S2. Индексы IndexS1, IndexS2 определяют индексы этих дизъюнктов в главном рабочем массиве. Алгоритм работы процедуры следующий: сначала ищется количество склеивающихся символов. Если их 0, то они одинаковые, и в конечный массив записывается только один из них. Если 1, то определяется местоположение символа, по которому данные две дизъюнкции склеиваются, и заменяем этот символ на ‘*’. Все полученные результаты заносятся в массив REZ.

Все остальные функции и процедуры программы связаны с действиями над массивами, то есть не имеют непосредственного отношения к данному методу нахождения МДНФ. Поэтому нет смысла их описывать.

2.2 Схема алгоритма для метода Петрика

1. Начало.

2. Ввести матрицу ДСНФ исходной функции и простые импликанты, полученные в методе Квайна.

3. Составить таблицу меток.

4. По таблице меток построить конъюнкцию дизъюнкций, каждая из которых есть совокупность тех импликант, которые в данном столбце имеют метки.

Минимизация логических функций является одной из типовых задач в процессе обучения схемотехнике. Посему считаю, что такая статья имеет место быть, надеюсь Вам понравится.

Зачем это нужно?

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок.

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др. Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

В процессе минимизации той или иной логической функции, обычно учитывается, в каком базисе эффективнее будет реализовать ее минимальную форму при помощи электронных схем.

Минимизация логических функций при помощи карт Карно

Карта Карно - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ могут иметь в своём составе 2N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N–мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2K термов, принадлежащие одной K–мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями четырёх, пяти и более переменных. Примеры таблиц для N=4 и N=5 приведены на рисунке. Для этих таблиц следует помнить, что соседними являются клетки, находящиеся в соответственных клетках крайних столбцов и соответственных клетках верхней и нижней строки. Для таблиц 5 и более переменных нужно учитывать также, что квадраты 4х4 виртуально находятся друг над другом в третьем измерении, поэтому соответственные клетки двух соседних квадратов 4х4 являются сосоедними, и соответствующие им термы можно склеивать.

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути Карта Карно - это таблица истинности составленная в 2-х мерном виде. Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.о. вся Карта Карно сворачивается в фигуру тор (бублик). На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Далее берём первую область и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например(для Карт на 2-ве переменные):


Для КНФ всё то же самое, только рассматриваем клетки с нулями, не меняющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ:
  • 1.6. Использование множеств в языке Паскаль
  • 2. Элементы общей алгебры
  • 2.1. Операции на множествах
  • 2.2. Группа подстановок Галуа
  • 2.3. Алгебра множеств (алгебра Кантора)
  • 2.4. Алгебраические системы. Решетки
  • 2.5. Задание множеств конституентами
  • 2.6. Решение уравнений в алгебре множеств.
  • 3. Элементы комбинаторики
  • 3.1. Комбинаторные вычисления
  • 3.2. Основные понятия комбинаторики
  • 3.3. Размещения
  • 3.4. Перестановки
  • 3.5. Сочетания
  • 3.6. Треугольник Паскаля.
  • 3.7. Бином Ньютона
  • 3.8. Решение комбинаторных уравнений
  • 4. Основные понятия теории графов
  • 4.1. Способы задания графов
  • 4.2. Характеристики графов
  • 4.3. Понятие о задачах на графах
  • 4.4. Задача о Ханойской башне
  • 5. Переключательные функции и способы их задания
  • 5.1. Понятие о переключательных функциях
  • 5.2. Двоичные переключательные функции и способы их задания
  • 5.3. Основные бинарные логические операции
  • 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
  • 5.5. Использование логических операций в теории графов
  • 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
  • 6.1. Элементарные переключательные функции одной переменной
  • 6.2. Элементарные переключательные (логические) функции двух переменных
  • 6.3. Функциональная полнота систем переключательных функций
  • 6.4. Базисы представления переключательных функций
  • 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
  • 7. Основные законы булевой алгебры и преобразование переключательных функций
  • 7.1. Основные законы булевой алгебры переключательных функций
  • 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
  • 7.3. Преобразование форм представления переключательных функций
  • 8. Минимизация переключательных функций
  • 8.1. Цель минимизации переключательных функций
  • 8.2. Основные понятия и определения, используемые при минимизации
  • 8.3. Аналитические методы минимизации переключательных функций
  • 8.4. Минимизация переключательных функций по картам Карно
  • 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
  • Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
  • 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
  • 8.7. Минимизация систем переключательных функций
  • 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
  • 9. Понятие об автомате и его математическом описании
  • 9.1. Основные определения теории конечных автоматов
  • 9.2. Описание конечных детерминированных автоматов
  • 9.3. Понятие о технической интерпретации конечных автоматов
  • 9.4. Синтез комбинационных автоматов в заданном базисе
  • 9.5. Булева производная
  • 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
  • 9.7. Синтез автомата – распознавателя последовательности
  • 10. Элементы теории кодирования
  • 10.1. Понятие о кодировании
  • 10.2. Системы счисления, как основа различных кодов
  • 10.3. Понятие о помехоустойчивом кодировании
  • 10.4. Кодирование по Хэммингу
  • 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
  • 10.6. Понятие о криптографической защите информации
  • 10.7. Понятие о сжатии информации
  • 8.3. Аналитические методы минимизации переключательных функций

    Метод Квайна .

    Метод основан на попарном сравнении и склеивании при возможности всех конституент (членов СДНФ). Для этого каждая конституента сравнивается с последующими, что приводит к получению импликант. Полученные импликанты вновь подвергаются сравнению и при возможности склеиваются – и т.д. до тех пор, пока оставшиеся импликанты уже не будут поддаваться склеиванию. Это и есть простые импликанты, их дизъюнкция представляет собой сокращенную ДНФ.

    Для упорядочения целесообразно разбивать конституенты на группы по числу неинверсированных переменных. В этом случае каждая очередная конституента, начиная сверху, сравнивается только с конституентами группы, соседней снизу, с числом неинверсированных переменных на единицу больше.

    Пусть имеется переключательная функция, заданная СДНФ:

    Разобьем конституенты на группы по числу неинверсированных переменных.

    Римская цифра номера группы соответствует числу неинверсных переменных. Проведем линии, указывающие склеиваемые конституенты. Результатом склеивания является всегда элементарная конъюнкция, представляющая собой общую часть исходных конъюнкций (в частности, конституент).

    Полученные импликанты также допускают склеивание, причем в результате получается одна и та же импликанта
    .

    Дальнейшие склеивания невозможны, поэтому полученные импликанты – простые, а сокращенная ДНФ имеет вид:

    Первый этап выполнен. На втором этапе необходимо исключить лишние простые импликанты. Это делается с помощью специальной импликантной таблицы Квайна (таблицы покрытий). Строки таблицы отмечаются простыми импликантами переключательной функции, т.е. членами сокращенной ДНФ, а столбцы – конституентами единицы, т.е. членами СДНФ переключательной функции.

    Как уже отмечалось, простая импликанта поглощает некоторую конституенту единицы, если является ее собственной частью. Соответствующая клетка импликантной таблицы на пересечении строки данной простой импликанты и столбцов с конституентами единицы отмечается, например, знаком «+». Минимальные ДНФ строятся по импликантной таблице следующим образом:

    1) ищутся столбцы импликантной таблицы, имеющие только один крестик, соответствующие этим крестикам простые импликанты называются базисными и составляют так называемое ядро переключательной функции. Ядро обязательно входит в минимальную ДНФ;

    2) рассматриваются различные варианты выбора совокупности простых импликант, которые накроют крестиками остальные столбцы импликантной матрицы, и выбираются варианты с минимальным суммарным числом букв.

    Ядром нашей функции (табл. 35) являются импликанты
    и х 1 х 2 х 3 , т.е. функция имеет единственную тупиковую и минимальную ДНФ:

    Таблица 35

    Импликантная таблица Квайна

    Конституенты 1 (члены СДНФ)

    импли-канты

    Видно, что импликанта х 2 х 3 х 4 является лишней, так как она покрывает конституенты, уже покрытые импликантами
    , х 1 х 2 х 3 .

    Число крестиков в строке является степенью числа 2; более того, можно убедиться, что оно равно N=2 n - k , где k – число букв в простой импликанте, n – число переменных, от которых зависит функция.

    Если вначале не задана СДНФ, то ее надо получить, используя, например, уже известные нам методы.

    Ясно, что для больших импликантных таблиц трудно визуально выявить варианты с минимальным числом букв. Поэтому используется метод Петрика, позволяющий получать все тупиковые ДНФ по импликантной таблице путем построения так называемого конъюнктивного ее представления. Для этого все простые импликанты обозначаются разными буквами (А, В, С в табл. 35), а затем для каждого столбца строится дизъюнкция всех букв, обозначающих строки таблицы, пересечение которых с данным столбцом отмечено крестиком. Конъюнктивное представление импликантной матрицы образуется как конъюнкция построенных дизъюнкций для всех столбцов. К конъюнктивному представлению импликантной таблицы могут быть применены все соотношения булевой алгебры переключательных функций с целью его упрощения. После раскрытия скобок и выполнения всех возможных поглощений получается дизъюнкция конъюнкций, каждая из которых содержит все импликанты тупиковой ДНФ.

    Это означает, что тупиковая ДНФ содержит две простые импликанты (
    и одновременно С=х 1 х 2 х 3) и имеет вид:

    Метод Квайна-Мак-Класки.

    Метод представляет собой формализацию метода Квайна, ориентированную на использование ЭВМ. Формализация заключается в записи конституент единицы (членов СДНФ) их двоичными номерами. Все номера разбиваются на непересекающиеся группы по числу единиц в двоичном номере. Склеивания производятся только между соседними группами. Ликвидируемый разряд обозначается знаком «–» («тире»). Дальнейшие группы из полученных импликант образуются с учетом однинакового расположения тире. Такое обозначение импликант называется обобщенными кодами. Пусть задана логическая функция

    111101001000110.

    Сгруппируем эти конституенты единицы по числу единиц:

    Дальнейшие склеивания невозможны. Нахождение минимальных ДНФ далее производится по импликантной таблице (табл. 36):

    Это означает, что тупиковые ДНФ содержат по три простые импликанты и имеют вид:

    (две инверсии);

    (три инверсии).

    Таблица 36

    Импликантная таблица Квайна-Мак-Класки

    импликанты

    Конституенты единиц

    Заметим, что склеивание двух импликант с тире возможно только при соответствующем их расположении, например:

    Можно выбрать любую из полученных ТДНФ, а с учетом меньшего числа инверсий – первую.

    Метод Блейка-Порецкого .

    Метод позволяет получать сокращенную ДНФ булевой функции по ее произвольной ДНФ, а не по СДНФ, как в методах Квайна и Квайна-Мак-Класки, используя закон обобщенного склеивания . В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции провести всевозможные операции, обратные обобщенному склеиванию, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции.

    Пусть задана ДНФ функции:

    Видно, что к первой и второй конъюнкциям можно применить закон обобщенного склеивания по переменной х 1 ; получим:

    Аналогично для первой и третьей конъюнкций:

    т.е. все остается, как есть!

    Вторая и третья конъюнкции допускают обобщенное склеивание по х 2:

    Переходим к ДНФ:

    После применения закона идемпотентности (повторения) и поглощения получаем:

    Попытки дальнейшего применения обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции.

    Таблица 37

    Импликантная таблица для иллюстрации метода Блейка-Порецкого

    импликанты

    Наборы функции

    и ее значения

    Таким образом, рабочие (единичные) наборы можно покрыть тремя простыми импликантами, например,
    ,
    ,
    . В ядро входят импликанты
    ,
    . Тогда тупиковые ДНФ имеют вид:

    (лучше по числу инверсий).