Чем отличается силовой трансформатор от автотрансформатора. Что такое автотрансформатор

  • 30.04.2019

Трансформатор являет собой электрическое устройство, которое передает электрическую энергию между двумя или более цепями посредством электромагнитной индукции. Его принцип действия заключается в том, что переменный ток в одной катушке трансформатора создает переменное магнитное поле, которое, в свою очередь, индуцирует переменную электродвижущую силу (ЭДС) или «напряжение» во второй катушке.



На сегодняшний день существует немало различных типов трансформаторов. Наиболее часто встречающимися типами в промышленности являются силовые трансформаторы и распределительные трансформаторы. Иногда их путают, поэтому в данном материале постараемся ответить на вопрос, чем силовые трансформаторы отличаются от распределительных.


Если говорить коротко, то те трансформаторы, которые установлены в конечной или принимающей точке длинной высоковольтной линий электропередач, являются силовыми трансформаторами. А распределительные трансформаторы – это те устройства, которые установлены рядом с терминалами нагрузки (например, город или село), чтобы обеспечить использование напряжения на потребительских терминалах. Ниже приведены некоторые дополнительные различия между силовыми и распределительными трансформаторами.

  • Силовые трансформаторы используются в сети передачи с более высоким напряжением для повышения и понижения напряжения (400 кВ, 200 кВ, 110 кВ, 66 кВ, 33 кВ) и, как правило, имеют номинальное значение свыше 200 МВА (мега вольт ампер)
  • Распределительные трансформаторы используются для распределительных сетей с низким напряжением в качестве средства для подключения конечных пользователей. (11 кВ, 6,6 кВ, 3,3 кВ, 440 В, 230 В) и обычно имеют номинальное значение менее 200 МВА
  • Силовой трансформатор обычно имеет одну первичную обмотку и одну вторичную обмотку, а также один вход и выход. Распределительный трансформатор может иметь одну первичную обмотку и одну разделенную вторичную обмотку или две или более вторичных обмоток.
  • Силовые трансформаторы, как правило, работают при почти полной нагрузке. Однако распределительный трансформатор работает при легких нагрузках в течение большей части дня.
  • Производительность силовых трансформаторов обычно анализируется коммерческой или максимальной эффективностью, поскольку они рассчитаны на максимальный КПД при полной нагрузке. Принимая во внимание, что производительность распределительного трансформатора оценивается по эффективности суточного времени работы трансформатора, поскольку они рассчитаны на максимальный КПД при нагрузке 60-70%, поскольку они обычно не работают при полной нагрузке в течение всего дня.
  • В силовых трансформаторах плотность потока выше, чем в распределительных трансформаторах.
  • В силовых трансформаторах первичная обмотка всегда подключена в звезду и вторичная обмотка имеет соединение в виде треугольника, в то время как в распределительных трансформаторах, первичная обмотка соединена в треугольник, а вторичная в звезду.
  • В подстанции на конце линии передачи подключение силового трансформатора представлено в виде «звезда-треугольник» (чтобы понизить уровень напряжения).
  • В начале линии передачи подключение силового трансформатора принимает вид «треугольник-звезда» (для повышения напряжения).

Трансформаторы - устройства, используемые для преобразования одного из параметров электроэнергии - напряжения или силы тока.

Они относятся к пассивным электрическим устройствам, то есть не генерируют, а потребляют энергию, поэтому мощность тока в трансформаторах не может увеличиваться.

Таким образом, все трансформаторы в зависимости от преобразуемого параметра электрической энергии делятся на 2 вида :

  • трансформаторы электрического тока;
  • трансформаторы электрического напряжения.

Работа любого электрического трансформатора основана на принципе электромагнитной взаимоиндукции - способности проводника с током наводить эдс в соседнем проводнике. Проводниками в трансформаторе являются первичная (входная) и вторичная (выходная) обмотки, намотанные на магнитопровод для усиления магнитной связи между ними. Магнитопровод представляет собой замкнутый или разомкнутый сердечник из железа или композитного сплава с высокой магнитной проницаемостью.

Основными показателями трансформатора являются коэффициенты трансформации по напряжению и току:

КU=U2/U1 и KI=I2/I1

где U1,2 - напряжения в первичной и вторичной обмотке, I1,2 - силы тока в первичной и вторичной обмотке. Они показывают, во сколько раз изменяется входной ток или напряжение на выходе трансформатора. В зависимости от величины коэффициента трансформации различают повышающие (К˃1) и понижающие (К<1) трансформаторы. Если магнитная связь между обмотками не изменяется, то коэффициент трансформации будет равен соотношению количества витков во вторичной и первичной обмотке

K=w2/w1.

Особенности трансформаторов тока (ТТ)

Трансформаторы тока предназначены для преобразования силы тока без изменения его мощности. В основном они применяются для понижения тока до значений, пригодных для их измерения и используются в распределительных щитах для подключения измерительных приборов, счётчиков энергии, защитных реле. По назначению они делятся на:

  • измерительные;
  • защитные;
  • лабораторные.

В измерительных ТТ первичная обмотка может отсутствовать или представлять собой толстую шину. На шину наматывается несколько витков вторичной обмотки, в которой наводится эдс, пропорциональная силе тока в шине. Шина включается в разрыв цепи, в которой производится измерение. К вторичной обмотке ТТ подключается нагрузка и измерительный прибор.
Важно! Так как КU для ТТ имеет большие значения, то включать их в режиме холостого хода (без нагрузки) запрещается, что может повлечь высоковольтный пробой изоляции проводов и выход из строя трансформатора.

Особенности трансформаторов напряжения (ТН)

ТН предназначены для получения нужной величины напряжения от промышленной сети или другого источника переменного тока. По своему назначению они делятся на:

  • силовые;
  • измерительные;
  • согласующие;
  • лабораторные;
  • высоковольтные трансформаторы.

В быту наиболее широкое применение нашли силовые трансформаторы, используемые повсеместно для подключения бытовых приборов к электросети 220В 50Гц. Конструктивно они представляют собой классический пример устройства трансформатора, состоящего из двух, а также нескольких катушек, намотанных на железный сердечник. По форме сердечника различают:

  • стержневые;
  • кольцевые;
  • тороидальные;
  • Ш-образные трансформаторы.

В отличие от трансформаторов тока благоприятным режимом работы для ТН является режим, близкий к холостому ходу, когда нагрузка на вторичную обмотку минимальна. Оптимальный режим работы достигается, когда сопротивление нагрузки равно или до полутора раз больше сопротивления выходной обмотки трансформатора.

Для корректировки и изменения показателей напряжения в пределах маленьких значений используются автотрансформаторы. Устройство и принцип действия этих приборов основана на магнитной и гальванической связи между цепями, так как обмотка напряжения низшего входит в обмотку напряжения высшего. В зависимости от того, какая из них включается, происходит незначительное понижение или повышение напряжения.

Устройство и технические характеристики

Сфера применения автотрансформаторов - питание бытовой техники, промышленные электросети, пуск асинхронных электродвигателей. На крупных производственных объектах они необходимы для повышения напряжения и одновременного уменьшения возможных потерь в линиях электропередач. Благодаря особенностям конструкции, оборудование составило серьезную конкуренцию обычным трансформаторам. В зависимости от назначения, устройствам присваивается буквенное наименование:

В преобразователях электромагнитного типа передача энергии между обмотками происходит благодаря возникновению магнитного поля, сосредоточенного внутри магнитопровода. Отличие автотрансформатора от трансформатора заключается в наличии еще и электрической связи. В момент установки уменьшенного тока в той части обмотки, которая является общей между двумя цепями, возникает увеличение или понижение напряжения. По мнению специалистов, такое устройство позволяет сэкономить сталь, сократив ее количество для создания магнитопровода с меньшим сечением.

Большинство других деталей в конструкции практически ничем не отличается от комплектующих трансформатора. Принцип функционирования агрегата заключается в следующем: в момент создания нагрузки по обмотке перемещается электрический поток, а по проводнику - ток первичный. Происходит геометрическое сложение двух потоков, в результате чего на обмотку выдаются совсем малые показатели.

В зависимости от схемы автотрансформатора и других особенностей конструкции выделяют несколько разновидностей оборудования. Наиболее популярными являются 8 из них, остальные встречаются реже. Каждый из них выбирается в соответствии с будущими условиями эксплуатации:

  • АТД - оборудование с устаревшей конструкцией мощностью в районе 25 Вт.
  • ВУ- 25-Б - позволяет уравнивать токи на вторичной обмотке, если используется схема дифференциальной защиты для силового трансформатора.
  • ЛАТР-1 - лабораторный автотрансформатор, который может использоваться при 127 В.
  • ЛАТР-2 - предназначен для бытовых сетей с напряжением 220 В, регулирует показатели напряжения контактом, который скользит по виткам обмотки.
  • ДАТР-1 - разработан для функционирования в условиях невысокой нагрузки.
  • РНО - предназначен для сетей с повышенной нагрузкой.
  • АТНЦ - незаменимое оборудование в сфере телеизмерений.
  • РНТ - оборудование, рассчитанное на максимально сильные нагрузки в сетях особого назначения.

Кроме того, классификация предполагает деление агрегатов на группы с малой мощностью (не более 1 кВ), средней мощностью свыше 1 кВ и силовые приборы. Использование автотрансформаторов позволяет повысить КПД в работе энергетических систем, а также уменьшить стоимость транспортировки энергии.

Однофазные и трехфазные приборы

В разных отраслях сегодня используются трехфазные и однофазные агрегаты. Последние представлены таким типом оборудования, как ЛАТР (лабораторные автотрансформаторы, рассчитанные на низковольтные сети). В линиях с повышенным напряжением используются понижающие автотрансформаторы, например, 220/100 и 220/110, в которых вторичная обмотка является частью первичной. В конструкциях повышающего типа первичная обмотка - это часть вторичного контура.

предполагает несколько отводов , которые ответвляются от основной катушки. Именно они и определяют понижающую или повышающую способность агрегата. В трехфазных конструкциях может быть два или три контура, а соединение обмоток напоминает по форме звезду. Они предназначены для работы нагревательных элементов в печах.

Аппараты, представленные с тремя обмотками, являются рабочими элементами высоковольтных сетей. Тип контакта предполагает соединения нулевого провода со звездой, что позволяет понизить напряжение, повысить КПД линии и уменьшить расходы на передачу энергии. Одним из недостатков является увеличение количества токов короткого замыкания.

Недостатки эксплуатации

Несмотря на то что автотрансформатор гораздо эффективнее и дешевле в эксплуатации, чем обычный трансформатор, в его использовании тоже могут возникать проблемы . Одним из серьезных недостатков является невозможность гальванической развязки обмоток.

Незначительный рассеивающийся электрический поток между обмотками может спровоцировать короткое замыкание при внезапных неисправностях и неполадках. Чтобы не спровоцировать нарушение функционирования агрегатов, вторичная и первичная обмотка должны иметь идентичные соединения.

В представленной системе затрудняется сохранение электромагнитного баланса , нормализовать который можно увеличением корпуса оборудования. При большой трансформации диапазона не получится существенная экономия энергоресурсов.

Принцип работы автотрансформатора и его конструктивные особенности не позволяют сделать систему с односторонним заземлением. При ремонте и устранении аварийных ситуаций персонал, обслуживающий оборудование, может подвергаться опасности из-за вероятности возникновения высшего напряжение и на низших обмотках. В таком случае установится соединение всех элементов с высоковольтной частью, а изоляция проводников может оказаться пробитой, что не допускается правилами безопасности.

Назначение, устройство и принцип действия автотрансформаторов

В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не , а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).

Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.

В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.

Рис. 1 Схемы однофазных автотрансформаторов: а - понижающего, б - повышающего.

Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.

Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1 , то оба тока геометрически сложатся, и по участку a Х будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.

Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.

В электромагнитных преобразователях энергии - трансформаторах - передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.

Трансформатор и автотрансформатор

Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации - мало отличается от единицы и но более 1,5 - 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.

В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.

Лабораторные автотрансформаторы (ЛАТРы)

Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.

Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).

От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.

При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.

Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.

Лабораторный автотрансформатор (ЛАТР)

Трехфазные автотрансформаторы

Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.

В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 3). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b , с, а при повышении напряжения - наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах электрических печей.

Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой

Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.

Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.

Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.

Недостатки автотрансформаторов

Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.

Существенный недостаток автотрансформаторов - гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 - 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.

При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.

Найти информацию о том, чем отличаются трансформаторы тока от трансформаторов напряжения непросто из-за недостатка информации по этой теме. В рамках этой статьи вы узнаете все необходимой по данной теме и сможете разобраться. В чем отличие в роли и специфике применения каждого типа трансформаторов.

Что такое трансформаторы напряжения

Трансформаторы напряжения в свое время были разработаны для перехода с высокого напряжения на более низкое, а также наоборот. Сегодня они чаще всего используются для того, чтобы привести какую-то отдельную электрическую сеть к определенному стандарту. Трансформаторы напряжения могут предотвратить массу происшествий, которые могут быть вызваны чрезвычайно высоким или низким напряжением, увеличивают степень безопасности всей сети. Они также предотвращают порчу приборов, которая зачастую может быть вызвана свойствами электрической сети.

Трансформатор напряжения, пусть и небольшой, присутствует почти в каждом приборе, работающем от электричества, будь то компьютер или насос. Они защищают технику от перепадов напряжения и тем самым продлевают срок службы.

Что такое трансформаторы тока

Трансформаторы тока сконструированы, прежде всего, как измерительное устройство, но они также выполняют защитные функции. Трансформаторы тока постоянно встраиваются в такие приборы, как измерительные реле, счетчики энергии и т.д. Существует несколько типов трансформаторов тока, каждый из которых подробно описан ниже:

Они занимаются преобразованием переменного тока таким путем, чтобы затем можно было измерить его значения. Измерительные трансформаторы применяют, когда к сети нужно подключить амперметр, вольтметр и другие устройства. Измерительные трансформаторы тока дают не только предельно точные измерения мощности напряжение, но предоставляют некую минимально необходимую для безопасности изоляцию.

Важнейшая функция этих устройств понятная из самого их названия. Эти приборы необходимы для того, чтобы каждый подключенный к сети прибор не получил чрезвычайно мощный заряд тока, способный испортить его. Гаджет строго контролирует состояние сети и при этом поддерживает в ней очень высокое напряжение. Защитный трансформатор тока также предоставляет «свободное окно» на случай сбоев в работе устройств и/или сети. Этим окном смогут воспользоваться специалисты, который займутся починкой системы.

Лабораторные . Эти устройства встречаются нечасто и в основном используются в различных исследованиях и экспериментах, отсюда и название. В повседневной практике вы их вряд ли встретите, поэтому стоит ограничиться двумя предыдущими типами.

Ключевые отличия между трансформаторами

Главное отличие между трансформатором напряжения и трансформатором тока кроется в том, какую роль играют эти устройства в рамках электрической сети и для каких целей их туда устанавливают.

Устройство для тока сосредоточено на защите и гарантировании точности. Эти две вещи критически необходимы в проведении измерений и при обслуживании сетей. По этой причине отказаться от использования трансформатора тока просто невозможно, и он обязательно должен присутствовать.

Вместе с тем трансформатор напряжения никак не связан с измерениями, проверками, а также тонкостями технического обслуживания приборов. Он относится напрямую к их эксплуатации. Сегодня привести электросеть в рабочее состояние без него просто нереально. Смена силы напряжения с повышенной на пониженную критически необходима. Именно трансформатор напряжения позволяет использовать повсеместно одну универсальную электрическую сеть вне зависимости от того, какую технику вы собираетесь подключать. Это могут быть промышленное оборудование. Бытовые устройства и прочие приборы – сеть сможет питать всю технику без нанесения повреждений.

При этом необходимо обратить внимание на угрозу, которая способна исходить от каждого из трансформаторов. Вернее, угроза кроется в отсутствии или неисправности трансформаторов. Без трансформатора напряжения ваша сеть перестанет регулироваться и многие подключенные к ней устройства могут просто «сгореть» из-за слишком высокого уровня напряжения, либо просто отключаться по причине слишком низкой мощности сети.

Вывод

Теперь вы понимаете, чем отличается трансформатор тока от трансформатора напряжений. Реальный отличия между данными устройствами очень существенны. Они ни в коем случае не заменяют друг друга и их никогда нельзя путать. Недостаток любого из приборов в электросети или его сбой могут обернуться очень серьезными негативными последствиями, поэтому часто практикуют установку дополнительный, резервных приборов.