Перевод чисел в различные системы счисления с решением. Древнеегипетская десятичная система. Смешанные системы счисления

  • 11.05.2019

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

Система счисления (СС)– это совокупность приемов наименования и записи чисел. В любой СС для представления чисел используются некоторые числа, которые называются базисными числами, а все остальные числа получают в результате каких-либо операций над базисными числами. В современном мире наиболее распространено представление чисел 0. . .9.

СС различаются выбором базисных чисел и правилами образования из них остальных чисел. Например, в римской СС базисными являются: I(1),V(5),X(10),L(50),C(100),D(500),M(1000), а другие получаются путем сложения и вычитания базисных чисел. В римской СС каждый числовой знак имеет одно и тоже значение, т. е. значение числового знака не зависит от его расположения в записи числа: 146 –CXLVI.

Такая СС является непозиционной. В ней удобно записывать небольшие числа. Но выполнять операции над большими числами неудобно.

5.1. Позиционные системы счисления

В настоящее время для представления чисел используются позиционные СС. СС называется позиционной, если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Количество цифр, используемых для изображения чисел в позиционной СС, называется ее основанием, т. е. если используется К цифр, то основание СС равно К. Число в позиционной СС можно представить следующим образом:

Позиции перенумерованные таким образом называют разрядами. Каждая из цифр принимает одно из значений
.Kиспользуется для количественной оценки каждого разряда числа. Т. е. число вk-ичной СС можно представить в виде полинома:

Примеры позиционных систем счисления:

Арифметические действия в любой позиционной СС производятся по тем же правилам, что и в десятичной СС, т. к. все они основываются на правилах выполнения действий с соответствующими полиномами. При этом используются таблицы сложения и умножения, которые имеют место при данном основании СС.

Таблицы сложения и умножения в двоичной СС имеют вид:

Для физического представления чисел необходимы элементы, которые способны находиться в одном из нескольких устойчивых состояний. Число этих состояний должно быть равно основанию принятой СС, тогда каждое состояние будет представлять соответствующую цифру из алфавита данной СС. Для реализации десятичной системы СС потребуются элементы, имеющие 10 устойчивых состояний. Наиболее простыми с точки зрения технической реализации являются двухпозиционные элементы, способные находиться в одном из двух устойчивых состояний, например, электромагнитное реле (состояния «замкнуто»-«разомкнуто»), ферромагнитная поверхность (намагничена – размагничена), транзисторный ключ и т. д. Одно из этих состояний можно обозначить цифрой –0, а другое – 1.

С двоичной СС связаны и другие преимущества. Она обеспечивает максимальную помехоустойчивость в процессе передачи информации. В ней предельно просто выполняются арифметические и логические операции. Благодаря этому двоичная СС стала стандартом в современной вычислительной технике.

Недостатком двоичной СС является большое число разрядов двоичного кода.

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Системой счисления называется совокупность приемов наименования и записи чисел. В любой системе счисления для представления чисел выбираются некоторые символы (их называют цифрами ), а остальные числа получаются в результате каких-либо операций над цифрами данной системы счисления.

Система называется позиционной , если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Число единиц какого-либо разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления . Если количество таких цифр равно P , то система счисления называется P -ичной. Основание системы счисления совпадает с количеством цифр, используемых для записи чисел в этой системе счисления.

Запись произвольного числа x в P -ичной позиционной системе счисления основывается на представлении этого числа в виде многочлена

x = a n P n + a n -1 P n -1 + ... + a 1 P 1 + a 0 P 0 + a -1 P -1 + ... + a -m P -m

Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими многочленами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые соответствуют данному основанию P системы счисления.

При переводе чисел из десятичной системы счисления в систему с основанием P > 1 обычно используют следующий алгоритм:

1) если переводится целая часть числа, то она делится на P , после чего запоминается остаток от деления. Полученное частное вновь делится на P , остаток запоминается. Процедура продолжается до тех пор, пока частное не станет равным нулю. Остатки от деления на P выписываются в порядке, обратном их получению;

2) если переводится дробная часть числа, то она умножается на P , после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая дробь в системе счисления с основанием P . Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P .

Кодирование чисел

Чтобы использовать числа, нужно их как-то называть и записывать, нужна система нумерации. Различные системы счёта и записи чисел тысячелетиями сосуществовали и соревновались между собой, но к концу "докомпьютерной эпохи" особую роль при счёте стало играть число "десять", а самой популярной системой кодирования оказалась позиционная десятичная система. В этой системе значение цифры в числе зависит от её места (позиции) внутри числа. Десятичная система счисления пришла из Индии (не позднее VI века нашей эры). Алфавит этой системы: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} - всего 10 цифр, таким образом основание системы счисления - 10. Число записывается как комбинация единиц, десятков, сотен, тысяч и так далее. Пример: 1998=8*10 0 + 9*10 1 + 9*10 2 + 1*10 3 .

В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д.

333 10 = 3*100 + 3*10+3*1 = 300 + 30 + 3

Заметим, что выбор числа 10 в качестве основания системы счисления объясняется традицией, а не какими-то замечательными свойствами числа 10. Вообще, представление числа N в р-ричной системе счисления, это:

N=a n *p n +a n-l *p n-l +...+a l *p l +a o , где а ¹ 0, а i Î {0, 1, 2, ..., а i }.

В Вавилоне, например, использовалась 60-ричная система счисления, алфавит содержал цифры от 1 до 59, числа 0 не было, таблицы умножения были очень громоздкими, поэтому очень скоро она была забыта, но отголоски её былой распространённости можно наблюдать и сейчас - деление часа на 60 минут, деление круга на 360 градусов.

Двоичная система счисления

Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII - XIX вв.). Выдающийся математик Лейбниц говорил: "Вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок". Позже двоичная система была забыта, и только в 1936 - 1938 годах американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем. Рассмотрим пример представления числа в двоичной системе счисления:

Пример 2.1.1. Переведём число 2000 в двоичную систему.

1. Делим 2000 на основание новой системы счисления - 2:

2000:2=1000(0 - остаток),

2. Собираем последнее частное от деления (всегда равно 1) и остатки от деления и записываем их по порядку, начиная снизу:

2000 10 ==11111010000 2

Для проверки переведём полученное число в десятичную систему счисления, для этого:

1. Выделим двоичные разряды числа, то есть, степени числа 2, начиная с 0-й:

2. Запишем сумму произведений 0 и 1 на соответствующую степень числа 2 (см. представление числа в р-ричной системе счисления):

0*2 0 +0*2 1 +0*2 2 +0*2 3 +l*2 4 +0*2 5 +l*2 6 +l*2 7 +l*2 8 +l*2 9 +l*210= 16+64+128+256+512+1024=2000

Существуют системы счисления, родственные двоичной. При работе с компьютерами иногда приходится иметь дело с двоичными числами, так как двоичные числа заложены в конструкцию компьютера. Двоичная система удобна для компьютера, но неудобна для человека - слишком длинные числа неудобно записывать и запоминать. На помощь приходят системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная.

Например, в шестнадцатеричной системе для записи чисел предназначены 10 арабских цифр и буквы латинского алфавита {А, В, С, D, Е, F}. Чтобы записать число в этой системе счисления, удобно воспользоваться двоичным представлением числа. Возьмём для примера то же число - 2000 или 11111010000 в двоичной системе. Разобьём его на четвёрки знаков, двигаясь справа налево, в последней четвёрке слева припишем незначащий 0, чтобы количество знаков в триадах было по четыре: 0111 1101 0000. Начнём перевод - числу 0111 в двоичной системе соответствует число 7 в десятичной (7 10 =1*2 0 +1*2 1 +1*2 2), в шестнадцатеричной системе счисления цифра 7 есть; числу 1101 в двоичной системе соответствует число 13 в десятичной (13=1*2 0 + 0*2 1 + 1*2 2 + 1*2 3), в шестнадцатеричной системе этому числу соответствует цифра D, и, наконец, число 0000 - в любой системе счисления 0. Запишем теперь результат:

11111010000 2 = 7D0 16 .

ДВЕНАДЦАТИРИЧНАЯ И ВОСЬМЕРИЧНАЯ СИСТЕМЫ СЧИСЛЕНИЯ

Хотя десятичная система счисления является наиболее широко применимой, это отнюдь не означает, что она самая лучшая. Широкое распространение во многом объясняется тем анатомическим обстоятельством, что у нас на руках и ногах по десять пальцев. Что же касается позиционного принципа и цифровых обозначений, то они с равным успехом могут быть приспособлены к системе счисления с любым основанием, независимо от того, равно ли оно 2, 10 или какому-нибудь другому целому положительному числу, кроме единицы. Например, подставив в полиномиальное представление 7x 2 + 6x 1 + 5x 0 + 4x –1 + 3x –2 вместо x значение 10, мы получим число 765,43 в нашей обычной десятичной системе. Но без малейшего ущерба для позиционного принципа обозначения целых чисел и дробей вместо x можно подставить и любое другое целое положительное число. Вместо числа 10 в качестве основания системы счисления чаще других предлагалось использовать числа 8 и 12. Системы, получающиеся при таких заменах, известны под названием восьмеричной и двенадцатеричной. В восьмеричной системе вместо переменной x в полиномиальном представлении следует подставить 8, и тогда число, равное в десятичной системе 765,43, в восьмеричной системе окажется равным (8 2) + 6(8 1) + 5(8 0) + 4(8 –1) + 3(8 –2), т.е. числу. В двенадцатеричной системе то же самое полиномиальное представление при x = 12 дает (12 2) + 6(12 1) + 5(12 0) + 4(12 –1) + 3(12 –2), или в наших обычных обозначениях. Что касается вычислений, то они во всех трех системах счисления, десятичной, восьмеричной и двенадцатиричной, производятся практически одинаково и с одной и той же легкостью. Различие в основном заключается в таблицах сложения и умножения, поскольку они изменяются от одной системы счисления к другой. Например, сумма семь плюс семь равна сумме восемь плюс шесть в восьмеричной системе, десять плюс четыре – в десятичной и двенадцать плюс два – в двенадцатиричной. Символически эти суммы и произведения можно записать следующим образом:

Мы видим, что переход от десятичной системы к восьмеричной или двенадцатиричной действительно требует полного пересмотра таблиц сложения и умножения; это объясняет, почему предложения о переходе к этим системам счисления не получили широкого признания. Преимущества, которые сулит этот переход, сводятся на нет сопряженными с ним трудностями. Главные преимущества восьмеричной и двенадцатиричной систем счисления связаны с делимостью их оснований. Рассматривая только целые числа, меньшие половины основания (поскольку ни одно число не может быть делителем основания, если это число больше половины основания, но меньше его), нетрудно понять, что число 10 имеет два неделителя – числа 3 и 4, тогда как в восьмеричной системе единственный неделитель, меньший половины основания, есть число 3, а в двенадцатиричной системе единственный неделитель основания равен числу 5. Иначе говоря, преимущество числа 12 как основания системы счисления заключается в том, что оно имеет делителями числа 2, 3, 4 и 6, тогда как число 10 имеет делителями числа 2 и 5. Число 8 имеет делителями только числа 2 и 4, однако его основное преимущество перед другими в том, что непрерывное деление пополам неизменно приводит к «одноместному» дробному представлению в полиномиальной форме. Например, если 8 разделить на 2 10 , то результат окажется в точности равным (0,004) 8 , тогда как если 12 разделить на 2 10 , то получится (приближенно) (0,0183) 12 , а при делении на 2 10 числа 10 результат (также приближенный) будет равным (0,0097656) 10 .

Представление чисел и команд в ЭВМ (INFlesson5.doc).

Мысль выражать числа десятью знаками, придавая им, кроме значения по форме, ещё значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко прийти к этому методу, мы видим на примере величайших гениев греческой учёности Архимеда и Апполония, от которых эта мысль осталась скрытой.

Пьер Симон Лаплас

Изучая способы представления числовой информации необходимо знакомиться с правилами перевода одного представления числа в другое, пытаться понять, почему одно и то же число в различных ситуациях необходимо представлять по-разному. Приёмами представления чисел занимается специальный раздел теории чисел «Системы счисления».

Введено еще одно важное понятие – система счисления. Зачем она нужна? Что это вообще такое? Системы счисления – это системы, созданные человеком. Называют такие системы искусственными в отличие отестественных систем, созданных природой. К естественным (природным) системам относятся галактики, наша Солнечная система, человек как единое целое и так далее. К искусственным системам относятся города, заводы, система образования, национальные языки, то есть всё, что сделано людьми.

Искусственные системы можно разделить на

материальные: автомобили, самолёты, дома, города, плотины и т.д.;

общественные , то есть разные объединения людей: парламент, система народного образования, шахматный клуб и т.д.;

информационные: национальные языки, компьютерная сеть Интернет, системы счисления и т.д.

Каждая искусственная система создаётся с определённой целью. Можно утверждать, что лучше та искусственная система, которая наилучшим образом обеспечивает достижение цели её создания.

Целью создания системы счисления является выработка наиболее удобного способа записи чисел. Система счисления позволяет отображать в компактной форме количественные сведения об объектах и манипулировать ими, используя достаточно простые правила.

Первые девять натуральных чисел мы обозначаем специальными знаками:

1, 2, 3, 4, 5, 6, 7, 8, 9.

Поступать таким же образом со всеми встречающимися на практике числами, т.е. обозначать специальными знаками все встречающиеся числа, было бы неудобно. Даже если бы наши потребности ограничивались счётом в пределах тысячи, надо было бы запомнить тысячу специальных знаков. Естественно, что уже давно люди стали выбирать тот или иной ряд "ключевых", основных чисел и только их обозначать специальными знаками.

Системы счисления – это гениальное изобретение человечества. Для того чтобы сообщить о том, что сегодня две тысячи седьмой год на естественном языке, я вынужден использовать 16 символов (без учёта пробелов). С помощью языка чисел, можно то же самое изобразить четырьмя символами. Получается, что цифры представляют собой коды соответствующих слов, что подтверждается и тем, что номер года, записанный словами и числом, читается нами одинаково. Числа на разных естественных языках произносятся различным образом, а их запись и правила выполнения арифметических операций над ними одинаковы.

Понятие числа является фундаментальным как для математики, так и для информатики. Но если в математике наибольшее внимание уделяется методам обработки чисел, то для информатики нельзя обойти стороной методы представления чисел, так как именно они определяют необходимые ресурсы памяти, скорость и погрешность вычислений.

1. Система счисления – это способ изображения чисел и соответствующие ему правила действий над числами.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные.

1.1 Непозиционные системы счисления.

Непозиционными системами счисления пользовались древние египтяне,

греки, римляне и некоторые другие народы древности. В непозиционных системах счисления от положения знака в записи числа не зависит величина, которую он (знак) обозначает.

До нас дошла римская система записи чисел (римские цифры), которая в некоторых случаях применяется до сих пор в нумерации (века, тома, главы книги). В римской системе в качестве цифр используются латинские буквы:

1 5 10 50 100 500 1000

Например, число ССXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если слева записана меньшая цифра, а справа – большая, то их значения вычитаются.

VI = 5 + 1 = 6, а IV = 5 – 1 = 4.

MCMXCVII = 1000 + (- 100 + 1000) + (- 10 + 100) + 5 + 1 + 1 = 1997.

Непозиционные системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.

1.2 Позиционные системы счисления (ПСС).

Позиционные системы счисления удобны тем, что позволяют записывать сколь угодно большие числа с помощью небольшого количества цифр. Немаловажным преимуществом позиционных систем счисления являются достаточно простые алгоритмы выполнения арифметических операций над числами.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её позиции.

Количество используемых цифр называется основанием ПСС.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Её основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Многие из нас эти значки, известные с детства, связывают с понятием "цифра". Тем не менее, в качестве цифр мы можем использовать любые значки. Да и цифр не обязательно должно быть десять.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии, в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название "арабские цифры".

Позиционный тип десятичной системы легко понять на примере любого многозначного числа. Например, в числе 333 первая цифра означает три сотни, вторая – три десятка, третья – три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные величины.

333 = 3 100 + 3 10 + 3.

Всякое десятичное число можно представить как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.

26, 387 = 2 10 1 + 6 10 0 + 3 10 -1 + 8 10 -2 + 7 10 -3 .

Это позволяет осуществить перевод чисел с основанием не равным 10 к десятичному представлению.

Для осуществления такого перевода необходимо записать исходное число в виде суммы произведений цифр числа на соответствующие степени основания и вычислить значение полученного числового выражения по правилам десятичной арифметики.

1. 432,32 5 → A 10 .

432,32 5 = 4*5 2 + 3*5 1 + 2*5 0 + 3*5 -1 + 2*5 -2 = 100 + 15 + 2 + + =

2. DF,4A 16 → A 10

DF,4A 16 = 13*16 1 + 15*16 0 + 4*16 -1 + A*16 -2 = 208 + 15 +

Число «десять» - не единственно возможное основание позиционной системы. Известный русский математик Н.Н.Лузин так выразился по этому поводу: "Преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмеричной системой".

Для записи чисел в позиционной системе с основанием n (n – обозначение основания ПСС) нужно иметь алфавит из n цифр. Обычно для этого при n ≤ 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют латинские буквы.

Приведем примеры алфавитов нескольких систем:

Основание системы, к которой относится число, обозначается подстрочным индексом к этому числу.

1011001 2 , 3671 8 , 3B8F 16 .

1.3 Перевод десятичных чисел в ПСС с основанием, не равным 10.

1.3.1 Перевод целых чисел.

Основание новой системы счисления выразить в десятичной системе

счисления и все последующие действия производить в десятичной системе счисления;

Последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

Составить число в новой системе счисления, записывая его, начиная с последнего частного.

1.3.2 Перевод дробных чисел.

Основание новой системы счисления выразить в десятичной системе и все последующие действия выполнять в десятичной системе счисления;

Последовательно умножать данное число и получаемые дробные части произведений на основание новой системы счисления до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

Полученные целые части произведений, являющихся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Примеры перевода конкретных десятичных чисел представлены в приложении 1.

Приложение 1.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16